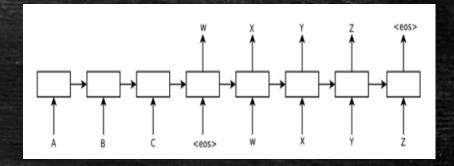
Abstract Text Summarization

Youngbin Kim

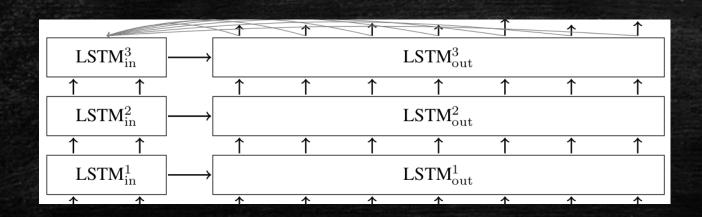
Outline

- Introduction
- Seq2Seq model
- Extensions & variants
- Experiment
- Future improvements

Automatic summarization

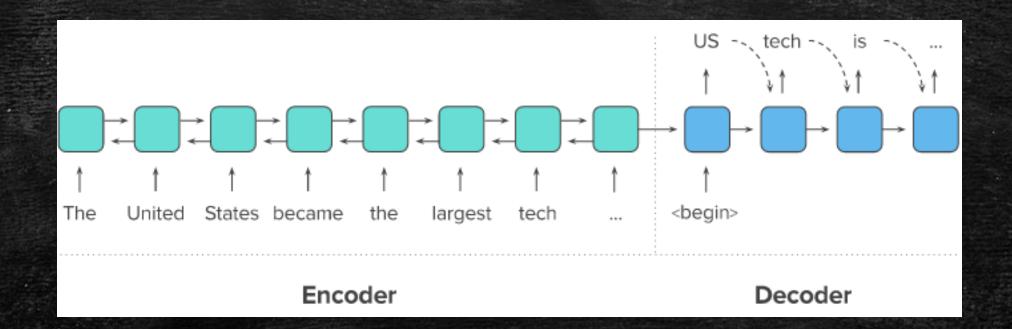

- def: The process of shortening a text document with software, in order to create a summary with the major points of the original document
- Application
 - Video summarization
 - Image Caption
 - Question answering system

Two ways to do text summarization


- Extractive summarization
 - Selecting subset of words from the source
 - Majority of text summarization
- Abstract summarization
 - Generate a summary based on semantic understanding of the text
 - Richer expressions, but more challenging (understanding of language model)

Related work

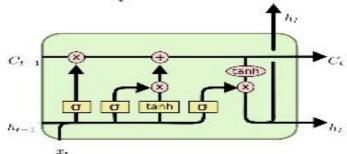
- Cho et al., 2014
 - Introduction of Sequence to Sequence model


- Bahdanau et al., 2014
 - Attention mechanism

Related work

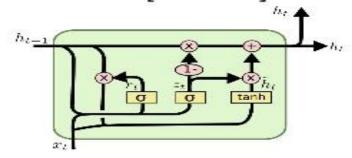
- Rush et al., 2015
 - Applied Seq2Seq to summarization
- Nallapati et al., 2016
 - Extended model with bidirectional encoder and generator-pointer decoder to deal with Out-Of-Vocabulary words

Basic Sequence to sequence model



LSTM / GRU

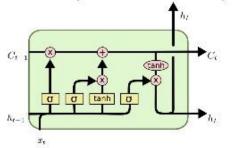
LSTM and GRU


Sosuke Kobayashi

LSTM [Hochreiter&Schmidhuber97]

