
Assignment 2

Sample Solutions

1

• by case 3 of Master’s theorem T (n) = 8T (n/3) +O(n2) ⇒ T (n) = O(n2)

• by case 3 of Master’s theorem T (n) = O(n2)

• by case 2 of Master’s theorem T (n) = O(n2 lg n)

• by case 2 of Master’s theorem T (n) = O(nlog3 3 lgk+1 n) = O(n lg2 n). Note that k is the power

of lgn where f(n) = Θ(nlogb a lgk n)

2

Using k bits, 2k different indices could be made. Since
∑

1≤i≤lgn−2 2
i < 2lgn−1 ≤ n/2, at most half

of indices can be of length less or equal to lg n− 2.

Note that in this problem ”00” and ”0” are different indices.

3

Rev(n)

If (n = 1) Return 0;

A = Rev(n/2);

A = A*2;\\inserting a 0 to the left of each number in Rev(n/2)

B = A+1;\\inserting a 1 to the left of each number in Rev(n/2)

Return (A,B)\\appending the two arrays and returning the result

Note that the ith element of [0 . . . 2k−1) and the ith element of [2k−1 . . . 2k) only differ in their kth

bit. Also, rev(0x) would be rev(x)0

The running time is T (n) = T (n/2) +O(n) which by Master’s theorem is O(n).

1



As an alternative solution, this also would work in T (n) = 2T (n/2) + O(1) = O(n) if initially

called by Rev(n, 0, 1):

Rev(n,r,d)

If (n = 1) Print r;

Rev(n/2,r,2*d);

Rev(n/2,r+d,2*d);

4

Let A and B be two sorted arrays we wish to search. Without loss of generality, let mA ≤ mB . Let m

be the mean of mA and mB . If k < m, then the kth element can not be within the second half of the

larger array, B (every element in the second half of B is larger than at least m elements). Similarly, if

k > m, then the kth element can not be within the first half of the smaller array, A. Note that in the

latter case we should search for the (k − mA)th in the remaining of the arrays. This way, we could

throw away half of A or B in each iteration and recurse in the remaining parts until one array remains

and the problem becomes obvious.

Let x = mAmB . Then, each time one of the mA or mB is halved, x is halved too. This means that

the running time of our algorithm is T (x) = T (x/2) + O(1) = O(lg x). Since lg x = lgmAmB =

lgmA + lgmB , we are good.

5

The basic idea is two divide the set of buildings into two roughly equal sets, solving the problem for

them recursively, then merging the two outlines. The merge process could by traversing the two outlines

from left to right (similar to the merge process of mergesort) and at each point, setting the outline as

the highest of the two outlines at that point.

procedure baseCaseSolution(Bldngs[1..1])

Skyline = { (Bldngs[1].lx , 0), (Bldngs[1].lx , Bldngs[1].h),

2



(Bldngs[1].rx , Bldngs[1].h), (Bldngs[1].rx , 0) }

return Skyline

procedure FindOutline(Bldngs[1..n]) {

if (n == 1) then

return baseCaseSolution(Bldngs)

q = n div 2

Out1 = FindOutline(Bldngs[1..q])

Out2 = findOutline(Bldngs[q+1..n])

Outline = merge(Out1, Out2)

return Outline

}

procedure merge(Out1, Out2) {

Outline = Empty-List

CurH1 = 0

CurH2 = 0

While (Out1 is not Empty and Out2 is not Empty) do {

if (head(Out1).lx < head(Sk2).lx) {

CurX = head(Out1).lx

CurH1 = head(Out1).h

Append {(CurX, Max(CurH1, CurH2))} to Outline

Out1.Remove(head)

}

else {

3



CurX = head(Out2).lx

CurH2 = head(Out2).h

Append {(CurX, Max(CurH1, CurH2))} to Outline

Out2.Remove(head)

}

}

if (Out1 is Empty)

Append Out2 to Outline

else //Out2 is Empty...

Append Out1 to Outline

return Outline

}

4


