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Registering a MultiSensor Ensemble of Images
Jeff Orchard, Member, IEEE, and Richard Mann

Abstract—Many registration scenarios involve aligning more
than just two images. These image sets—called ensembles—are
conventionally registered by choosing one image as a template,
and every other image is registered to it. This pairwise approach
is problematic because results depend on which image is chosen
as the template. The issue is particularly acute for multisensor
ensembles because different sensors create images with different
features. Also, pairwise methods use only a fraction of the available
data at a time. In this paper, we propose a maximum-likelihood
clustering method that registers all the images in a multisensor
ensemble simultaneously. Experiments involving rigid-body and
affine transformations show that the clustering method is more ro-
bust and accurate than competing pairwise registration methods.
Moreover, the clustering results can be used to form a rudimentary
segmentation of the image ensemble.

Index Terms—Gaussian mixture models, multi-image, multi-
sensor, mutual information, registration.

I. INTRODUCTION

I MAGE registration is a fundamental operation in image
analysis. It crops up in many realms, including medical

imaging, remote sensing, quality control, and super-resolution,
to mention only a few. A great deal of research has been devoted
to automatically register two images (or volumes).

This paper addresses the question of how to register more
than two images. Suppose you have several images—all of the
same content—and you want to register them all together. We
call this collection of images an ensemble. The vast majority of
registration methods are designed to register only two images
at a time. It is not clear how to use these pairwise methods for
ensemble registration.

The problem of registration becomes more difficult when
the images come from different sources. For example, a body
part could be imaged with different modalities such as mag-
netic resonance imaging (MRI), computed tomography (CT),
and positron emission tomography (PET), or a region of the
earth captured by satellite imagery using a variety of different
sensors, or several images of a face acquired with different illu-
mination conditions. In these cases, the image intensities cannot
be compared directly because, although the images depict the
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Fig. 1. Success rate for pairwise registration of the multisensor phantom
dataset. The edge labels give the percentage of trials for which FLIRT’s 64-bin
NMI registration had an average pixel displacement of less than 3 pixels. The
circular ROI is outlined in image A.

same content, they do so with different transfer functions. We
refer to such registration problems as multisensor registration.

To illustrate the difficulty of multisensor ensemble registra-
tion, consider the “phantom” (to borrow a term from medical
imaging) shown in Fig. 1. The figure shows a contrived example
of multisensor imaging. The “true” object being imaged, shown
on the left of Fig. 1, consists of a large circle encapsulating four
ellipses. However, only two of the four ellipses are visible in
each image, simulating the phenomenon of multisensor image
acquisitions. Moreover, a different pair of ellipses is visible in
each image, causing some pairs of images to contain disjoint
content. The outlined circle in image A shows the region of
interest (ROI) in which the images were registered. The suc-
cess-rate percentages reported in the figure indicate that FLIRT
[1], a popular pairwise registration method, had difficulty regis-
tering image pairs diagonally across from each other (the term
“success” is fully defined in Section IV). It also had difficulty
registering the image pair that shared the smallest and roundest
ellipse (D and C). Hence, pairwise ensemble registration has the
undesirable property that the solution depends on which pairs of
images are chosen and registered. We will refer to this issue as
selection dependency.

In addition, most pairwise registration methods do not offer
a way to guarantee that redundancy in the solution is consis-
tent. Consider a pairwise method that registers phantom image
A to B and B to C. By composing those two transformations,
one can derive a transformation from A to C. However, it is ex-
tremely unlikely that registering A to C will yield exactly the
same transformation. We refer to this phenomenon as internal
inconsistency.

We hypothesize that a registration strategy that registers all
the images simultaneously can avoid both selection dependency
and internal inconsistency. That is, including all the images in a
single, global registration problem precludes the need to choose
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which pairs to register, while generating a solution that is not
redundant (and, thus, is internally consistent). Moreover, we hy-
pothesize that the statistical power of using all the images at the
same time, rather than just two at a time, will yield more accu-
rate registration solutions.

