a)

MergeSort(A) $/ / \mathrm{O}(\mathrm{n} \ln (\mathrm{n}))$
$\operatorname{Return}(\mathrm{A}[\operatorname{ceil}(\operatorname{size}(\mathrm{A}) / 2)]) \quad / / \mathrm{O}(1)$
b)

FindMajority(A)
\{
If $\operatorname{size}(A)==1$
Return A[1]
$\mathrm{L}=$ FindMajority $(\mathrm{A}[1 \ldots \operatorname{ceil}(\operatorname{size}(\mathrm{~A}) / 2)])$
R = FindMajority (A[ceil(size(A) / 2) $+1 \ldots$...size(A) $]$)
$\mathrm{Lc}=\mathrm{Rc}=0$;
For $\mathrm{i}=1$ to $\operatorname{size}(\mathrm{A})$
$\mathrm{Lc}+=(\mathrm{A}[\mathrm{i}]==\mathrm{L})$
$\mathrm{Rc}+=(\mathrm{A}[\mathrm{i}]==\mathrm{R})$
End
If $\mathrm{Lc}>\mathrm{Rc}$ Then Return L Else Return R
\}
$/ / \mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})$ which is in $\mathrm{O}(\mathrm{n} \ln (\mathrm{n}))$
c)
$\mathrm{X}=\mathrm{A}[1]$;
Cnt = 1;
For $\mathrm{i}=2$ to $\operatorname{size}(\mathrm{A}) \quad / / \mathrm{O}(\mathrm{n})$
If $\mathrm{Cnt}==0$ Then $\mathrm{X}=\mathrm{A}[\mathrm{i}]$
If $\mathrm{A}[\mathrm{i}]=\mathrm{X}$ Then Cnt++ Else Cnt--
End
Return X

Q2-
a)

False; by Counter Example: $g(n)=\ln (n)$ and $f(n)=\ln \left(n^{\wedge} 2\right)=2 \ln (n)$ $\Rightarrow \quad e^{\wedge} g(n)=n$ and $f^{\wedge} g(n)=n^{\wedge} 2$ and we know that $n^{\wedge} 2$ is not in $O(n)$
b)

False or True based on your assumptions!
FALSE - By Counter Example:
$f(n)=e^{\wedge}(1 / n)$ and $g(n)=e^{\wedge}(1+1 / n)=e^{*} e^{\wedge}(1 / n)$
But $\ln (\mathrm{f}(\mathrm{n}))=1 / \mathrm{n}$ is not in $\ln (\mathrm{g}(\mathrm{n}))=1+1 / \mathrm{n}$

TRUE - if $\mathrm{g}(\mathrm{n})$ is an increasing function AND there exists m such that $\mathrm{g}(\mathrm{m})>1$:
We know $f(n)$ is in $O(g(n))$. So for some c and n0 we have
for all $\mathrm{n}>\mathrm{n} 0: \mathrm{f}(\mathrm{n})<=\mathrm{c} \mathrm{g}(\mathrm{n}) \quad=>\ln (\mathrm{f}(\mathrm{n}))<=\ln (\mathrm{c} \mathrm{g}(\mathrm{n}))=\ln (\mathrm{c})+\ln (\mathrm{g}(\mathrm{n}))$
Since $\mathrm{g}(\mathrm{n})$ is increasing, if $\mathrm{n} 1=\max (\mathrm{n} 0, \mathrm{~m})$ then for all $\mathrm{n}>\mathrm{n} 1: \mathrm{g}(\mathrm{n})>1$
Set $\mathrm{k}=1+\ln (\mathrm{c}) / \ln (\mathrm{g}(\mathrm{n} 1))$ so we have:
$\mathrm{k} \ln (\mathrm{g}(\mathrm{n}))=\ln (\mathrm{g}(\mathrm{n}))+\ln (\mathrm{c}) \ln (\mathrm{g}(\mathrm{n})) / \ln (\mathrm{g}(\mathrm{n} 1))>=\ln (\mathrm{c})+\ln (\mathrm{g}(\mathrm{n}))>=\ln (\mathrm{f}(\mathrm{n}))$
$=>$ these exists k and n 1 such that for all $\mathrm{n}>\mathrm{n} 1: \ln (\mathrm{f}(\mathrm{n}))<=\mathrm{k} \ln (\mathrm{g}(\mathrm{n}))$
$==>$ So $\ln (\mathrm{f}(\mathrm{n}))$ is in $\mathrm{O}(\ln (\mathrm{g}(\mathrm{n}))$

Q3-

Only ONE class --> $\ln (n)$ and $\log (n)$
The answer is:
$10^{\wedge} 9<\ln \left(\ln (\mathrm{n})<\log (\mathrm{n})=\ln (\mathrm{n})<\mathrm{n}^{\wedge} 0.0000001<(4 / 3)^{\wedge} \log (\mathrm{n})<\operatorname{sqrt}(\mathrm{n})<\right.$ $\mathrm{n}<\mathrm{n}^{\wedge} 2<\mathrm{n}^{\wedge} 2 \ln (\mathrm{n})<50 \mathrm{n}^{\wedge} 3<\ln (\mathrm{n})^{\wedge} \ln (\mathrm{n})<\mathrm{n}^{\wedge} \log (\mathrm{n})<\mathrm{n}^{\wedge} \ln (\mathrm{n})<$ $100 \mathrm{e}^{\wedge} \operatorname{sqrt}(\mathrm{n})<(4 / 3)^{\wedge} \mathrm{n}<2^{\wedge} \mathrm{n}<\mathrm{e}^{\wedge} \mathrm{n}<\mathrm{n}!<(\mathrm{n}+5)!<2^{\wedge} 2^{\wedge} \mathrm{n}$

Q4-

There are many examples, like this one:

$\mathrm{f}(\mathrm{n})=\{2(\mathrm{n}-1)!$	if n is odd
\{ n !	if n is even
\{1	if $\mathrm{n}==1$
$\mathrm{g}(\mathrm{n})=\{\mathrm{n}$!	if n is odd
\{ 2(n-1)!	if n is even
\{ 1	if $\mathrm{n}==1$

Obviously they are increasing functions from N to N .
Proof by contradiction:
Assume $\mathrm{f}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ which means there exists c and n 0 such that
for all $\mathrm{n}>\mathrm{n} 0$: $\mathrm{f}(\mathrm{n})<=\mathrm{c} \mathrm{g}(\mathrm{n})$
Now take any even $m>\max (2 c, n 0)$, we have:
$\mathrm{f}(\mathrm{m})=\mathrm{m}!$ and $\mathrm{g}(\mathrm{m})=2(\mathrm{~m}-1)$!
So we must have: $\mathrm{m}!<=\mathrm{c} 2(\mathrm{~m}-1)$!
Which means $\mathrm{m}<=2 \mathrm{c} \quad$ [Contradiction]
In the same way we can prove $\mathrm{g}(\mathrm{n})$ is not in $\mathrm{O}(\mathrm{f}(\mathrm{n}))$.

Q5-

$$
\begin{aligned}
\text { For } \mathrm{i}= & \operatorname{size}(A) \text { to } 2 \\
& \text { Tmp }=A[\mathrm{i}-\mathrm{f}[\mathrm{i}]] \\
& \text { For } \mathrm{j}=\mathrm{i}-\mathrm{f}[\mathrm{i}] \text { to } \mathrm{i}-1 \\
& \quad A[j]=A[j+1] \\
& \text { End } \\
\text { End } & A[i]=\text { Tmp }
\end{aligned}
$$