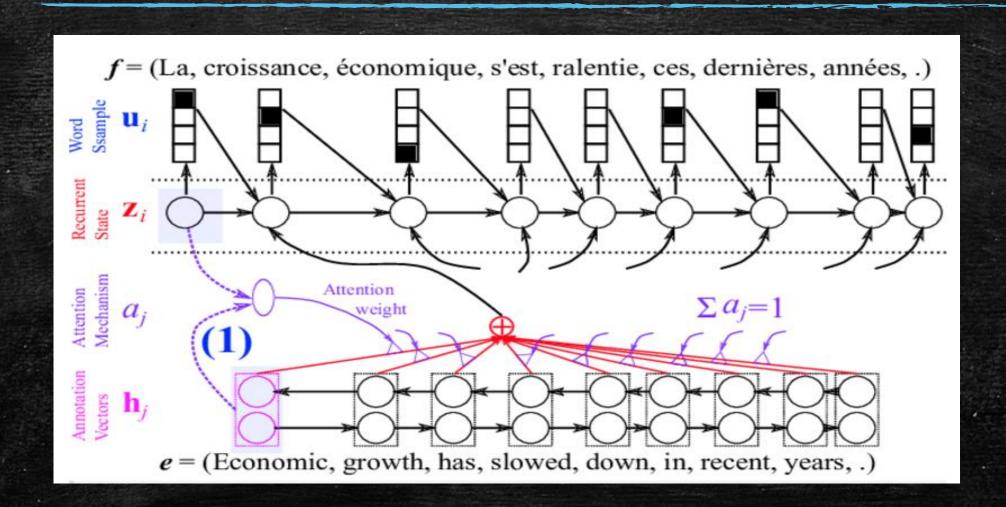
$$\begin{split} f_t &= \sigma\left(W_f \cdot [h_{t-1}, x_t] \ + \ b_f\right) \\ i_t &= \sigma\left(W_i \cdot [h_{t-1}, x_t] \ + \ b_i\right) \\ \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] \ + \ b_C) \\ C_t &= f_t * C_{t-1} + i_t * \tilde{C}_t \\ o_t &= \sigma\left(W_o \left[h_{t-1}, x_t\right] \ + \ b_o\right) \\ h_t &= o_t * \tanh\left(C_t\right) \end{split}$$
 Tohoku University

GRU [Cho+14]


$$\begin{array}{ll} + \ b_f) & z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right) \\ + \ b_i) & r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right) \\ x_t] \ + \ b_C) & \tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right) \\ + \ b_o) & h_t = (1-z_t) * h_{t-1} + z_t * \tilde{h}_t \end{array}$$
 Tohoku University, Inui and Okazaki Lab. (Biases are omitted.)

LSTM / GRU

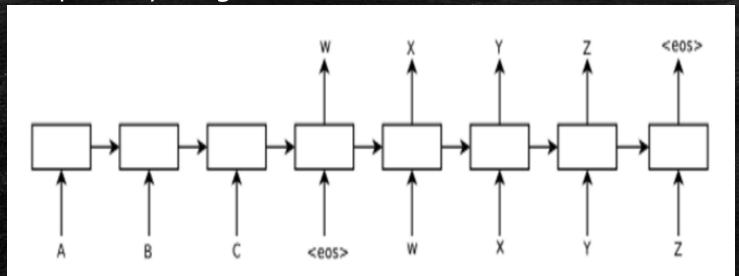
- Both prevent vanishing gradient problem
- GRUs train faster
- LSTMs outperform in tasks requiring modeling long-distance relations.


LSTM and GRU

LSTM [Hochreiter&Schmidhuber97]

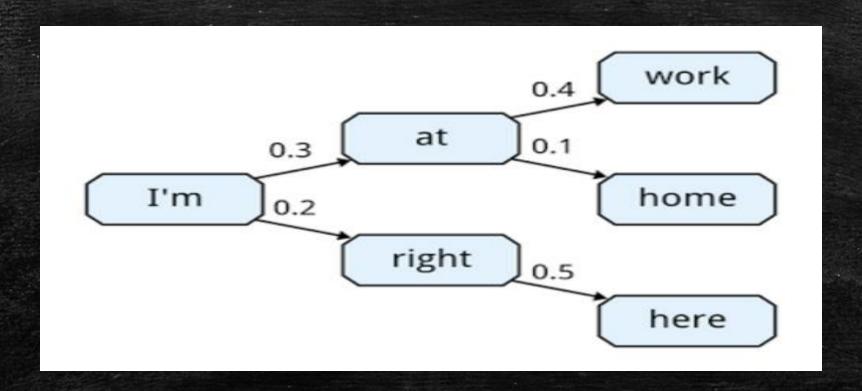
$$\begin{split} f_t &= \sigma\left(W_f \cdot [h_{t-1}, x_t] \ + \ b_f \right) \\ i_t &= \sigma\left(W_t \cdot [h_{t-1}, x_t] \ + \ b_i \right) \\ \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] \ + \ b_C \right) \\ C_t &= f_t * C_{t-1} + i_t * \tilde{C}_t \\ o_t &= \sigma\left(W_o \ [h_{t-1}, x_t] \ + \ b_o \right) \\ h_t &= \tanh\left(W \cdot \left[r_t * h_{t-1}, x_t \right] \right) \\ h_t &= (1-z_t) * h_{t-1} + z_t * \tilde{h}_t \\ h_t &= o_t * \tanh\left(C_t \right) \end{split}$$

