Chinese Poetry Generation Simon & Vera

Outline

Introduction

What is Chinese poetry?
Poetic Rules
Goals
Our Approach
Planning
Word2vec
TextRank
Keyword Extraction & Expansion
Generation
Seq2Seq

Encoder: Bidirectional RNN

Decoder: Attention Mechanism Alignment Rhyming **Experimental Design** Training Data Methods of Evaluation Results Evaluation Turing Test **Future Improvements** RL Tuner Beam Search **Convolutional Polishing**

What is Chinese Poetry?

江雪 千山鸟飞绝, 万径人踪灭。 孤舟蓑笠翁, 独钓寒江雪。 **River Snow**

From hill to hill no bird in flight; From path to path no man in sight.

A lonely fisherman afloat,

Is fishing snow in lonely boat.

Poetic Rules

(P) P (Z) Z Z P P,
(P) P (Z) Z P P Z,
(Z) Z P P Z Z P.
(Z) Z (P) P P Z Z,
(P) P (Z) Z Z P P.
(P) P (Z) Z Z P P.

Structure: Four lines, usually five or seven characters per line.

Tone: P and Z each represents two tones

Rhyme: The last characters with **O** must rhyme

والمعادة المتلكين المراجع

Why study Chinese poetry?

Unique challenge - A lot of structure and pattern

Cultural importance - widely study today

Application in real life - teaching assistant

Character Alignment

1 Million Contraction

Answer is **Yes** and **No**.

Thematic Semantic Coherence: Adherence to Poetic **Correspondence:** Rules: Within sentences Between sentences Within poem Can a deep neural network capture all of the **information** and **patterns**?

7

- LA WING - Start

OurApproach

Planning Based Poetry Generation

Key Idea is separation of **Planning & Generation**

Thematic Correspondence

Semantic Coherence

Source: https://arxiv.org/pdf/1610.09889.pdf

in mater in tulton the

Planning

Word2vec (WordEmbedding)

Why do we need Word2Vec?

Word2vec

AUDIO

IMAGES

Audio Spectrogram

Image pixels
DENSE

Word, context, or document vectors SPARSE

TEXT

0 0 0 0.2 0 0.7 0 0 0

Word2vec uses a single hidden layer, fully connected neural network.

Source: https://www.tensorflow.org/tutorials/word2vec

- Antibio and

Word2vec

Algorithm we use: Continuous Bag-of-Words model (CBOW) The model predicts the current word from a window of surrounding context words

Source: https://www.tensorflow.org/tutorials/word2vec https://arxiv.org/pdf/1301.3781.pdf

Word2vec

Word2vec captures linguistic regularities - very important in our task.

Two interesting examples:

vec('Rome') = vec('Paris') - vec('France') + vec('Italy')

vec('Queen') = vec('King') - vec('man') + vec('woman')

Source: https://iksinc.wordpress.com/tag/continuous-bag-of-words-cbow/

: William

TextRank

Algorithm:

- 1. Break sentences into segments.
- 2. Build weighted graph of segments
- 3. Run PageRank on graph (i.e. iterative ranking based with recommendation score of segment)

Keyword Extraction & Expansion

- williamster

Generating

Decoder

Source: https://arxiv.org/pdf/1406.1078.pdf

Common Applications:

Machine Translation Question & Answering Text Generation ني منه منه منه الله المراجد ال

Encoder: Bidirectional RNN

Bidirectional RNNs are based on the idea that the output at time t may not only depend on the previous elements in the sequence, but also future elements.

Implementation: stack the forward and backward states and use them as input for decoder

Source: https://www.semanticscholar.org/paper/A-Unified-Tagging-Solution-Bidirectional-LSTM-Recu-Wang-Qian/191dd7df9cb91ac22f56ed0dfa4a5651e8767a51

18

- Autoria and

Encoder: Deep Bidirectional RNN

Similar to Bidirectional RNNs. Instead of single layer, have multiple layers per time step. Able to learn more complex behaviour.

Source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

المحتجدة المتلكلة المراج

Attention Decoder

Figure 1: Encoder-Decoder architecture with attention module. Section numbers reference experiments corresponding to the components.

and the state of the

Types of Attention

$$a_t(s) = align(h_t, \bar{h}_s) = \frac{exp(score(h_t, \bar{h}_s))}{\sum_{s \in exp(score(h_t, \bar{h}_{s \in e}))}}$$

Bahdanau (Additive) Attention:

Scoring function is neural network (single layer) applied on concatenation of encoder and decoder hidden states.

