Assignment 1. CS341, Winter 2011

Distributed Thursday, Jan. 6, due Jan. 20, 2011. Hand in to the assignment boxes on the 3rd floor of MC.

- 1. (25 marks) Given an array of length n, containing n integers. A majority element is an integer that appears more than n/2 times in the array.
 - (a) (5 marks) Develop an algorithm to find the majority element, in $O(n \log n)$ time in the worst case. (Reduce the problem to a known problem)
 - (b) (10 marks) Develop an algorithm, using only equality tests (no "<" or ">" tests), to find the majority element in $O(n \log n)$ time in the worst case. (Divide and conquer).
 - (c) (10 marks) Develop an algorithm to find the majority element in O(n) time, in the worst case. (Do not use hashing or radix sort, you can assume the integers are large.)
- 2. (10 marks) Let f and g be two functions with $f(n) = \Theta(g(n))$.
 - (a) Must $e^{f(n)}$ be $O(e^{g(n)})$? Prove or give a counterexample.
 - (b) Must $\ln(f(n))$ be $O(\ln(g(n)))$? Prove or give a counterexample.
- 3. (10 marks) Rank the following functions by order of growth from slowest to fastest; that is, find an arrangment g_1, g_2, \ldots, g_{21} of functions satisfying $g_i = O(g_{i+1})$, for $1 = 1, \ldots, 20$. Partition your list into equivalence classes such that f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$:
 - n^2 , $n^2 \ln n$, $100 * e^{\sqrt{n}}$, $\ln n$, $\lg n$, $\ln \ln n$, $n^{0.0000001}$, $n^{\ln n}$, $n^{\lg n}$, n!, 1000,000,000, n, 2^n , $50 * n^3$, (n+5)!, \sqrt{n} , $(\ln n)^{\ln n}$, e^n , $(4/3)^n$, $(4/3)^{\log n}$, 2^{2^n} .
 - In is logarithm with base e and e and e is logarithm with base 10. You do not need to give any justification for your ordering.
- 4. (10 marks) Construct two strictly increasing functions (from natural numbers to natural numbers) f(n) and g(n) such that $f(n) \neq O(g(n))$ and $g(n) \neq O(f(n))$. Prove that your functions have the desired properties. (For the definition of 'strictly increasing', see page 51 of the textbook.)
- 5. (20 marks) Consider the Insertion-Sort algorithm defined in Lecture 1. For each value j in line 1, let f(j) be the number of steps the element A[j] moved in that round. Show that from the f(j)'s (j = 2, ..., n), one can infer the permutation π , by simulating the Insertion-Sort algorithm reversely. That is, given f(j)'s and the Insertion-Sort program only, one can reconstruct the input. (Thus, roughly $\sum_{j=i}^{n} \log f(j) + O(1)$ bits are sufficient to encode the permutation π , where the O(1) bits are needed to encode the Insertion-Sort program whose size is independent of n.)