
CS341 Assignment 4 Marking Scheme

April 5, 2011

1 Question 1
a)

For clarity, we will ignore additive constants in this analysis. If we partition elements
into groups of 3, we have n

3
such groups. Let M = m1, ...,mn/3 be the medians of these

groups and let m be the median of the set M . There are n
6

groups whose median is below
m. In each such group, there are at least 2 elements that are at most m. Therefore, the
number of elements in the array that are at most m is at least 2n

6
= n

3
. Hence the number

of elements that are greater than m is at most 2n
3

. Analogously, we can show that the
number of elements that are less than m is at most 2n

3
. Hence the recursion becomes

T (n) = T (r) + T (n/3) + dn

where r ≤ 2
3
n.

This is not linear.
b)
Analogously to a), we can show that the recursion becomes

T (n) = T (r) + T (n/7) + dn

where r < 5
7
n. This is linear. To prove this, we find values c, n0 such that T (n) < cn, for

all n > n0.

c
5

7
n + c

n

7
+ dn < cn

c
6

7
n + dn < cn

This is satisfied when
c > 7d

for all n > 0.

1



3 Question 3

Marking scheme: 5 marks for each question. In question a): 2 marks for the recursion,
1 mark for the derivation, 2 marks for saying it is not linear. In question b): 1 mark for
the derivation, 2 marks for the recursion, 2 marks for proof of linearity.

2 Question 2
When the algorithm checks a value in the array, the adversary always reveals a value other
than 1. If the algorithm stops after asking fewer than n comparisons and claims the array
does not contain a 1, the adversary sets one of the unchecked elements of the array to 1.
If the algorithm says an array contains a 1, the adversary sets all the remaining values to
0. Hence, it takes n comparisons to check if an array of length n contains a 1.

Marking scheme: 5 marks for the question. Marks deducted for arguments that were
not adversarial.

3 Question 3
There are many ways to solve this problem in linear time. One key observation is that in
this model it takes O(n) time to compute the degree of a vertex, since it requires looking
up the whole row of a matrix. Therefore, it is important to only compute the degree of a
constant number of vertices.

checkBody(v):
if(degree(v)!=n-2) return false
find vertex u that is not a neighbour of v
if(degree(u)!=1) return false
find the unique neighbour w of u
return degree(w)==2

checkScorpion(V,E):
pick vertex v ∈ V
if(degree(v)==n-2) return checkBody(v)
if(degree(v)==2){
let u1, u2 be the neighbours of v
return checkBody(u1) or checkBody(u2)
}
if(degree(v)==1){
let u be the neighbour of v
if(degree(u)==2)){
let u1 be the neighbour of u that is not v
return checkBody(u1)
}

2



4 Question 4

if(degree(u)==n-2){
return checkBody(u)
}
return false
}
let N be the set of neighbours of v
let S ← V \N
pick s ∈ S, n ∈ N
while(N, S are not empty) {
if (n, s) ∈ E {
S ← S − {s}
pick s ∈ S
}
if (n, s) /∈ E {
N ← N − {n}
pick n ∈ N
}
}

if(degree(s)==1){
let u be the neighbour of s
if(degree(u)==2)){
let u1 be the neighbour of u that is not v
return checkBody(u1)
}
}
return false

Marking scheme: 2 marks for each of the cases where deg(v)=1,2,n-2. 4 marks for
checking if a vertex is a foot. In general, O(n2) solutions could get at most 2 marks, except
in cases where only one of the special cases was O(n2), in which case the maximum was
5 marks. Marks were deducted for lack of clarity in extreme cases.

4 Question 4
Suppose that Ā is solvable. That means there exists an algorithm Solve(w) that, given a
word w, outputs "yes" if w ∈ Ā and "no" if w /∈ Ā. Consider the following algorithm:

SolveA(w):
if(Solve(w)=="yes") return "no" return "yes"

This algorithm determines outputs "yes" if and only if w ∈ A. This contradicts the
unsolvability of A, which ends the proof.

3



4 Question 4

Marking scheme: 10 marks. Up to 4 marks deducted for clarity. A completely incor-
rect argument using a proof by contradiction could get at most 2 marks.

4