Luong (Multiplicative) Attention:

Generalizes the model and introduces new scoring functions:

$$score(h_t, \bar{h}_s) = \begin{cases} h_t^{\top} \bar{h}_s & dot \\ h_t^{\top} \mathbf{W}_a \bar{h}_s & general \\ v_a^{\top} \mathbf{W}_a [h_t; \bar{h}_s] & concat \end{cases}$$

21

Julia

Visualizing Attention

المتعادية المتعادية 22

Loss Function

MSE

Due to the nature of MSE and Word2Vec, the output is not guaranteed to be a valid character. Its output is more like **"feeling of a character"**.

Based on our experiments (and eyeballing), the results are not as good

Cross Entropy (maximize the log-likelihood)

Common loss function in similar tasks: text generation, machine translation, etc.

Generated results look good, and this is the one we chose to use in some of our tests.

Rhyming: Heuristic

Inspiration: Poetry polishing

Poets usually polish their poetry

Realization: Word2vec

Word2vec model can find top N similar characters of a character

We can choose the one that rhymes

Target Rhyme Original Output refine ('间', '山') = 岩

Between Mountain Rock

Target Rhyme Original Output refine ('山', '云') = 烟

Mountain Cloud Smoke

منابعة المناجة المناجة .

Rhyming: Better than Heuristic

Before we disclose the secret, let's take a look at the training data.

千山鸟飞约	色 飞: Fly	
万径 <mark>人</mark> 踪列	反 人: Person	
<mark>孤舟</mark> 蓑笠翁	斎 孤舟: Lonely Boat	
独钓寒江	雪 雪: Snow	
_	Keyword	
Source1:	K	
Target1:	千山鸟飞绝 Preceding Sentences	
Source2:	人《PAD》 千山鸟飞绝	
Target2:	万径人踪灭	
Source3:	孤舟 <pad>千山鸟飞绝<pad>万径人踪灭</pad></pad>	
Target3:	孤舟蓑笠翁	
Source4:	雪 <pad> 千山鸟飞绝<pad>万径人踪灭<pad>孤舟蓑笠</pad></pad></pad>	乞翁
Target4:	独钓寒江雪	

ومنطقة ومستعلمات

Surprise!

Reversing training data improves rhyming a lot.

Rhyming: Better than Heuristic

千山鸟<mark>飞</mark>绝 飞: Fly

万径<mark>人</mark>踪灭 人: Person

孤舟蓑笠翁 孤舟: Lonely Boat

独钓寒江雪 雪: Snow

Source1: 飞

Target1: 千山鸟飞绝

Source1: 飞

Target1: 绝飞鸟山千

- Source2: 人<PAD>千山鸟飞绝
- Target2: 万径人踪灭
- Source2: 绝飞鸟山千<PAD>人

Target2: 灭踪人径万

Why does reversing training data yields better rhyming?

Intuition:

RNN decides the last

character first, then it is not subject to previously generated characters - in with the states

Alignment: Boosted Word2Vec

Idea:

Add vertical slices of poems as additional sentences in training word2vec model.

江雪				
Ŧ	山鸟飞绝,			
万	径人踪灭。			
孤	舟蓑笠翁,			
独	钓寒江雪。			

Goal:

Synthetically boost similarity between **characters that appear in alignment** in the training data.

Result: Subtle change in order of words with top similarity

Positive effect by inspection

ن المراجعة ا

Alignment: Boosted Word2Vec

Idea:

Add vertical slices of poems as additional sentences in training word2vec model.

江雪	Experiments:
	Character: 东
千山鸟飞绝,	ea
	Without Alignn
万怪人踪火。	[西 , 春, 隅
孤舟蓑笠翁,	[west , spring, co
独 <mark>钓寒江雪</mark> 。	With Alignmen [西, 淮, 南

стрсі	much	LJ.				
Chara	cter:	东				
		east				
Witho	ut Alig	nment				
[西,	春,	隅,	南 ,	滨,	临]	
[west,	spring	, corner	,south,	seaside	e, arrival]	
With Alignment:						
[西,	淮 ,	南, 🖊	江,	春,	北]	
[west,	river,	south,	river,	spring,	north)]	

: Millinite

Alignment: Aligning Training Data

Intuition:

Training data should be padded/aligned such that the location of keywords and each sentences are consistent

- willing the

Experimental Design

Training Data

 76,433
 Poems

 305,732
 Lines

 2,036,012
 Characters

Methods of Evaluation

BLEU Score:

A score from 0 to 1 indicating how similar the candidate text is to the reference texts.

It is calculated on sentence level, but only the corpus level average is indicative of quality.

Issue:

Do not have good reference sentences

Not Yet Implemented

Rhyming/Tonal Score:

50% from rhyming, **50%** from tonal.