Attention

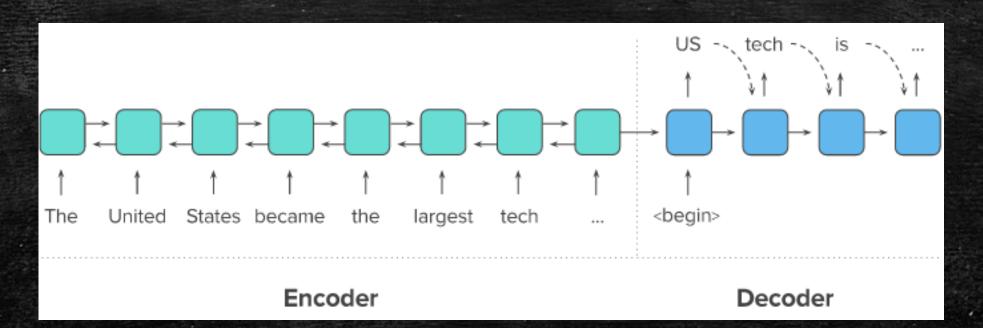


Decoder

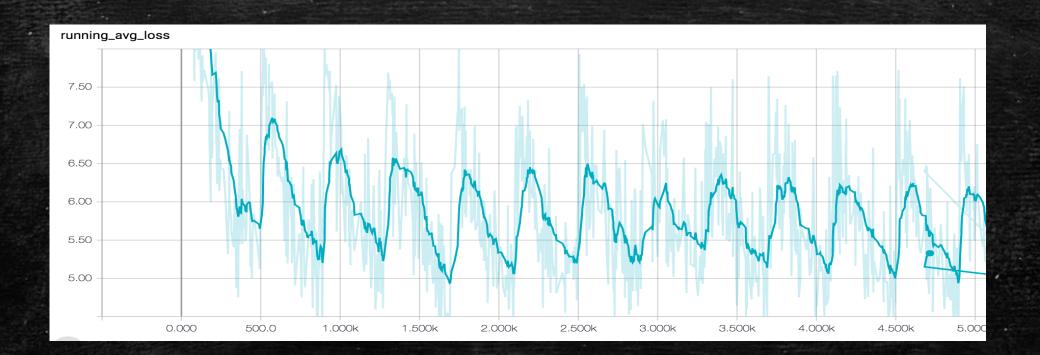
Cross Entropy Loss for each generated word


$$-\sum_{i=1}^{n}\sum_{i=c}^{C}t_{ic}\cdot log(y_{ic})$$

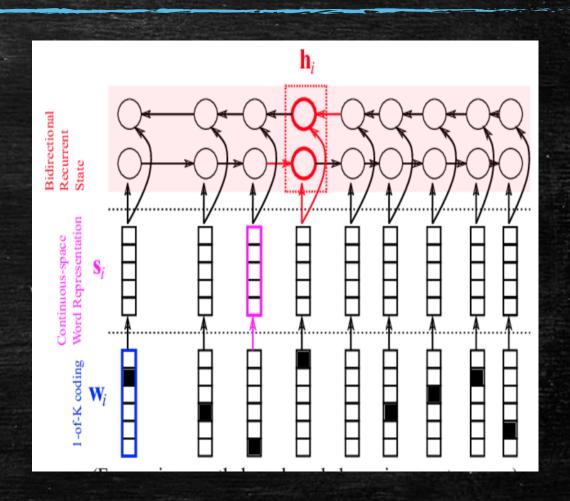
- During training, each word in an actual summary is fed in
- Multiplied by weight vectors (o if else 1)


