
CS341 ASSIGNMENT 3 – SOLUTIONS

(1) (a) Suppose that (P,N,D, Q, L, T) is an optimal solution where P = number
of pennies, N = number of nickels, D = number of dimes, Q = number of
quarters, L = number of loonies, and T = number of toonies. The greedy
solution is characterized by the value of each coin being greater than the total
value in the solution contributed by lower value coins. To verify that the
optimal solution coincides with the greedy solution, we will check this criteria.

Notice that P ≤ 4 since otherwise we could replace 5 pennies with a nickel.
5 > 4 ∗ 1, thus the value of a nickel is greater than the total value contributed
by lower value coins.

N ≤ 1 since otherwise we could replace 2 nickels with a dime. 10 > 1∗5+4∗1,
thus the value of a dime is greater than the total value contributed by lower
value coins.

Since N ≤ 1, we have N + D ≤ 2 because if we had a nickel and 2 dimes then
we could replace these coins with a quarter. 25 > 2 ∗ 10 + 4 ∗ 1, thus the value
of a quarter is greater than the total value contributed by lower value coins.

Q ≤ 3 since otherwise we could replace 4 quarters with a loonie. 100 >
3 ∗ 25 + 2 ∗ 10 + 4 ∗ 1, thus the value of a loonie is greater than the total value
contributed by lower value coins.

L ≤ 1 since otherwise we could replace 2 loonies with a toonie. 200 > 1∗100+
3 ∗ 25 + 2 ∗ 10 + 4 ∗ 1, thus the value of a toonie is greater than the total value
contributed by lower value coins.

Thus the optimal solution coincides with the greedy solution. So the greedy
solution is optimal.

(b) Consider the coin system (13, 6, 1). To make 18 the greedy solution is 18 =
13 + 1 + 1 + 1 + 1 + 1 but the optimal solution is 18 = 6 + 6 + 6.

(c) Let (n0, n1, . . . , nk) be an optimal solution where ni is the number of coins
with value ci. As in part a, we will show that the value of each coin is greater
than the total value contributed by lower value coins.

n0 ≤ c − 1 since otherwise we could replace c c0 coins with a single c1 coin.
c1 > (c − 1) ∗ c0, thus the value of a c1 coin is greater than the total value
contributed by lower value coins.

1

2 CS341 ASSIGNMENT 3 – SOLUTIONS

Now suppose that ci >
∑i−1

j=0 njcj . We know that ni ≤ c − 1 since otherwise
we could replace c ci coins with a single ci+1 coin. Thus

i∑
j=0

njc
j

= nic
i +

i−1∑
j=0

njc
j

< (c− 1)ci + ci

= ci+1

Thus ci+1 is greater than the total value contributed by lower value coins.
Applying this step from 0 ≤ i < k we see that the optimal solution coincides
with the greedy solution and thus the greedy solution is optimal.

(2) (a) Suppose that we have 4 matrices of dimensions (3 × 2)(2 × 1)(1 × 2)(2 × 3).
Doing the minimum cost multiplication first would lead to:

(3× 2)(2× 1)(1× 2)(2× 3)
(cost: 2 ∗ 1 ∗ 2 = 4) 7→ (3× 2)(2× 2)(2× 3)
(cost: 3 ∗ 2 ∗ 2 = 12) 7→ (3× 2)(2× 3)
(cost: 3 ∗ 2 ∗ 3 = 18) 7→ (3× 3)

total cost: 34

However, a better order is:

(3× 2)(2× 1)(1× 2)(2× 3)
(cost: 3 ∗ 2 ∗ 1 = 6) 7→ (3× 1)(1× 2)(2× 3)
(cost: 1 ∗ 2 ∗ 3 = 6) 7→ (3× 1)(1× 3)
(cost: 3 ∗ 1 ∗ 3 = 9) 7→ (3× 3)

total cost: 21

(b) Suppose that we have 3 matrices of dimensions (3 × 1)(1 × 3)(3 × 2). Doing
the maximum cost multiplication first would lead to:

(3× 1)(1× 3)(3× 2)
(cost: 3 ∗ 1 ∗ 3 = 9) 7→ (3× 3)(3× 2)
(cost: 3 ∗ 3 ∗ 2 = 18) 7→ (3× 2)

total cost: 27

However, a better order is:

CS341 ASSIGNMENT 3 – SOLUTIONS 3

(3× 1)(1× 3)(3× 2)
(cost: 1 ∗ 3 ∗ 2 = 6) 7→ (3× 1)(1× 2)
(cost: 3 ∗ 1 ∗ 2 = 6) 7→ (3× 2)

total cost: 12

(c) Suppose that we have 3 matrices of dimensions (2 × 3)(3 × 2)(2 × 1). Doing
the multiplication with maximum ki+1 first would lead to:

(2× 3)(3× 2)(2× 1)
(cost: 2 ∗ 3 ∗ 2 = 12) 7→ (2× 2)(2× 1)
(cost: 2 ∗ 2 ∗ 1 = 4) 7→ (2× 1)

total cost: 16

However, a better order is:

(2× 3)(3× 2)(2× 1)
(cost: 3 ∗ 2 ∗ 1 = 6) 7→ (2× 3)(3× 1)
(cost: 2 ∗ 3 ∗ 1 = 6) 7→ (2× 1)

total cost: 12

(3) To find the largest subset S of edges in T such that no two edges in S are incident
on the same vertex, we apply the following algorithm. Starting at the leaf level,
greedily add each edge to S if it is not incident to the same vertex as any edge
already in S. Move up to the next level of the tree and repeat this until the root
level is reached.

To see that this algorithm finds a largest subset S, we will proceed by induction on
the height of the tree.

Base case: The tree is of height 1.

This tree consists of only 1 vertex and no edges. So the algorithm will trivially
construct S = ∅ which is the largest possible.

Inductive case: Suppose the algorithm finds the largest possible S for trees of height
≤ k.

Let T be a tree of height k + 1. The algorithm greedily takes as many edges as it
can in the leaf level into S. Since the algorithm will never pick any edges that share
vertices with these edges, it is safe to now delete the subtrees rooted at vertices
above the chosen edges. Call the tree resulting from these deletions T ′. T ′ is a tree
of height at most k so by the inductive hypothesis, running the algorithm on T ′

4 CS341 ASSIGNMENT 3 – SOLUTIONS

gives a largest possible S′. Each of the deleted subtrees can only contribute 1 edge
each (because all edges in the subtree share a common vertex) so by adding S′ to
the S we have already collected, we get a maximal subset of edges such that no
edges in S share a vertex.

By induction, the algorithm produces a maximal S for all heights of T .

(4) We begin by permuting the labels on the cities such that cities on the south bank
are in ascending order. This can be accomplished by sorting based on their x-
coordinates in O(n log n) time with a sort such as mergesort. The labels in the
solution we find will be the same permutation of the labels in the solution to the
original problem.

Here is an example showing the permutation that puts the cities on the southern
bank in ascending order.

Notice that two bridges cross exactly when there is a bridge connecting cities i and
a second bridge connecting cities j such that i < j (i.e. i is to the left of j on
the south bank) but i is to the right of j on the north bank. In other words, a
sequence of cities on the north bank corresponds to a set of non-crossing bridges
iff it is non-decreasing. Thus the problem reduces to finding the longest increasing
subsequence of the cities on the north bank. We will use dynamic programming to
solve the longest increasing subsequence problem.

Let Ai be the label of the ith city on the north bank in order of x-coordinate. Let
Li be a longest increasing subsequence of {Aj}ij=0. Note that L0 = {A0}.

Li can be calculated in the following way.

CS341 ASSIGNMENT 3 – SOLUTIONS 5

L_i = { A_i }
for j = 0..(i-1)

if A_i > last(L_j) then
L_i = max(L_i, L_j + {A_i})

else
L_i = max(L_i, L_j)

end if
end for

Since Li depends only on previous values (Lj such that j < i), we can calculate Li

for each i < n in succession. A longest increasing subsequence of the cities on the
north bank is Ln−1. By applying the inverse of the permuation to this subsequence,
we get the labels of the cities for which we should build bridges.

(5) Let Vi,j be the amount of money you can definitely win if presented with coins
v(i), . . . , v(j). Note that Vi,i = v(i) and let us say that if i > j then Vi,j =
0 by convention. To calculate Vi,j , we see that we have two choices: to take
coin v(i) or v(j). Our opponent is then left with two choices (v(i + 1), v(j) or
v(i), v(j − 1) depending on our choice). Then it is our turn again and we are left
with a subproblem with two fewer coins. We cannot make assumptions about our
opponent’s behavior, so we can only guarantee that we get the minimum value
resulting from each of our opponent’s choices. We can, however, make the choice
on our turn that maximizes our value.

Vi,j = max
{

v(i) + min(Vi+2,j , Vi+1,j−1)
v(j) + min(Vi+1,j−1, Vi,j−2)

}
We initialize by setting Vi,i = v(i). Since each Vi,j only depends on values Vi′,j′

where j′ − i′ < j − i we can now calculate Vi,j where j − i = 1. We can then
calculate Vi,j where j − i = 2 and so on until we have calculated V1,n which is our
final answer.

