Object Detection on Self-Driving Cars in China

Lingyun Li

Introduction

- Motivation: Perception is the key of self-driving cars
- Data set:
 - 10000 images with annotation
 - 2000 images without annotation (not used)
 - 640 * 360 pixels
- Complex road conditions in China
- Annotation: Object category and Bounding box
- 4 Categories: Vehicle, Pedestrian, Cyclist, Traffic_lights
- Task: Predict bounding box, category, and confidence
- Randomly select 2000 images from 10000, as test/validation set.

Data

- Small objects
- Objects overlapped and cropped
- Poor image quality
- Poor annotations

Why is Object Detection Difficult?

- Image classification:
 - Shift of an object inside an image is indiscriminate
 - Favours translation-invariance (CNN)
- Object detection
 - Describing how good the candidate box overlaps the object
 - Need both translation-invariance and translation-variance
 - Deep CNNs are less sensitive to translation

R-CNN: Region Proposal + CNN (2014)

	localization	feature extraction	classification
this paper:	selective search	deep learning CNN	binary linear SVM
alternatives:	objectness, constrained parametric min-cuts, sliding window	HOG, SIFT, LBP, BoW, DPM	SVM, Neural networks, Logistic regression

SPPnet: Spatial Pyramid Pooling (2014)

fully-connected layers (fc6, fc7)

- Fully-connected layers take fixed sized input
- CNN can take input of any size
- Pooling to fixed size after CNN
- Improvement:
 - \circ $\,$ Can take image of any size
 - Only run CNN once for input image

Figure 3: A network structure with a **spatial pyramid pooling layer**. Here 256 is the filter number of the $conv_5$ layer, and $conv_5$ is the last convolutional layer.

Fast R-CNN (2015)

- Rol (Region of Interest) pooling layer: a special type of SPP after CNN
 - Run for each region proposal to get fixed size output
- Multi-task loss: Train category classifier and bounding box regression together

Faster R-CNN (2015)

- RPN: Region Proposal Network
- Generate k different anchor boxes (RoI) for each 3*3 region on feature map
- Center of sliding window on feature map maps to center of Anchor box on original image

position-sensitive score maps

YOLO(2015) & YOLOv2 (2016)

- No Region Proposal Network
- Divide image into k*k grids
- Each grid responsible for object centered in that grid
- Fast
- Bad for small and overlapped objects
- YOLOv2 integrates YOLO & Faster-RCNN

Analysis & Evaluation

- For each category:
- $AP = \frac{1}{11} \sum_{r \in \{0, 0.1, \dots, 1\}} p_{interp}(r)$ Intersection over Union (IoU) threshold: 50% Ο
 - Average precision: 11-point average precision/recall Ο
 - Same as The PASCAL Visual Object Classes (VOC) Challenge Ο
- Proportion of bounding boxes:
 - Vehicles: 87% Ο
 - Pedestrian: 7% Ο
 - Cyclist: 6% Ο
 - Traffic_lights: 3% Ο
- **Evaluation: Weighted average precision**

Low IoU

Baseline

- Models trained on VOC 2007+2012
- Classifier: ResNet101 > DarkNet19 > ZF

Model	Classifier	FPS	Vehicle (car + bus)	Pedestrian (person)	Cyclist (bicycle + motocycle)	Traffic_light s (N/A)	Weighted mAP
Faster-RCNN	ZF	7.87	0.4246	0.0695	0.0609	0	0.3779
R-FCN	ResNet101	4.58	0.6144	0.1412	0.2033	0	0.55661
YOLOv2	DarkNet19	37.04	0.4466	0.0499	0.0543	0	0.395293

Train

- Setup: Caffe + AWS g3.16xlarge
 - 4*Tesla M60, 64 vCPUs, 488G RAM
- Modify network and data pipeline to fit our data

Model	Classifier	Iterations	Detection FPS	Vehicle	Pedestrian	Cyclist	Traffic_lights	Weighted mAP
R-FCN	ResNet101	60000	4.57	0.8002	0.3184	0.5783	0.1215	0.7329
YOLOv2	DarkNet19	30000	27.8	0.8045	0.2335	0.4739	0.146	0.7249