Decoder

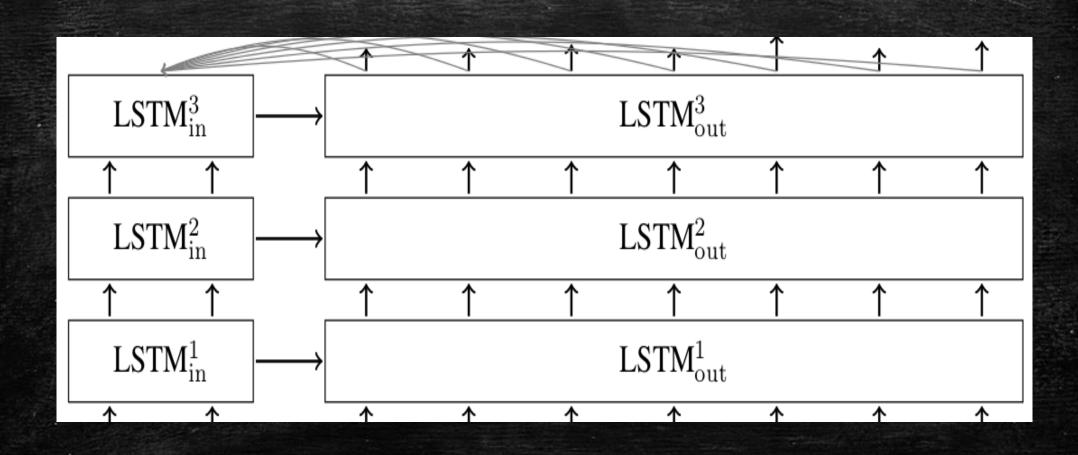
Beam search used for decoding (e.g beam size = 4)


Decoder

Greedy search during eval


Initial result

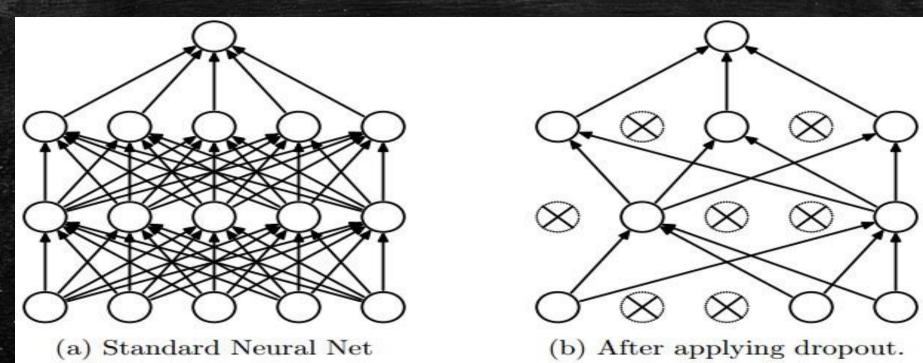
Training loss – problem?



Bidirectional encoder

 Make predictions based on future words by having the RNN model read through the corpus backwards

Go deeper!



Adam Optimizer

- Adaptive Learning rate
- Faster convergence
- Learns much better!

Overfitting - Dropout

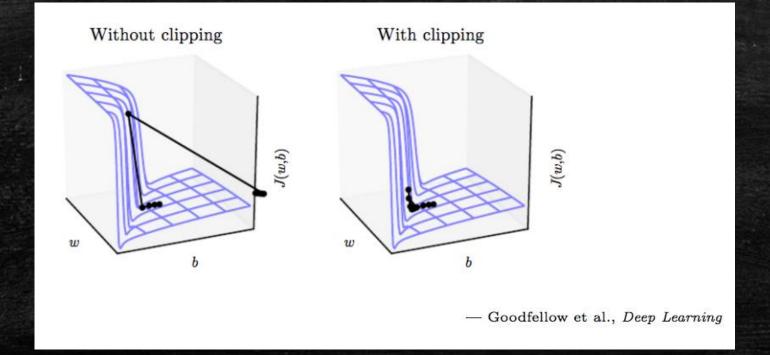
- To prevent Network from overfitting..
- While training, dropout is implemented by only keeping a neuron active with some probability pp (a hyperparameter), or setting it to zero otherwise

