
Object Detection on
Self-Driving Cars in
China

Lingyun Li

Introduction
● Motivation: Perception is the key of self-driving cars
● Data set:

○ 10000 images with annotation
○ 2000 images without annotation (not used)
○ 640 * 360 pixels

● Complex road conditions in China
● Annotation: Object category and Bounding box
● 4 Categories: Vehicle, Pedestrian, Cyclist, Traffic_lights
● Task: Predict bounding box, category, and confidence
● Randomly select 2000 images from 10000, as test/validation set.

Data
● Small objects
● Objects overlapped and cropped
● Poor image quality
● Poor annotations

Why is Object Detection Difficult?
● Image classification:

○ Shift of an object inside an image is indiscriminate
○ Favours translation-invariance (CNN)

● Object detection
○ Describing how good the candidate box overlaps the object
○ Need both translation-invariance and translation-variance
○ Deep CNNs are less sensitive to translation

R-CNN: Region Proposal + CNN (2014)

SPPnet: Spatial Pyramid Pooling (2014)

● Fully-connected layers take fixed
sized input

● CNN can take input of any size
● Pooling to fixed size after CNN
● Improvement:

○ Can take image of any size
○ Only run CNN once for input

image

Fast R-CNN (2015)
● RoI (Region of Interest) pooling layer: a special type of SPP after CNN

○ Run for each region proposal to get fixed size output
● Multi-task loss: Train category classifier and bounding box regression together

Faster R-CNN (2015)

● RPN: Region proposal network
● End-to-end training without

separate region proposal
● Computation for fully connected

layers after RPN is still separate
for each RoI

Faster R-CNN (2015)
● RPN: Region Proposal Network
● Generate k different anchor boxes (RoI) for each 3*3 region on feature map
● Center of sliding window on feature map maps to center of Anchor box on

original image

● For image semantic segmentation
● Convolutionalization
● Upsampling
● Skip Architecture

FCN: Fully Convolutional Networks
(2016)

● Divide RoI into k2 grids
● k2*(C+1) score maps generated

from Fully Convolutional Network
● RoI pooling generates k2*(C+1)

scores

R-FCN (2016)

YOLO(2015) & YOLOv2 (2016)
● No Region Proposal Network
● Divide image into k*k grids
● Each grid responsible for object centered in that grid
● Fast
● Bad for small and overlapped objects
● YOLOv2 integrates YOLO & Faster-RCNN

Analysis & Evaluation
● For each category:

○ Intersection over Union (IoU) threshold: 50%
○ Average precision: 11-point average precision/recall
○ Same as The PASCAL Visual Object Classes (VOC) Challenge

● Proportion of bounding boxes:
○ Vehicles: 87%
○ Pedestrian: 7%
○ Cyclist: 6%
○ Traffic_lights: 3%

● Evaluation: Weighted average precision
Low IoU

Model Classifier FPS Vehicle
(car + bus)

Pedestrian
(person)

Cyclist (bicycle
+ motocycle)

Traffic_light
s (N/A)

Weighted
mAP

Faster-RCNN ZF 7.87 0.4246 0.0695 0.0609 0 0.3779

R-FCN ResNet101 4.58 0.6144 0.1412 0.2033 0 0.55661

YOLOv2 DarkNet19 37.04 0.4466 0.0499 0.0543 0 0.395293

Baseline
● Models trained on VOC 2007+2012
● Classifier: ResNet101 > DarkNet19 > ZF

Model Classifier Iterations Detection
FPS

Vehicle Pedestrian Cyclist Traffic_lights Weighted
mAP

R-FCN ResNet101 60000 4.57 0.8002 0.3184 0.5783 0.1215 0.7329

YOLOv2 DarkNet19 30000 27.8 0.8045 0.2335 0.4739 0.146 0.7249

Train
● Setup: Caffe + AWS g3.16xlarge

○ 4*Tesla M60, 64 vCPUs, 488G RAM
● Modify network and data pipeline to fit our data

Sample W-mAP vs Iterations

NMS (Non-Maximum Suppression)
● Remove duplicate boxes for same box

IoU threshold 0.4 0.45 0.5
R-FCN 0.7273 0.7329 0.7316

YOLOv2 0.723 0.7249 0.7228

Soft-NMS (2017)

W-mAP Threshold =0.45 Soft-NMS
R-FCN 0.7329 0.7408

YOLOv2 0.7249 0.7231

● Randomly scale input image to 704*352, 640*320, 576*288 or 512*256
● R-FCN already has multi-scale anchors in Region Proposal Network

Multi-Scale Training (YOLOv2 Only)

Model Multi-Scale Iterations Vehicle Pedestrian Cyclist Traffic_lights
Weighted

mAP
YOLOv2 Yes 30000 0.81 0.2459 0.4837 0.149 0.7314
YOLOv2 No 30000 0.8045 0.2335 0.4739 0.146 0.7249

Modify RPN Anchors (R-FCN Only)
● Original anchors (scale is based on input size of 1000*563):

○ scale: [8, 16, 32] * 16 pixels
○ Ratio: [0.5, 1, 2]
○ RPN_MIN_SIZE = 16 pixels
○ 9 anchors per sliding window

● Observations:
○ A lot of small objects
○ Objects with large ratio: pedestrian & cyclist

● Modified anchors:
○ scale: [2, 4, 8, 16, 32] * 16
○ Ratio: [0.3, 0.5, 1, 2, 3] pixels
○ RPN_MIN_SIZE = 4 pixels
○ 25 anchors per sliding window

R-FCN Weighted mAP
Before 0.7408
After 0.7895

Data Augmentation
● Crop

○ Most objects appear in the bottom 75%
○ Crop left bottom and right bottom (480*270)
○ Discard bounding boxes that are cropped

more than 75%
● Flip
● Results in 48000 training data
● Also tried to Stretch image, but failed to improve

W-mAP Before After
R-FCN 0.7895 0.7941

YOLOv2 0.7314 0.7388

Finally, Model Integration
● Detect with both YOLOv2 and R-FCN
● Remove overlapping box using Soft-NMS

W-mAP Before
R-FCN 0.7895

YOLOv2 0.7314
Integration 0.7912

Ground Truth

Detection

Ground Truth

Detection

Ground Truth

Detection

Ground Truth

Detection

Ground Truth

Detection

Ground Truth

Detection

Ground Truth

Detection

Ground Truth

Detection

Ground Truth

Detection

Future Work
● Clean data
● Fine-tuning for pedestrian, cyclist, and traffic_lights, will lose generalization
● Deformable-R-FCN (2017)
● OHEM: Online Hard Example Mining (2016)
● Stratified-OHEM (2017)

Q&A