Sample W-mAP vs Iterations

vehicle, pedestrian, cyclist, traffic_lights and Weighted mAP

NMS (Non-Maximum Suppression)

Remove duplicate boxes for same box

```
Set detected_boxes = all bounding boxes detected;
Set valid_boxes = empty;
while detected_boxes is not empty do
   Box valid_box = box in detected_boxes with max confidence;
   foreach Box box in detected_boxes do
      if IoU(valid_box, box) > nms_threshold then
         detected_boxes.remove(box);
      end
   end
```

```
valid_boxes.add(valid_box);
detected_boxes.remove(valid_box);
```

end

IoU threshold	0.4	0.45	0.5
R-FCN	0.7273	0.7329	0.7316
YOLOv2	0.723	0.7249	0.7228

Soft-NMS (2017)

```
Set detected_boxes = all bounding boxes detected;
```

Set valid_boxes = empty;

while $detected_boxes$ is not empty do

Box valid_box = box in detected_boxes with max confidence;

for each $Box \ box \ in \ detected_boxes \ do$

 $box.confidence = box.confidence * (1 - IoU(valid_box, box));$

end

valid_boxes.add(valid_box);
detected_boxes.remove(valid_box);

end

W-mAP	Threshold =0.45	Soft-NMS
R-FCN	0.7329	0.7408
YOLOv2	0.7249	0.7231

Multi-Scale Training (YOLOv2 Only)

- Randomly scale input image to 704*352, 640*320, 576*288 or 512*256
- R-FCN already has multi-scale anchors in Region Proposal Network

							Weighted
Model	Multi-Scale	Iterations	Vehicle	Pedestrian	Cyclist	Traffic_lights	mAP
YOLOv2	Yes	30000	0.81	0.2459	0.4837	0.149	0.7314
YOLOv2	No	30000	0.8045	0.2335	0.4739	0.146	0.7249

Modify RPN Anchors (R-FCN Only)

- Original anchors (scale is based on input size of 1000*563):
 - scale: [8, 16, 32] * 16 pixels
 - Ratio: [0.5, 1, 2]
 - RPN_MIN_SIZE = 16 pixels
 - 9 anchors per sliding window
- Observations:
 - A lot of small objects
 - Objects with large ratio: pedestrian & cyclist
- Modified anchors:
 - o scale: [2, 4, 8, 16, 32] * 16
 - Ratio: [0.3, 0.5, 1, 2, 3] pixels
 - RPN_MIN_SIZE = 4 pixels
 - 25 anchors per sliding window

R-FCN	Weighted mAP
Before	0.7408
After	0.7895

Data Augmentation

- Crop
 - Most objects appear in the bottom 75%
 - Crop left bottom and right bottom (480*270)
 - Discard bounding boxes that are cropped more than 75%
- Flip
- Results in 48000 training data
- Also tried to Stretch image, but failed to improve

W-mAP	Before	After
R-FCN	0.7895	0.7941
YOLOv2	0.7314	0.7388

Finally, Model Integration

- Detect with both YOLOv2 and R-FCN
- Remove overlapping box using Soft-NMS

W-mAP	Before
R-FCN	0.7895
YOLOv2	0.7314
Integration	0.7912

122

vehicle

633

vehicle

ve veh vel vehi ve vehi vehi ve ve

vehicle

e

vehicle

ochebeletete

vehicle hicle

- Antonio Antonio Antonio Antonio A

Detection

22.24

and present pre

vehicle

cyclist

cyclist

vehicle

vehicle ^{ist} cle

ist cle ∋

Detection

vehicle

pedestrian

traffic_lights

vehicle

Future Work

- Clean data
- Fine-tuning for pedestrian, cyclist, and traffic_lights, will lose generalization
- Deformable-R-FCN (2017)
- OHEM: Online Hard Example Mining (2016)
- Stratified-OHEM (2017)