In this paper, we present a method that employs clustering
to simultaneously register an entire ensemble of images. The
method computes the registration solution, and at the same time
generates a model of the transfer functions among the images
of the ensemble.

II. BACKGROUND

Consider two images, one overlaid on the other. Each pixel
corresponds to two intensity values, one from each of the two
images. This 2-tuple can be plotted in the joint intensity space,
where each axis corresponds to intensity from each of the im-
ages. Plotting the points for all the pixels creates a scatter plot
in this joint intensity space, and we refer to this scatter plot as
the joint intensity scatter plot, or JISP.

The idea behind many multisensor registration methods is to
reduce the dispersion in the JISP. Why should this be the case?
The implicit assumption linking different images of the same
object is that they are recognizable as the same object because
of some consistency by which intensities are assigned to com-
ponents in the image. For example, bones show up as black in
an MR image, and white in a CT image. Even though bones are
rendered with a different intensity in each imaging modality, we
still recognize the similarity in global shape because the inten-
sity correspondence is consistent across many pixels. That is,
pixels with intensities near in one image often correspond to
pixels with intensities near in the other image. We call this cor-
respondence an intensity mapping. An intensity mapping need
not be one-to-one. Indeed, there are lots of examples where
two pixels with the same intensity in one image correspond to
different objects—and different intensities—in another image.
Using our MR/CT example again, white matter and gray matter
are virtually indistinguishable in CT, yet yield noticeably dif-
ferent intensities in T1-weighted MRI.

Each object in an image corresponds to a coherent collection
of points in the JISP. For many examples, such as bone in MR
and CT, the collection of points might be a distribution about
a single focal point. For two images of a face—each one illu-
minated from a different angle—the collection of points cor-
responding to skin forms a manifold because the gradation of
shades in one image corresponds to a different, though consis-
tent, gradation of shades in the other image, creating a curve of
points in the JISP.

As two images are moved out of register, the spatial corre-
spondence of objects in the images gets disturbed, causing the
coherence of the JISP to be disrupted. The clusters and swaths
of scatter points spread out and move around because some bone
pixels are now paired with muscle pixels, others with fat pixels,
etc. Intensity-based multisensor image registration is based on
this observation. The objective is to move the images until the
JISP is optimally coherent, or minimally disperse.

One of the most successful applications of this idea uses the
entropy of the joint histogram to quantify dispersion. Given the

JISP between two images, one forms a joint histogram to re-
flect the density of points in the scatter plot. One can compute
the entropy of this histogram. The lower the entropy, the more
compact and tightly clustered the scatter plot and, hence, the
more closely registered the two images. Extensions on the same
idea include mutual information (MI) [2], [3], and normalized
mutual information (NMI) [4].

The same idea can be applied to ensemble registration. The
problem with the entropy-based methods is that they do not scale
well for registration with more than two images. The joint his-
togram is an intermediary to those cost functions, and as you add
more images to the problem, the number of histogram bins in-
creases exponentially. For example, the joint histogram among
five images, with each axis partitioned into 64 bins, has bins
(over 1 billion). With 256 intensity bins per image, it gives us

bins (over 1 trillion). Hence, these histogram-based methods
are infeasible for ensemble registration.

Some registration methods measure the dispersion in the JISP
without the need to form the joint histogram. In [5], dispersion
is quantified as the length of a minimum-length spanning tree on
the joint intensity scatter plot. Roche et al. [6] model the clusters
in the JISP as a polynomial, thus assuming a functional relation
between the intensities in the two images. This is often not the
case. That method was expanded in [7] where a two-pass “least
trimmed squares” approach allowed for the functional modeling
of the outliers from the first least-squares pass. Leventon et al.
[8] present an iterative method similar to ours, except they must
specify the correct JISP in advance, eg., from previously regis-
tered images. In contrast, our method derives the JISP and reg-
istration solution simultaneously.

The first demonstration of ensemble registration that we are
aware of was published in 1998 by Woods et al. [9]. Given a
set of images, Woods constructs his cost function by adding to-
gether the sum of squared differences (SSD) between all pos-
sible pairs of images. Minimizing this cost function yields what
Woods calls the “reconciled mean transformations”. However,
since his method uses the SSD cost function, it is only suitable
for mono-sensor image registration.

