CS341 Assignment 4 Marking Scheme

April 5, 2011

1 Question 1

a)

For clarity, we will ignore additive constants in this analysis. If we partition elements into groups of 3 , we have $\frac{n}{3}$ such groups. Let $M=m_{1}, \ldots, m_{n / 3}$ be the medians of these groups and let m be the median of the set M. There are $\frac{n}{6}$ groups whose median is below m. In each such group, there are at least 2 elements that are at most m. Therefore, the number of elements in the array that are at most m is at least $\frac{2 n}{6}=\frac{n}{3}$. Hence the number of elements that are greater than m is at most $\frac{2 n}{3}$. Analogously, we can show that the number of elements that are less than m is at most $\frac{2 n}{3}$. Hence the recursion becomes

$$
T(n)=T(r)+T(n / 3)+d n
$$

where $r \leq \frac{2}{3} n$.
This is not linear.
b)

Analogously to a), we can show that the recursion becomes

$$
T(n)=T(r)+T(n / 7)+d n
$$

where $r<\frac{5}{7} n$. This is linear. To prove this, we find values c, n_{0} such that $T(n)<c n$, for all $n>n_{0}$.

$$
\begin{gathered}
c \frac{5}{7} n+c \frac{n}{7}+d n<c n \\
c \frac{6}{7} n+d n<c n
\end{gathered}
$$

This is satisfied when

$$
c>7 d
$$

for all $n>0$.

Marking scheme: 5 marks for each question. In question a): 2 marks for the recursion, 1 mark for the derivation, 2 marks for saying it is not linear. In question b): 1 mark for the derivation, 2 marks for the recursion, 2 marks for proof of linearity.

2 Question 2

When the algorithm checks a value in the array, the adversary always reveals a value other than 1. If the algorithm stops after asking fewer than n comparisons and claims the array does not contain a 1 , the adversary sets one of the unchecked elements of the array to 1 . If the algorithm says an array contains a 1 , the adversary sets all the remaining values to 0 . Hence, it takes n comparisons to check if an array of length n contains a 1 .

Marking scheme: 5 marks for the question. Marks deducted for arguments that were not adversarial.

3 Question 3

There are many ways to solve this problem in linear time. One key observation is that in this model it takes $O(n)$ time to compute the degree of a vertex, since it requires looking up the whole row of a matrix. Therefore, it is important to only compute the degree of a constant number of vertices.
checkBody(v):
if(degree(v)!=n-2) return false
find vertex u that is not a neighbour of v if(degree(u)!=1) return false find the unique neighbour w of u return degree(w)==2
checkScorpion(V,E):
pick vertex $v \in V$
if(degree $(\mathrm{v})==\mathrm{n}-2$) return checkBody (v)
if(degree (v)==2) \{
let u_{1}, u_{2} be the neighbours of v
return checkBody $\left(u_{1}\right)$ or checkBody $\left(u_{2}\right)$ \}
if(degree(v)==1)\{
let u be the neighbour of v
if(degree(u)==2))\{
let u_{1} be the neighbour of u that is not v return checkBody $\left(u_{1}\right)$
\}

```
if(degree(u)==n-2){
return checkBody(u)
}
return false
}
let N}\mathrm{ be the set of neighbours of v
let }S\leftarrowV\
pick }s\inS,n\in
while( N,S are not empty) {
if (n,s)\inE {
S\leftarrowS-{s}
pick s\inS
}
if (n,s)\not\inE{
N\leftarrowN-{n}
pick }n\in
}
}
    if(degree(s)==1){
let u}\mathrm{ be the neighbour of }
if(degree(u)==2)){
let }\mp@subsup{u}{1}{}\mathrm{ be the neighbour of }u\mathrm{ that is not }
return checkBody(}\mp@subsup{u}{1}{}
}
}
return false
```

Marking scheme: 2 marks for each of the cases where $\operatorname{deg}(\mathrm{v})=1,2, \mathrm{n}-2.4$ marks for checking if a vertex is a foot. In general, $O\left(n^{2}\right)$ solutions could get at most 2 marks, except in cases where only one of the special cases was $O\left(n^{2}\right)$, in which case the maximum was 5 marks. Marks were deducted for lack of clarity in extreme cases.

4 Question 4

Suppose that \bar{A} is solvable. That means there exists an algorithm $\operatorname{Solve}(w)$ that, given a word w, outputs "yes" if $w \in \bar{A}$ and "no" if $w \notin \bar{A}$. Consider the following algorithm:

SolveA(w):
if(Solve(w)=="yes") return "no" return "yes"
This algorithm determines outputs "yes" if and only if $w \in A$. This contradicts the unsolvability of A, which ends the proof.

Marking scheme: 10 marks. Up to 4 marks deducted for clarity. A completely incorrect argument using a proof by contradiction could get at most 2 marks.

