BLIND IMAGE QUALITY ASSESSMENT VIA CASCADED MULTI-TASK LEARNING

Zhengfang Duanmu

Department of Electrical and Computer Engineering University of Waterloo

June. 5, 2017

UNIVERSITY OF

Outline

Motivation

- Image Quality Assessment (IQA)
- Deep Learning-based IQA

Blind IQA via Cascaded Multi-task Learning

- Cascaded Multi-task Learning
- Training

Experimental Results

- Evaluation Criteria
- Experimental Results

Conclusion and Future Work

- Conclusion
- Future Work

Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work

Image Quality Assessment (IQA) Deep Learning-based IQA

Outline

Motivation

- Image Quality Assessment (IQA)
- Deep Learning-based IQA

Blind IQA via Cascaded Multi-task Learning

- Cascaded Multi-task Learning
- Training

Experimental Results

- Evaluation Criteria
- Experimental Results

Onclusion and Future Work

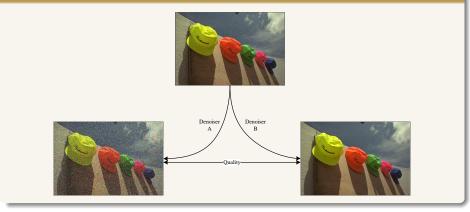
- Conclusion
- Future Work

Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work

Image Quality Assessment (IQA) Deep Learning-based IQA

Image Quality Assessment

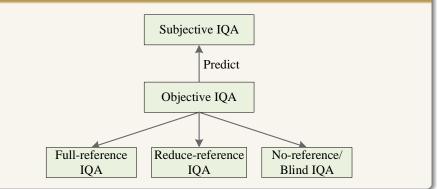
Why IQA?



Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work Image Quality Assessment (IQA) Deep Learning-based IQA

Image Quality Assessment (IQA)

IQA category

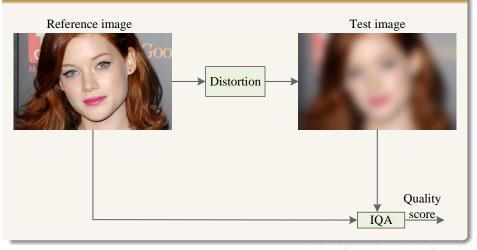


Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work

Image Quality Assessment (IQA) Deep Learning-based IQA

Image Quality Assessment (IQA)

Full-reference IQA

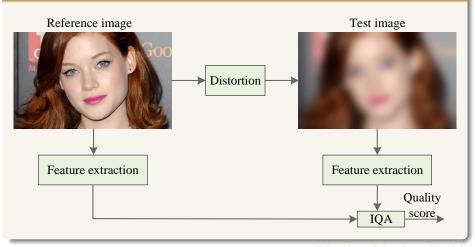


Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work

Image Quality Assessment (IQA) Deep Learning-based IQA

Image Quality Assessment (IQA)

Reduced-reference IQA

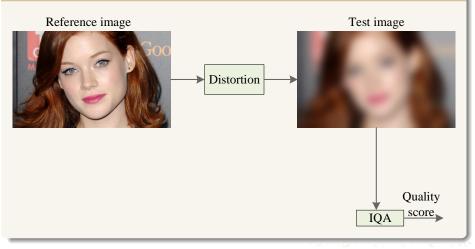


Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work

Image Quality Assessment (IQA) Deep Learning-based IQA

Image Quality Assessment (IQA)

No-reference/Blind IQA (BIQA)



Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work

Image Quality Assessment (IQA) Deep Learning-based IQA

Challenge of Deep IQA

Current Status

- The TID2013 [Ponomarenko, 2015] database: 3,000 distorted images, 25 reference images;
- The ImageNet [Deng, 2009] database: 14, 197, 122 images.

Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work

Image Quality Assessment (IQA) Deep Learning-based IQA

Existing Deep IQA

Solutions

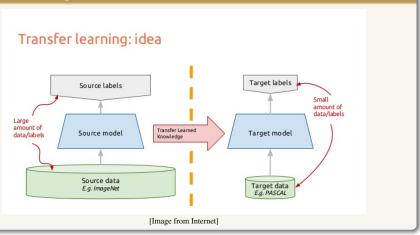
- Transfer learning;
- Patch score assignment;
- FR-IQA learning.

Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work

Image Quality Assessment (IQA) Deep Learning-based IQA

Transfer Learning

Transfer Learning



Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work

Image Quality Assessment (IQA) Deep Learning-based IQA

Transfer Learning

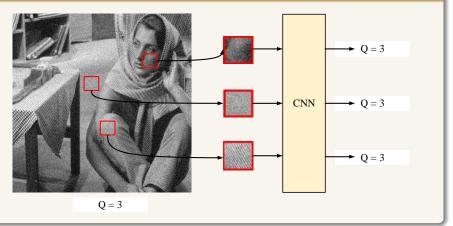
Limitation 10 8 IQA IQA IQA IQA Classifier Classifier Classifier Classifier Motorcycle Motorcycle Motorcycle Motorcycle

Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work

Image Quality Assessment (IQA) Deep Learning-based IQA

Patch Score Assignment

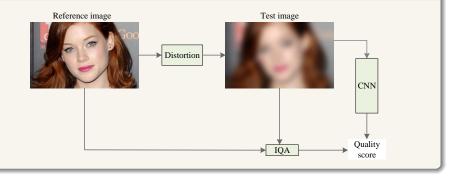
Limitation



Blind IQA via Cascaded Multi-task Learning Experimental Results Conclusion and Future Work Image Quality Assessment (IQA) Deep Learning-based IQA

FR-IQA Learning

FR-IQA Learning



Cascaded Multi-task Learnin Training

Outline

Motivation

- Image Quality Assessment (IQA)
- Deep Learning-based IQA

Blind IQA via Cascaded Multi-task Learning

- Cascaded Multi-task Learning
- Training

Experimental Results

- Evaluation Criteria
- Experimental Results

Onclusion and Future Work

- Conclusion
- Future Work

Cascaded Multi-task Learning Training

Strategy

Problem Decomposition

- Subtask I: Identifying distortion type;
- Subtask II: Predicting quality score.

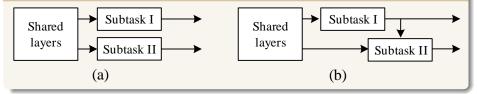
Motivation

- Infinite distorted image (distortion simulation);
- Limited human-labeled image.

Cascaded Multi-task Learning Training

Cascaded Multi-task Learning Framework

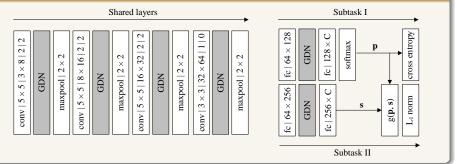
Traditional Multi-task Learning vs. Cascaded Multi-task Learning



Cascaded Multi-task Learning Training

IQA via Cascaded Multi-task Learning

Architecture



Cascaded Multi-task Learning Training

Generalized Divisive Normalization

Formulation [Balle, 2017]

$$y_i(m,n) = \frac{x_i(m,n)}{\left(\beta_i + \sum_{j=1}^{S} \gamma_{ij} x_j(m,n)^2\right)^{\frac{1}{2}}}.$$
 (1)

- S: depth dimension
- $\mathbf{x}(m,n) = (x_1(m,n), \cdots, x_S(m,n))$: linear convolution activation at spatial location (m,n)
- $\mathbf{y}(m,n) = (y_1(m,n), \cdots, y_S(m,n))$: normalized activation vector at spatial location (m,n)
- γ : symmetric trainable weight matrix
- β : trainable bias vector

Cascaded Multi-task Learning Training

Generalized Divisive Normalization

Comparison of Rectifiers

Table: Comparison of Rectifiers

Relu [Nair, 2010] V X X Batch Norm [Ioffe, 2015] X V X LRN [Krizhevsky, 2012] V X V		Nonlinear	Spatially Adaptive	Trainable	Biologically-inspired
LRN [Krizhevsky, 2012] 🗸 🗸 🖌	Relu [Nair, 2010]	 ✓ 	×	×	X
	Batch Norm [Ioffe, 2015]	×	×	\checkmark	×
	LRN [Krizhevsky, 2012]	\checkmark	\checkmark	×	\checkmark
GDN [Balle, 2017] \checkmark \checkmark \checkmark \checkmark	GDN [Balle, 2017]	✓	\checkmark	✓	√