Overfitting - Batch Normalization

- Provide any layer in a Neural Network with inputs that are zero mean/unit variance
- Slower and ineffective? need more investigation

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i}$$
 // mini-batch mean
$$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2}$$
 // mini-batch variance
$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}$$
 // normalize
$$y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_{i})$$
 // scale and shift

Overfitting - L2 Regularization


- Use weights, not biases
- Add to the training loss

L2:
$$\frac{\lambda}{2} \|\mathbf{w}\|^2 = \frac{\lambda}{2} \sum_{j=1}^m w_j^2$$

Gradient Clipping

- Deal with exploding gradients
- Clipping with global norm

```
t_list[i] * clip_norm / max(global_norm, clip_norm)
where:
global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))
```


Sampled softmax and output projection

- Batch-size x num_decoder_symbols
- Out of memory error
- To handle large output vocabulary
- To decode from it, we need to keep track of the output projection

Hyperparameter Search

- # of layers
- # of hidden units in rnn cells
- Learning rate
- Epsilon (for AdamOptimizer)
- Embedding dimension
- Lambda for L2 regularization
- BiRNN vs RNN for encoder
- Attention for decoder

Extension 1 - Pretrained GloVe

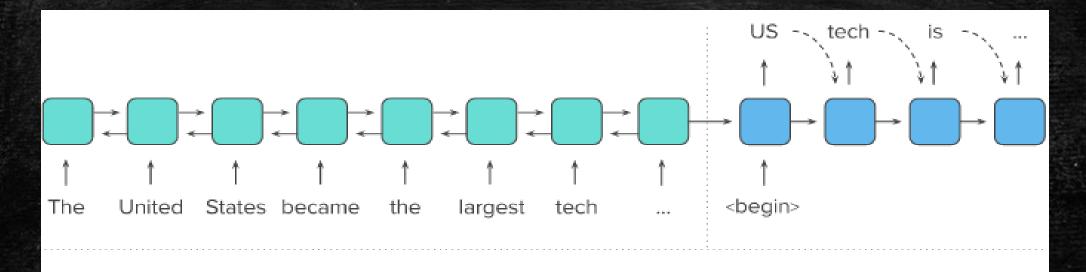
- unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus
- Pre-trained with Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors

$$J(\theta) = \frac{1}{2} \sum_{i,j=1}^{W} f(P_{ij}) (u_i^T v_j - \log P_{ij})^2$$

Extension 2 - tf-idf

- During preprocessing, compute idf scores
- tf-idf(d, t) = tf(t) * idf(d, t)
- idf(d, t) = log[n/df(d, t)] + 1
- During training, compute tf and get tf-idf score
- Concatenate this to word repretentation

Extension 3 - Pos tagging


- Part-of-speech tagging (nouns, verbs, adjectives, adverbs)
- Can help in summarization (Pronoun)
- Each tagging converted to the vector of some dimension (e.g
 5)

Reversing the input

- Reduce the short-term dependency
- Deals with exploding gradients problem

Encoder

Also effective in this task!

Decoder

Neural Bag-Of-Word Encoder

- Each word -> word vector (Embedding matrix)
- Sentence -> Average of word vectors
- Much faster but ...

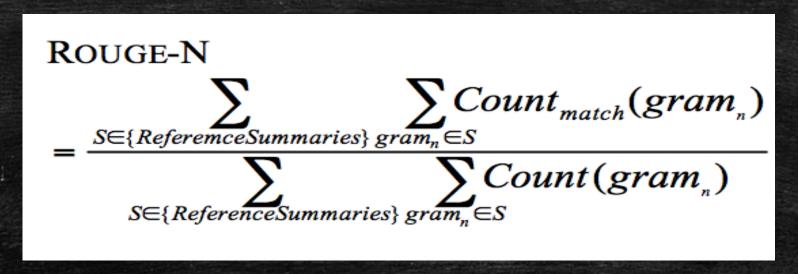
Dataset

- CNN/ DailyMail dataset
 - ~300k (90k CNN, 200k DailyMail)
 - 4 hand-crafted summaries
 - Split: Training 0.9, Dev 0.05, Test 0.05
 - Problem?
- DUC 2004
 - 500 docs
 - 4 summaries to compare
 - Frequently used for testing for summarization task
- Signal Media One-Million News Articles
 - 1M news articles with headlines