Rhyming Score:

1: if end characters rhyme as expected

0: otherwise

Tonal Score:

0<=p<=1: percentage of characters with expected tone types

Structural Score:

0: if lines are not five or seven characters, or have different lengths

1: otherwise

Alignment Score:

Train word2vec with only vertical slices of poems.

Use average similarity score across 4 sentences as poem alignment score

Not Yet Implemented

- animarina

List of Training Params

Bidirectional: Decoder Input: Training Data Reverse: Training Data Alignment: Word2Vec Alignment: Cell Type: Attention Type: Hidden Units: Depth: Batch Size:

[True, False] [Ground Truth, Sampling] [True, False] [True, False] [True, False] [LSTM, GRU] [Bahdanau, Luong] 128 4 [Default, Alternative] 64

الملاقة المالية

Our Latest Model

 Name
 Smoothed
 Value
 Step
 Time
 Relative

 Image: best/.
 1.823
 1.810
 1.622M
 Sat Jul 22, 19:04:34
 3d 22h 0m 34s

Trained with: Default setting 1,622,400 steps ~ 350 epochs ~ 4 days

Converged to: Loss of **1.8**

Generated Poem

Input: 醉

Keywords:

酒 醒 醉 梅花

Poem: 舞困歌慵酒梦迟, 雪醒犹饮榻南池。 醉茶只说黄池主, 不看梅花便开时。

Input: Drunk

withtender

Poem:

Sleepy dance, tired songs, and dream delayed by **alcohol**, **Awaken** to ambrosia-like snow, lying in the south pond.

Drunk tea brought conversation about the golden pond,

Plum blossoms appear when none looks.

Rhyming/Tonal Score

نينونين المرالين مناطق

Turing Test

Wildlin - salesiin

Designed a web app that lets users guess if the poetry sample was written by a person or a computer.

You can play the game here: http://ming-gpu-3.cs.uwaterloo.ca :8080

2500+ Data Points

From ~100 friends - a popular game!

43% Passed Turing Tests

Impressive given 39% of human poetry were labeled computer

Rhymes very well Beautiful words Generally fluent N.A

Coherent

uring Test Insights

Weird length Duplicate characters

"storyline"

Conflicting sentiment

Training Speed (4h)

	Name	Smoothed	Value	Step	Time	Relative
	default/.	3.779	3.650	37.00k	Sat Jul 22, 23:11:06	4h 3m 4s
	no_bidirectional/.	4.122	4.268	70.20k	Sat Jul 22, 23:12:37	4h 25m 57s
0	no_prev/.	4.117	4.085	135.9k	Sat Jul 22, 23:12:38	3h 46m 42s
	no_reverse_align/.	4.081	4.002	41.30k	Sat Jul 22, 23:12:24	4h 21m 52s

Not using previous sentences vs Not using bidirectional: Doubles training speed, similar loss

Not using bidirectional vs Default:

Doubles training speed, significantly higher loss

: Willie Marine

Training Speed (24h)

	Name	Smoothed	Value	Step	Time	Relative
	default/.	2.521	2.539	211.5k	Sun Jul 23, 18:42:07	23h 32m 30s
	no_bidirectional/.	3.273	3.269	363.1k	Sun Jul 23, 18:42:55	23h 55m 3s
0	no_prev/.	3.659	3.598	831.9k	Sun Jul 23, 18:42:29	23h 15m 13s
	no_reverse_align/.	2.866	2.875	217.9k	Sun Jul 23, 18:41:53	23h 49m 49s

Not using previous sentences vs Not using bidirectional Doubles training speed, significantly higher loss

Not using bidirectional vs Default:

Doubles training speed, significantly higher loss

: Willie

Training Stats (24h)

Model/Stats	Epoch	Step	Perplexity	Loss	Sents/s	
Default	46	221500	12.08	2.521	127.76	
No Reverse & Alignment	47	228700	15.00	2.650	268.88	
No Bidirectional	79	380500	24.86	3.234	288.93	
No Previous	183	873800	37.55	3.546	896.23	

ULI in series

Rhyming/Tonal Score

Comparison of Score Distribution of Models

Observations: No Previous

Penalized hard on sentence length

No Bidirectional As good as default

No Reverse & Alignment Penalized hard on rhyming - william and

A Closer Look

No Previous Penalized hard on sentence length المعادين المعالية المراجع

A Closer Look

No Bidirectional As good as default

مران المران ا

A Closer Look

No Reverse & Alignment Penalized hard on rhyming

Rhyming/Tonal Stats

Model/Stats	Mean of Combined Score	Standard Deviation of Combined Score	
Training Data	0.8941	0.1843	
Default	0.7802	0.2840	
No Reverse & Alignment	0.6997	0.2713	
No Bidirectional	0.8025	0.2571	
No Previous	0.1490	0.2346	

William and

Future Improvements

During Training: **Convolutional Polishing**

During Prediction: **Beam Search Optimization**

Integrate Heuristic with Mode

Model Refinement After Training: **Reinforcement Learning Tuner**

- Culture -

RLTuner

Goal:

Teach model **structural/tonal/rhyming rules**, while allowing it to **learn patterns organically**.