Cascaded Multi-task Learnin Training

Cascaded Layer

Cascaded Layer

$$g(\hat{\mathbf{p}}^{(k)}, \mathbf{s}^{(k)}) = \hat{\mathbf{p}}^{(k)T} \mathbf{s}^{(k)} = \sum_{i=1}^{d} \hat{p}_{i}^{(k)} \cdot s_{i}^{(k)} .$$
(2)

21/42

• $\mathbf{s}^{(k)}$: score vector

• $\hat{\mathbf{p}}^{(k)}$: distortion type probability vector

Cascaded Multi-task Learning Training

Loss Functions

Loss Functions

$$\ell_1(\{\mathbf{X}^{(k)}\}; \mathbf{W}, \mathbf{w}_1) = -\sum_{k=1}^K \sum_{i=1}^C p_i^{(k)} \log \hat{p}_i^{(k)}(\mathbf{X}^{(k)}; \mathbf{W}, \mathbf{w}_1) \,. \tag{3}$$

$$\ell_2(\{\mathbf{X}^{(k)}\}; \mathbf{W}, \mathbf{w}_2) = \|\mathbf{q} - \hat{\mathbf{q}}\|_1 = \sum_{k=1}^K |q^{(k)} - \hat{q}^{(k)}|.$$
(4)

$$\ell({\mathbf{X}^{(k)}}; \mathbf{W}, \mathbf{w}_1, \mathbf{w}_2) = \ell_1 + \lambda \ell_2, \qquad (5)$$

- $\{\mathbf{X}^{(k)}\}$: *k*-th raw input image
- W: Shared parameters
- w₁: Subtask I-specific parameters
- w₂: Subtask II-specific parameters

Cascaded Multi-task Learnin Training

23/42

Implementation Details

Pre-train

- Batch size: 40
- Learning rate: 10^{-2} , lowered by a factor of 10 when the loss plateaus, until 10^{-4} .

Fine-tune

- Learning rate: fixed to 10^{-4}

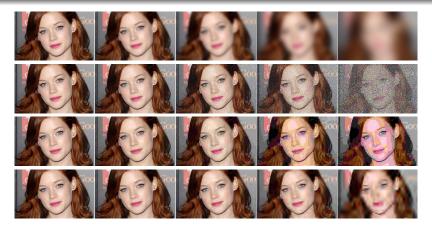
Cascaded Multi-task Learninş Training

Pre-train Images

Figure: Sample source images used for pre-training. (a) Human. (b) Animal. (c) Plant. (d) Landscape. (e) Cityscape. (f) Still-life. (g) Transportation. All images are cropped for better visibility.

Cascaded Multi-task Learnin Training

Distortion Simulation



Pre-train Images

840 (source) \times 5 (distortion types) \times 5 (distortion levels)

Cascaded Multi-task Learnin Training

26/42

Fine-tune Images

LIVE Image Quality Database [Sheikh, 2006]

- 779 subject-rated images
- train(23 source images and their distorted version)/validate(6 source images and their distorted version)
- 1,000 random splitting, pick the best model
- 4 distortion types

Evaluation Criteria Experimental Results

Outline

Motivation

- Image Quality Assessment (IQA)
- Deep Learning-based IQA

Blind IQA via Cascaded Multi-task Learning

- Cascaded Multi-task Learning
- Training

Experimental Results

- Evaluation Criteria
- Experimental Results

Onclusion and Future Work

- Conclusion
- Future Work

Evaluation Criteria Experimental Results

Testing Database

Testing Database

- CSIQ [Larson, 2010]: 866 subject-rated images
- TID2013 [Ponomarenko, 2015]: 3000 subject-rated images

Evaluation Criteria Experimental Results

Evaluation Criteria

Evaluation Criteria

• Spearman's rank-order correlation coefficient (SRCC):

$$SRCC = 1 - \frac{6\sum_{i} d_{i}^{2}}{I(I^{2} - 1)},$$
(6)

where I is the test image number and d_i is the rank difference between the MOS and the model prediction of the *i*-th image.

• Pearson linear correlation coefficient (PLCC):

PLCC =
$$\frac{\sum_{i} (q_i - \bar{q})(s_i - \bar{s})}{\sqrt{\sum_{i} (q_i - \bar{q})^2} \sqrt{\sum_{i} (s_i - \bar{s})^2}}$$
, (7)

where q_i and s_i stand for the MOS and the model prediction of the *i*-th image, respectively.

