
CS341 Assignment 4 Marking Scheme

April 11, 2011

1 Question 1
a)

Suppose the problem is decidable. Then there exists a program SometimesHalts(.)
that, given a program P as input, decides whether there exists an input w such that P (w)
halts. Using SometimesHalts(.), we will construct a program that solves the halting
problem. For an instance (P, w) of the halting problem, we can construct the following
program:

Reduce(x):
run P on w

The program Reduce(.) always runs P on w regardless of the input it receives. If P
halts on w, Reduce(x) halts on all inputs x, otherwise it never halts on any input. We can
construct a program for solving the halting problem as follows:

halts(P,w):
construct Reduce(.) as above
return SometimesHalts(Reduce(.))

but the halting problem is undecidable - contradiction.
b)
Analogously to a), suppose there exists a program gotA(P) that decides if P outputs

"You got an A..." on input "What is...". We can construct a program Reduce(.) as follows:

Reduce(x):
run P on w, suppressing the output
output "You got an A..."

1

2 Question 2

The above program will output "You got an A..." if and only if P halts on w. Just like in
the previous case, running gotA(Reduce(.)) decides whether P halts on w - contradiction
with the halting problem being undecidable.

c)
Similarly to a) and b), suppose there exists a program isF inite(P) that decides if P

accepts a finite set of inputs. Consider the following program:
Reduce(x):

run P on w
accept x

If P halts on w, Reduce(.) accepts all possible inputs (an infinite number). If P does
not halt on w, Reduce(.) will never terminate and therefore will not accept any input (it
will accept 0 inputs, which is finite). Therefore we can call isF inite(Reduce(.)) to solve
the halting problem.

Marking scheme: 5 marks for each question. 2 marks off for confusing inputs in b),
or other similar minor errors.

2 Question 2
a) This problem is in NP. Given a sequence of vertices in the graph, we can verify that it
forms a simple path in O(k) time where k is the length of the path.

To prove the problem NP-complete, we will reduce the problem HAMILTONIAN−
CIRCUIT to this problem. That is, given an instance G = (V, E) of HAMILTONIAN−
CIRCUIT , we will produce an instance (G′, k, u, v) of the longest path problem such
that the answer to (G′, k, u, v) is "yes" iff the answer to G is "yes".

Let w be an arbitrary vertex of G. Create G′ as a copy of G with an extra vertex w′

which is adjacent to every neighbour of w. Let k be the number of vertices in G and
let u = w and v = w′. If there is a hamiltonian circuit in G, then there exists a path
of length k between w and w′ which can be found by traversing the hamiltonian circuit
starting from w. Conversely, if there exists a path of length k between w and w′ then
by identifying w and w′ we obtain a hamiltonian circuit in G. Thus solving the longest
path problem for an instance generated this way gives us the answer to the corresponding
instance of HAMILTONIAN − CIRCUIT .

The above transformation can be done in polynomial time, which concludes the proof.
If we had a polynomial-time algorithm for the longest path problem, we could solve (in
polynomial time) the hamiltonian circuit problem, and since we know that the hamiltonian
circuit problem is NP-complete, we can conclude that we would be able to solve all the
problems in NP.

2

3 Question 3

b)
This problem is in NP. Given a set of k vertices in the graph, we can verify in O(k2)

time that there is no edge between any two vertices in the set.
To prove that it is NP-complete, we will reduce CLIQUE to this problem.
Given an instance (G, k) of CLIQUE, we produce an instance (G′, k) of INDEPENDENT−

SET where G′ is the complement of the graph G. That is, V (G) = V (G′) and for each
pair of vertices u, v, we have {u, v} ∈ E(G′) iff {u, v} /∈ E(G′). It is easy to see that
each clique in G is an independent set in G′ and, conversely, each independent set in G′ is
a clique in G.

Taking the complement of the graph can be carried out in O(|V |2) time, which is
clearly polynomial.

Marking scheme: 10 marks for every question. 6 marks off for choosing a single,
arbitrary pair of connected vertices as u,v in a). 8 marks off in a) and 4 in b) for reducing
in the wrong direction. 1 mark off for not showing membership in NP.

Note that there were many possible correct solutions to this question, some very differ-
ent from the above. In particular, a) could be solved by reducing HAMILTONIAN −
PATH to the longest path problem. b) could be solved by reducing V ERTEX −
COV ER or 3SAT to the independent set problem.

3 Question 3
a) This problem is in P . First, take the subgraph of G induced by V \L and construct its
spanning tree T ′ using Kruskal’s algorithm. If no such tree exists, return false. For each
vertex in L, check if it has a neighbour in V \L. If it does not, return false. If all vertices
in L have neighbours in V \L, return true.

b) This problem is NP. Given a set of edges, we can verify in polynomial time if this
set forms a spanning tree for G and if L is the set of its leaves.

To prove it is NP-complete, we will reduce HAMILTONIAN −CIRCUIT to this
problem. Given an instance G of HAMILTONIAN −CIRCUIT , create G′ as a copy
of G with one extra vertex w′ whose neighbours are the same as the neighbours of some
vertex w in G (same as in Question 2a). Let L = {w, w′}. It is easy to show that a tree
with 2 leaves must be a path, and that a spanning tree with 2 leaves must be a hamiltonian
path for G′. Such a path exists in G′ if and only if a hamiltonian circuit exists in G, by
arguments similar to those in the proof of 2a).

c) This problem is NP-complete. For |L| = 2, this problem is identical to problem
3b), so the proof proceeds analogously.

Marking scheme: 5 marks for each question. 2 marks for the correct complexity class,
3 marks for the proof.

3

4 Office Hours

4 Office Hours
The office hours for complaints and questions about the final will be held on Monday 11
April from 2 to 4 pm, and on Tuesday 12 April, from 11 to 2 pm, in DC2501.

4