Key Idea:

Use **trained model** and **poetry rules** as reward to train a new reinforcement learning model.

To Approximate: Q(state, action) = reward

Likelihood given by trained model **Score** given by poetry rules

Source: https://magenta.tensorflow.org/2016/11/09/tuning-recurrent-networks-with-reinforcement-learning

المنتخذ اللالات

Implementation of RL Tuner

Algorithm: Deep Double Q-Learning

- windstand

Beam Search

A heuristic search algorithm that explores a graph by expanding the most promising node in a limited set.

- Computationally Efficient
- Able to Integrate Human Knowledge
- Able to consider the final performance

Beam Search

Beam search uses **BFS** to build its search tree.

At each level of the tree, it generates **all successors** of the states at the current level, **sorting** them in increasing order of **heuristic cost** (possibly domain knowledge!)

However, it only stores a predetermined number, β , of best states at each level.

: Willie within

Polishing Network

Inspiration:

Human poets often draft and **recompose** clauses numerous times before settling for the best formulation.

It's an **iterative process**, where output from a previous generation informs the next generation.

Source: https://pdfs.semanticscholar.org/0bd8/5c60a9ebcee8072245ebe499c8e3b26651cf.pdf

ومنافقة ومناطقة

Convolutional Polishing

Improved Formulation:

Integrate polishing network with decoder, instead of using it as an output layer.

Why Convolutional?

Fixed sized windows helps to extract local (neighboring) patterns of successive characters.

: Willie with the

Convolutional Polishing

When to Stop?

- When change made by polishing is small enough (e.g. cosine similarity of encoded).
- Polishing may not converge, need termination threshold.

Issues:

- Complex architecture, hard to implement.
- Long training time with large number of iterations per sample.

Thanks!

Any questions?

References: Papers

Scheduled Sampling

Title: Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks Link: [https://arxiv.org/abs/1506.03099]

Beam Search

Title: Sequence-to-Sequence Learning as Beam-Search Optimization Link: [https://arxiv.org/abs/1606.02960]

RL Tuner

Title: Tuning Recurrent Neural Networks with Reinforcement Learning Link: [https://arxiv.org/pdf/1611.02796v2.pdf]

Source:

https://github.com/tensorflow/magenta/tree/master/magenta/models/rl_tuner

Title: Deep Reinforcement Learning for Dialogue Generation Link: [<u>https://arxiv.org/pdf/1606.01541.pdf</u>] Note: Augmenting seq2seq with reinforcement learning منطقة المنطقة ا

References:Source Code

JayParks/tf-seq2seq

Link: [https://github.com/JayParks/tf-seq2seq] Description:

- RNN encoder-decoder architectures and attention mechanism
- Implemented using the latest (1.2) tf.contrib.seq2seq modules

Usage: consulted architecture code snippet

DevinZ1993/Chinese-Poetry-Generation

Link: [https://github.com/DevinZ1993/Chinese-Poetry-Generation] Description:

- An undergraduate student's attempt to implement planning based poetry generation
- Produce good but not excellent results Usage: consulted data utility code snippet

الملتقة ومعاللا

References:Source Code

tensorflow/tensorflow/contrib/seq2seq/

Link: [https://github.com/tensorflow/tensorflow/tree/r1.2/tensorflow/contrib/seq2seq Docs: [https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq] Description:

- Officially endorsed components used for implementing sequence to sequence translation networks
- **Caveat:** Volatile API especially prior to Tensorflow 1.2 release. Does not correspond to some of the seq2seq tutorials on the Tensorflow documentation/tutorial site (which uses a legacy version of the framework) Usage: used as main building block of current implementation

farizrahman4u/seq2seq

Link: [https://github.com/farizrahman4u/seq2seq] Description:

- A Keras seq2seq framework implementing attention, bidirectional encoder
- **Caveat:** Large number of issues tracked on GitHub. We failed to get this working. Training loss is consistently high after many epochs, and only gibberish was generated.

Usage: Failed to get this working

William State

Acknowledgement

Dr. Ming Li - University of Waterloo

Dr. Xiaopeng Yang - University of Waterloo