Evaluation Criteria Experimental Results

Experimental Results

Experimental Results on CSIQ

Table: SRCC results on CSIQ

SRCC	JP2K	JPEG	WN	BLUR	ALL4
DIIVINE [Moorthy, 2011]	0.844	0.819	0.881	0.884	0.835
BRISQUE [Mittal, 2012]	0.894	0.916	0.934	0.915	0.909
CORNIA [Ye, 2012]	0.916	0.919	0.787	0.928	0.914
ILNIQE [Zhang, 2015]	0.924	0.905	0.867	0.867	0.887
BLISS [Ye, 2014]	0.932	0.927	0.879	0.922	0.920
HOSA [Xu, 2016]	0.920	0.918	0.895	0.915	0.918
dipIQ [Ma, 2017]	0.944	0.936	0.904	0.932	0.930
deepIQA [Bosse, 2017]	0.907	0.929	0.933	0.890	0.871
Proposed	0.898	0.948	0.951	0.918	0.932

Evaluation Criteria Experimental Results

Experimental Results

Experimental Results on CSIQ

Table: PLCC results on CSIQ

PLCC	JP2K	JPEG	WN	BLUR	ALL4
DIIVINE [Moorthy, 2011]	0.898	0.818	0.903	0.909	0.855
BRISQUE [Mittal, 2012]	0.937	0.960	0.947	0.936	0.937
CORNIA [Ye, 2012]	0.947	0.960	0.777	0.953	0.934
ILNIQE [Zhang, 2015]	0.942	0.956	0.880	0.903	0.914
BLISS [Ye, 2014]	0.954	0.970	0.895	0.947	0.939
HOSA [Xu, 2016]	0.946	0.958	0.912	0.940	0.942
dipIQ [Ma, 2017]	0.959	0.975	0.927	0.958	0.949
deepIQA [Bosse, 2017]	0.931	0.951	0.933	0.906	0.891
Proposed	0.925	0.979	0.958	0.946	0.944

Evaluation Criteria Experimental Results

Experimental Results

Experimental Results on TID2013

Table: SRCC results on TID2013

SRCC	JP2K	JPEG	WN	BLUR	ALL4
DIIVINE [Moorthy, 2011]	0.857	0.680	0.879	0.859	0.795
BRISQUE [Mittal, 2012]	0.906	0.894	0.889	0.886	0.883
CORNIA [Ye, 2012]	0.907	0.912	0.798	0.934	0.893
ILNIQE [Zhang, 2015]	0.912	0.873	0.890	0.815	0.881
BLISS [Ye, 2014]	0.906	0.893	0.856	0.872	0.836
HOSA [Xu, 2016]	0.933	0.917	0.843	0.921	0.904
dipIQ [Ma, 2017]	0.926	0.932	0.905	0.922	0.877
deepIQA [Bosse, 2017]	0.948	0.921	0.938	0.910	0.885
Proposed	0.911	0.919	0.908	0.891	0.912

Evaluation Criteria Experimental Results

Experimental Results

Experimental Results on TID2013

Table: PLCC results on TID2013

PLCC	JP2K	JPEG	WN	BLUR	ALL4
DIIVINE [Moorthy, 2011]	0.901	0.696	0.882	0.860	0.794
BRISQUE [Mittal, 2012]	0.919	0.950	0.886	0.884	0.900
CORNIA [Ye, 2012]	0.928	0.960	0.778	0.934	0.904
ILNIQE [Zhang, 2015]	0.929	0.944	0.899	0.816	0.890
BLISS [Ye, 2014]	0.930	0.963	0.863	0.872	0.862
HOSA [Xu, 2016]	0.952	0.949	0.842	0.921	0.918
dipIQ [Ma, 2017]	0.948	0.973	0.906	0.928	0.894
deepIQA [Bosse, 2017]	0.963	0.960	0.943	0.897	0.913
Proposed	0.924	0.969	0.911	0.899	0.912

Evaluation Criteria Experimental Results

Experimental Results

Confusion Matrix

Table: The confusion matrices produced by our method on CSIQ and TID2013. The column and the raw contain ground truth and predicted distortion types, respectively

