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Introduction
● Motivation: Perception is the key of self-driving cars
● Data set:

○ 10000 images with annotation
○ 2000 images without annotation (not used)
○ 640 * 360 pixels

● Complex road conditions in China
● Annotation: Object category and Bounding box
● 4 Categories: Vehicle, Pedestrian, Cyclist, Traffic_lights
● Task: Predict bounding box, category, and confidence
● Randomly select 2000 images from 10000, as test/validation set.





















Data 
● Small objects
● Objects overlapped and cropped
● Poor image quality
● Poor annotations



Why is Object Detection Difficult?
● Image classification: 

○ Shift of an object inside an image is indiscriminate
○ Favours translation-invariance (CNN)

● Object detection
○ Describing how good the candidate box overlaps the object
○ Need both translation-invariance and translation-variance
○ Deep CNNs are less sensitive to translation



R-CNN: Region Proposal + CNN (2014)



SPPnet: Spatial Pyramid Pooling (2014)

● Fully-connected layers take fixed 
sized input

● CNN can take input of any size
● Pooling to fixed size after CNN
● Improvement:

○ Can take image of any size
○ Only run CNN once for input 

image



Fast R-CNN (2015)
● RoI (Region of Interest) pooling layer: a special type of SPP after CNN

○ Run for each region proposal to get fixed size output
● Multi-task loss: Train category classifier and bounding box regression together



Faster R-CNN (2015)

● RPN: Region proposal network
● End-to-end training without 

separate region proposal
● Computation for fully connected 

layers after RPN is still separate 
for each RoI



Faster R-CNN (2015)
● RPN: Region Proposal Network
● Generate k different anchor boxes (RoI) for each 3*3 region on feature map
● Center of sliding window on feature map maps to center of Anchor box on 

original image



● For image semantic segmentation
● Convolutionalization
● Upsampling
● Skip Architecture

FCN: Fully Convolutional Networks 
(2016)



● Divide RoI into k2 grids
● k2*(C+1) score maps generated 

from Fully Convolutional Network
● RoI pooling generates k2*(C+1) 

scores

R-FCN (2016)



YOLO(2015) & YOLOv2 (2016)
● No Region Proposal Network
● Divide image into k*k grids
● Each grid responsible for object centered in that grid
● Fast
● Bad for small and overlapped objects
● YOLOv2 integrates YOLO & Faster-RCNN





Analysis & Evaluation
● For each category:

○ Intersection over Union (IoU) threshold: 50%
○ Average precision: 11-point average precision/recall
○ Same as The PASCAL Visual Object Classes (VOC) Challenge

● Proportion of bounding boxes:
○ Vehicles: 87%
○ Pedestrian: 7%
○ Cyclist: 6%
○ Traffic_lights: 3%

● Evaluation: Weighted average precision
Low IoU



Model Classifier FPS Vehicle 
(car + bus)

Pedestrian 
(person)

Cyclist (bicycle 
+ motocycle)

Traffic_light
s (N/A)

Weighted 
mAP

Faster-RCNN ZF 7.87 0.4246 0.0695 0.0609 0 0.3779

R-FCN ResNet101 4.58 0.6144 0.1412 0.2033 0 0.55661

YOLOv2 DarkNet19 37.04 0.4466 0.0499 0.0543 0 0.395293

Baseline
● Models trained on VOC 2007+2012
● Classifier: ResNet101 > DarkNet19 > ZF



Model Classifier Iterations Detection 
FPS

Vehicle Pedestrian Cyclist Traffic_lights Weighted 
mAP

R-FCN ResNet101 60000 4.57 0.8002 0.3184 0.5783  0.1215 0.7329

YOLOv2 DarkNet19 30000 27.8 0.8045 0.2335 0.4739 0.146 0.7249

Train
● Setup: Caffe + AWS g3.16xlarge 

○ 4*Tesla M60, 64 vCPUs, 488G RAM
● Modify network and data pipeline to fit our data



Sample W-mAP vs Iterations



NMS (Non-Maximum Suppression)
● Remove duplicate boxes for same box

IoU threshold 0.4 0.45 0.5
R-FCN 0.7273 0.7329 0.7316

YOLOv2 0.723 0.7249 0.7228



Soft-NMS (2017)

W-mAP Threshold =0.45 Soft-NMS
R-FCN 0.7329 0.7408

YOLOv2 0.7249 0.7231



● Randomly scale input image to 704*352, 640*320, 576*288 or 512*256
● R-FCN already has multi-scale anchors in Region Proposal Network

Multi-Scale Training (YOLOv2 Only)

Model Multi-Scale Iterations Vehicle Pedestrian Cyclist Traffic_lights
Weighted 

mAP
YOLOv2 Yes 30000 0.81 0.2459 0.4837 0.149 0.7314
YOLOv2 No 30000 0.8045 0.2335 0.4739 0.146 0.7249



Modify RPN Anchors (R-FCN Only)
● Original anchors (scale is based on input size of 1000*563):

○ scale: [8, 16, 32] * 16 pixels
○ Ratio: [0.5, 1, 2]
○ RPN_MIN_SIZE = 16 pixels
○ 9 anchors per sliding window

● Observations:
○ A lot of small objects
○ Objects with large ratio: pedestrian & cyclist

● Modified anchors:
○ scale: [2, 4, 8, 16, 32] * 16
○ Ratio: [0.3, 0.5, 1, 2, 3] pixels
○ RPN_MIN_SIZE = 4 pixels
○ 25 anchors per sliding window

R-FCN Weighted mAP
Before 0.7408
After 0.7895



Data Augmentation
● Crop

○ Most objects appear in the bottom 75%
○ Crop left bottom and right bottom (480*270)
○ Discard bounding boxes that are cropped 

more than 75%
● Flip
● Results in 48000 training data
● Also tried to Stretch image, but failed to improve

W-mAP Before After
R-FCN 0.7895 0.7941

YOLOv2 0.7314 0.7388



Finally, Model Integration
● Detect with both YOLOv2 and R-FCN
● Remove overlapping box using Soft-NMS

W-mAP Before
R-FCN 0.7895

YOLOv2 0.7314
Integration 0.7912



Ground Truth



Detection
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Future Work
● Clean data
● Fine-tuning for pedestrian, cyclist, and traffic_lights, will lose generalization
● Deformable-R-FCN (2017)
● OHEM: Online Hard Example Mining (2016)
● Stratified-OHEM (2017)



Q&A


