Assignment 1. CS341, Winter 2011
Distributed Thursday, Jan. 6, due Jan. 20, 2011. Hand in to the assignment boxes on the
3rd floor of MC.

1. (25 marks) Given an array of length n, containing n integers. A majority element is
an integer that appears more than n/2 times in the array.

(a) (5 marks) Develop an algorithm to find the majority element, in O(nlogn) time
in the worst case. (Reduce the problem to a known problem)

(b) (10 marks) Develop an algorithm, using only equality tests (no “<” or “>” tests),
to find the majority element in O(nlogn) time in the worst case. (Divide and
conquer).

(c) (10 marks) Develop an algorithm to find the majority element in O(n) time, in
the worst case. (Do not use hashing or radix sort, you can assume the integers
are large.)

2. (10 marks) Let f and g be two functions with f(n) = O(g(n)).

(a) Must e/™ be O(e9™)? Prove or give a counterexample.

(b) Must In(f(n) be O(In(g(n)))? Prove or give a counterexample.

3. (10 marks) Rank the following functions by order of growth from slowest to fastest;
that is, find an arrangment ¢y, go,...,g21 of functions satisfying ¢, = O(gi41), for
1 =1,...,20. Partition your list into equivalence classes such that f(n) and g(n) are
in the same class if and only if f(n) = ©(g(n)):

n?, n?Inn, 100 * eV™, Inn, lgn, Inlnn, Ro0000001 pinn plen p11000,000,000, n, 27,

50 1, (n +5)!, v/, (Inn)™", e, (4/3)7, (4/3)8n, 22",

In is logarithm with base e and lg is logarithm with base 10. You do not need to give
any justification for your ordering.

4. (10 marks) Construct two strictly increasing functions (from natural numbers to natu-
ral numbers) f(n) and g(n) such that f(n) # O(g(n)) and g(n) # O(f(n)). Prove that
your functions have the desired properties. (For the definition of ’strictly increasing’,
see page b1 of the textbook.)

5. (20 marks) Consider the Insertion-Sort algorithm defined in Lecture 1. For each value
jinline 1, let f(j) be the number of steps the element A[j] moved in that round. Show
that from the f(j)’s (j = 2,...,n), one can infer the permutation =, by simulating
the Insertion-Sort algorithm reversely. That is, given f(j)’s and the Insertion-Sort
program only, one can reconstruct the input. (Thus, roughly >=7_; log f(j) + O(1) bits
are sufficient to encode the permutation 7, where the O(1) bits are needed to encode
the Insertion-Sort program whose size is independent of n.)