Accu	racy	JP2K	JPEG	WN	BLUR	Pristine
	JP2K	0.847	0.007	0.000	0.093	0.053
	JPEG	0.040	0.820	0.000	0.027	0.113
CSIQ	WN	0.000	0.000	0.947	0.013	0.040
	BLUR	0.067	0.006	0.000	0.827	0.100
	Pristine	0.067	0.000	0.100	0.166	0.667
	JP2K	0.944	0.016	0.000	0.040	0.000
	JPEG	0.032	0.968	0.000	0.000	0.000
TID2013	WN	0.000	0.000	1.000	0.000	0.000
	BLUR	0.088	0.008	0.000	0.848	0.056
	Pristine	0.160	0.000	0.040	0.000	0.800

Evaluation Criteria Experimental Results

Experimental Results

Ablation Experiments

Table: SRCC results of ablation experiments on CSIQ and TID2013

	CSIQ	TID2013
Single task w/o pre-training	0.844	0.850
Traditional multi-task w/o pre-training	0.885	0.871
Cascaded multi-task w/o pre-training	0.894	0.880
Single-task with pre-training	0.923	0.911
Traditional multi-task with pre-training	0.930	0.905
Proposed	0.932	0.912

Evaluation Criteria Experimental Results

Experimental Results

Effect of GDN

Table: Analyzing the effect of GDN on reducing the model complexity in comparison with ReLU.

	CSIQ	TID2013
ReLU	0.922	0.891
ReLU + double layers	0.924	0.900
ReLU + double layers + BN	0.930	0.918
Proposed	0.932	0.912

Conclusion Future Work

Outline

Motivation

- Image Quality Assessment (IQA)
- Deep Learning-based IQA

Blind IQA via Cascaded Multi-task Learning

- Cascaded Multi-task Learning
- Training

Experimental Results

- Evaluation Criteria
- Experimental Results

Conclusion and Future Work

- Conclusion
- Future Work

Conclusion Future Work

Conclusion

Contributions

- Presented a cascaded multi-task learning framework for BIQA
- Demonstrated state-of-the-art performance

Conclusion Future Work

Future Work

Future Work

- More distortion types
- More image databases
- Video quality assessment

Conclusion Future Work

Thank you

Conclusion Future Work

References

1

- N. Ponomarenko et al., "Image database TID2013: Peculiarities, results and perspectives," Signal Processing: Image Communication, 2015.
- J. Deng et al., "ImageNet: A large-scale hierarchical image database," In CVPR, 2009.
- A. Moorthy and A. Bovik, "Blind image quality assessment: From natural scene statistics to perceptual quality," IEEE TIP, 2011.
- A. Mittal et al., "Making a "completely blind" image quality analyzer," IEEE SPL, 2013.
- P. Ye et al., "Unsupervised feature learning framework for no-reference image quality assessment," In CVPR, 2012.
- L. Zhang et al., "A feature-enriched completely blind image quality evaluator," IEEE TIP, 2015.
- H. R. Sheikh *et al.*, Image and video quality assessment research at LIVE [Online]. Available: http://live.ece.utexas.edu/research/quality/.
- E. Larson and D. Chandler, "Most apparent distortion: full-reference image quality assessment and the role of strategy," JEI, 2010.
- A. Mittal et al., "No-reference image quality assessment in the spatial domain," IEEE TIP, 2012.

Conclusion Future Work

References

- P. Ye et al. "Beyond human opinion scores: Blind image quality assessment based on synthetic scores," CVPR, 2014.
- P. Ye et al. "Blind image quality assessment based on high order statistics aggregation," IEEE TIP, 2016.
- K. Ma et al. "dipIQ: Blind image quality assessment by learning-to-rank discriminable image pairs," IEEE TIP, 2017.
- S. Bosse et al. "Deep neural networks for no-reference and full-reference image quality assessment," CoRR, 2016.
- J. Balle et al. "End-to-end optimized image compression," ICLR, 2017.
- S. Ioffe et al. "Batch normalization: Accelerating deep network training by reducing internal covariate shift," CoRR, 2015.
- V. Nair et al. "Rectified linear units improve restricted boltzmann machines," ICML, 2010.
- A. Krizhevsky et al. "ImageNet classification with deep convolutional neural networks," NIPS, 2012.