CS341 Midterm Marking Scheme

March 2, 2011

1 Question 1

```
a) a=9,b=3,\log_ba=2 f(n)=\Theta(n^{\log_ba})\text{ -case 2 of the Master Theorem} Answer: \Theta(n^2\log n) b) a=10,b=3,\log_ba=\log_310>2 f(n)=O(n^{\log_ba-\epsilon})\text{ for }\epsilon=0.001\text{ - case 1} Answer: \Theta(n^{\log_310}) c) c) a=8,b=3,\log_b=\log_38<2 f(n)=\Omega(n^{\log_ba+\epsilon})\text{ for }\epsilon=0.001. We also have that af(n/b)< cf(n) for c=0.9 - case 3 Answer: \Theta(n^2)
```

Marking scheme: 3 marks for each question (1 mark for the correct case of the Master Theorem +2 marks for the correct answer) + 1 mark for checking the extra condition in c). 1 mark was deducted for confusing O(.) with $\Theta(.)$.

2 Question 2

- a) no
- b) yes
- c) yes
- d) no
- e) yes
- f) yes
- g) yes
- h) no

- i) yes
- j) no

Marking scheme: 1 mark for each question

3 **Question 3**

a)

Algorithm:

- 1. $P = (a + b) \cdot (c + d)$ (1st multiplication)
- 2. $Q = a \cdot c$ (2nd multiplication)
- 3. $R = b \cdot d$ (3rd multiplication)
- 4. Output $Qx^2 + (P Q R)x + R$

b)

We divide each of the two polynomials into two parts and multiply parts similarly as in part a).

Pseudocode:

$$multiply((a_0, ..., a_n), (b_0, ..., b_n)):$$

multiply polynomials using the basic algorithm

endif

endif
$$(p_0,...,p_n) = \text{multiply}((a_0 + a_{n/2+1}, a_1 + a_{n/2+2},..., a_{n/2} + a_n), (b_0 + b_{n/2+1}, b_1 + b_{n/2+2},..., b_{n/2} + b_n))$$

$$(q_0,...,q_n) = \text{multiply}((a_0,...,a_{n/2}), (b_0,...,b_{n/2}))$$

$$(r_0,...,r_n) = \text{multiply}((a_{n/2+1},...,a_n), (b_{n/2+1},...,b_n))$$
for $i = 0..n/2$

$$s_i = q_i$$
for $i = n/2 + 1...n$

$$s_i = q_i + (p_{i-n/2} - q_{i-n/2} - r_{i-n/2})$$
for $i = n + 1..2n$

$$s_i = r_{i-n} + (p_{i-n/2} - q_{i-n/2} - r_{i-n/2})$$
return $(s_0,...,s_{2n})$

Marking scheme: 4 marks for a), 6 marks for b). Up to 2 marks deducted for problems with the "conquer" phase in b). No marks given for solutions with more than 3 multiplications.

4 Question 4

Algorithm:

- 1. Sort the boxes according to their base area
- 2. H(0)=0
- 3. Fill the dynamic programming table according to the recursion:

$$H(j) = \max_{k < j: w(k) < w(j) \land d(k) < d(j)} H(k) + h(j)$$

Marking scheme: 10 marks total. 3 marks - any DP formulation 4 marks - some good idea 6 marks - only consider area instead of comparing both width and height 9 marks - only count the boxes instead of summing height 10 marks - correct formulation

5 Question 5

Algorithm:

- 1. Sort numbers in B in ascending order
- 2. Let b be the first number in B
- 3. Find an interval (a_{begin}, a_{end}) in A s.t. $a_{begin} < b$ and a_{end} is maximized
- 4. Remove from B all numbers smaller or equal to a_{end}
- 5. Repeat steps 2-5 until B is empty

Proof:

Let $(g_1,...g_k)$ be the intervals in the solution found by the greedy algorithm (sorted according to their right endpoints). Suppose that there exists an optimal solution $(o_1,...,o_m)$ with m < k. The first number in B must be contained in g_1 . Also, g_1 must contain all the numbers contained by o_1 since the choice of g_1 is greedy. Therefore $(g_1,o_2,...,o_m)$ is also an optimal solution. Similarly, among the elements of B not contained in g_1,g_2 contains all the elements contained by o_2 , so $(g_1,g_2,o_3,...,o_m)$ is also an optimal solution. By repeating this argument, we can see that $(g_1,...,g_m)$ is also an optimal solution. But then the algorithm terminates after m steps, which contradicts the assumption that m < k.

Marking scheme:

4 for the algorithm,6 for the proof. For the algorithm, 3 marks were deducted for wrong choices of the next interval (e.g. choosing the interval based on its total length). 1 mark was deducted for minor errors.

For the proof, 4 marks were deducted for trying to prove that $(g_1, ..., g_k) = (o_1, ..., o_m)$. 1 or 2 marks were deducted for lack of clarity or minor errors. Completely wrong proofs were given 0 marks.