Experiment - Preprocessing

- Compute and store Idf scores
- Create binary files
 - Extract text and title
 - Lowercasing, Clean, tokenize
 - Each number to #
 - Convert to serialized tf.train.Example Protobuf
- Create Vocabulary
 - 200K most frequent + { <S>, {/s}, <PAD>, <UNK> }
 - During training, load this vocab and create embedding matrix
 - Unknown randomly initialized [-0.25, 0.25]
 - Percentage of words in GloVe
 - Tokenize 25%
 - Lower casing 65%
 - Cleaning string 68 % (e.g Special Characters. Quotes)
 - <UNK>

Experiment


- Shuffled mini-batch
- Hyperparameters
 - Batch: 32
 - # of layers: 4
 - Embedding dimension: 256
 - Learning rate: 0.1
 - Epsilon: 0.01
 - Lambda: 0.0001
- Decoder Beam 4
- AWS EC2 P2, Tesla K80 GPU + Nvidia GTX1080

Evaluation

- Loss
- ROUGE-1, ROUGE-2, ROUGE-L
- Qualitative Analysis

ROUGE

Recall-Oriented Understudy for Gisting Evaluation

- ROUGE-L: Longest Common Subsequence (LCS)[4] based statistics.
- Good metric for summarization?

Result

	LOSS	ROUGE-1
Baseline 1	8.652	4.268
Baseline 2	5.864	8.654
Extension 1 - Pretrained	5.396	11.035
Variant 1 – Average Encoder	7.095	6.132

Qualitative Analysis - Early Stage

Text	langley, arkansas (cnn) one person remained missing monday from last week 's flash flood at an arkansas campground that left ## dead, and `` there 's still a possibility there could be others, "gov. mike beebe told cnn. rescuers found a ##th body over the weekend about half to three-quarters of a mile downstream from the campground, arkansas state police capt.
Headline	new : `` there could be others " as search for flood victims goes on , governor says
Generated summary	new : the the of the the

Qualitative Analysis - 1

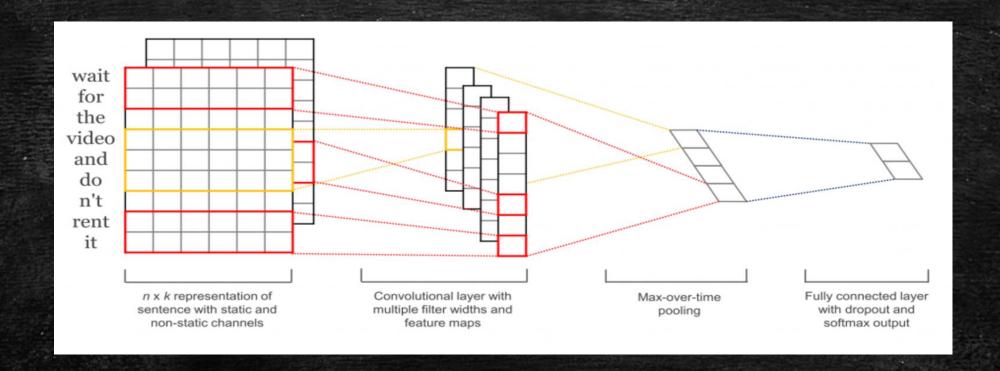
Text	(cnn) americans should n't expect to see the $\#\#, \#\#\# $ u.s. troops in afghanistan come home any time soon, no matter who is declared the victor in the country 's presidential election . u.s. marines patrol near herat, afghanistan, in july . in fact, the pentagon is planning to add $\#\#, \#\#\#$ troops by the end of the year .
Headline	new : president obama says u.s. goal remains defeating al qaeda , its allies
Generated summary	opcw : rick obama president obama reveals goal on obama qaeda through report says

Qualitative Analysis - 2

Text	north korea held a huge rally friday in the center of its capital, pyongyang, to celebrate the launch of a long-range rocket this week that put a satellite in orbit and provoked international condemnation. a special broadcast on state-run television showed crowds of soldiers and civilians standing in neat ranks, clapping and cheering as officials made congratulatory speeches praising the regime 's ruling dynasty
Headline	new : north korean state media say satellite is to monitor weather
Generated summary	the koreans officer says officer the rocket for service

Qualitative Analysis - 3

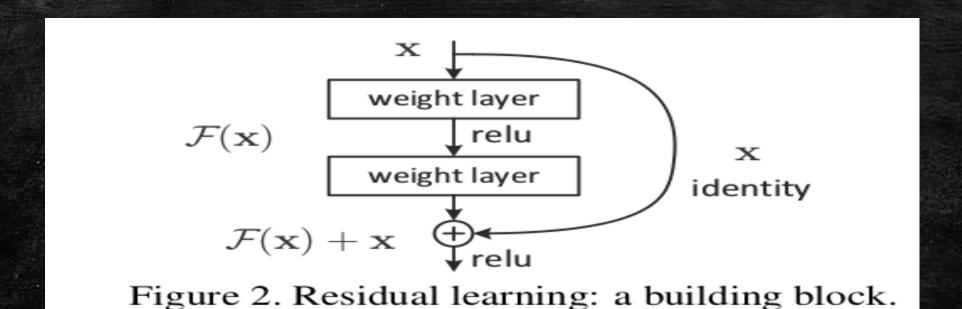
Text	if you 're a big `` the hunger games " fan like i am , you were probably crazy excited to watch the movie 's first trailer , which recently debuted . for those of you who are n't as familiar with the popular trilogy of books turned major motion pictures , here 's a quick synopsis . the story takes place during an unidentified time in the future in a postapocalyptic nation called panem .
Headline	learn how to survive a stressful work environment from 'the hunger games '
Generated summary	adam sandler plays character donny berger with conviction


Qualitative Analysis

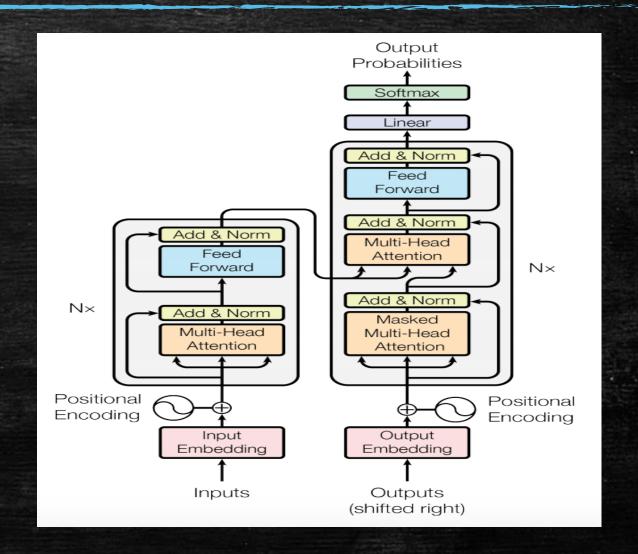
- Problem still overfitting
 - More data?

Future work

- Experiment on larger dataset (E.g Signal Media One-Million News Articles)
- Improve the quality of generated summary
 - Only use stopwords for summary?
 - Other models?


Future work - CNN encoder

Or Facebook's conv seq2seq?


Future work - Skip connections

- Even deeper network with Residual Learning
- Google NMT 4 -> 8 layers

Future work - Attention is All You Need

- State-of-the-art MT (June, 2017)
- Very fast

Future work - RL with Different Metric ?

- ROGUE score is likely not to be the best metric for Summarization
- Sentence Similarity networks to compare?

Reference

- https://arxiv.org/pdf/1706.03762.pdf
- http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
- https://cs224d.stanford.edu/lecture_notes/LectureNotes4.pdf
- http://peterroelants.github.io/posts/neural_network_implementation_intermezzoo2/
- http://83.212.103.151/~mkalochristianakis/techNotes/ipromo/rougen5.pdf
- https://www.tensorflow.org/tutorials/seq2seq
- https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
- https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translationgpus-part-3/
- https://en.wikipedia.org/wiki/Automatic_summarization
- http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture3.pdf
- https://nlp.stanford.edu/projects/glove/