Some other ensemble registration methods have recently
emerged in the literature [10]–[14]. However, these methods
have not been demonstrated on multisensor image ensembles,
but rather focus on the problem of registering a set of images
from the same modality to form a template (or so-called atlas).
A different domain-specific method was designed to simulta-
neously register sets of brain MR images, but relies on the use
of a human brain atlas to perform tissue classification, and then
aligns the tissue-classification images [15]. Finally, one method
[16] jointly registers and clusters a set of motion-corrupted
images, automatically grouping images by similarity. However,
their method assumes that the set of images is composed of
moved and noisy versions of a set of prototype images, so the
registration of the images to their class archetype amounts to
mono-modal registration. Hence, these methods are not suitable
for general-purpose multisensor ensemble registration.

In this paper, we present an efficient method for multisensor
ensemble registration. Our method is based on clustering in the
JISP, jointly modeling the distribution of points in the JISP as
it estimates the motion parameters. Density estimation of the
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Fig. 2. Two main processes in ensemble registration. In density estimation, the motion parameters are held fixed while a better density estimate is computed by
moving and stretching the cluster density components, as shown in (a). In motion adjustment, the density estimate is held fixed and the optimal motion is determined
using least-squares. As the images move, the corresponding scatter points move toward the cluster centres (on average), as shown in (b).

clusters is modeled as a Gaussian mixture model (GMM), and is
established iteratively using an estimation-maximization (EM)
method. The motion parameters are also solved using an itera-
tive Newton-type method. The iterates of these two methods are
interleaved, thereby solving the two problems (density estima-
tion and registration) in synchrony.

III. METHOD

Our approach to minimizing the dispersion in the JISP in-
volves two steps: 1) density estimation of the scatter points in
the JISP, followed by 2) moving the images to minimize the dis-
persion of the scatter plot. We refer to these two processes as
density estimation and motion adjustment, respectively. Fig. 2
depicts density estimation and motion adjustment pictorially.

Suppose we are registering an ensemble of images. Then,
each pixel in our image domain has values associated with it.
We will refer to the vector of intensities for a single pixel as an
“intensity vector”, and denote the intensity vector for pixel as

.
Let us represent our density estimate by . If we model the

pixels as spatially independent variables, the likelihood of ob-
serving the images can be written

(1)

where is a probability function (defined later) and denotes a
pixel in our image domain (usually a subset of or ). Thus,

is the probability of observing the set of intensity vectors,
given the distribution specified by .

To use this likelihood as a registration cost function, we add
the possibility to move the ensemble of images. Let represent
the set of motion parameters that specify the displacements ap-
plied to the image ensemble. Then, our likelihood cost function
can be written not only as a function of the pixel density model,

, but also as a function of the motion parameters,

(2)

The expression represents the intensity vector for pixel
after applying the spatial transformation with parameters .

Because of the form of , it is easier to optimize its logarithm,
, because the product over turns into a sum

(3)

Our goal in multisensor ensemble registration is to maximize
(and, hence, ) by appropriate choice of and

. The remainder of this section describes an iterative method
that alternately optimizes with respect to , and with respect
to .

A. Gaussian Mixture Model

We will model the density of points in the JISP using a
Gaussian Mixture Model (GMM) [17]. The mixture consists
of Gaussian components, each specified by a mean and
covariance matrix . Then, for a single pixel location , the
likelihood of observing the intensity vector is

(4)

where the th Gaussian component is specified by and ,
and are the component weights, with . The func-
tion denotes the normal (Gaussian) distribution

(5)

B. Density Estimation

Taking to be the correct motion, we can improve our den-
sity estimate by optimizing with respect to the prob-
ability density function .

For the GMM described above, we can find the optimal
iteratively using the expectation-maximization (EM) algorithm
[17]. The algorithm has an expectation step that maps scatter
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points to clusters, followed by a maximization step that re-es-
timates the optimal clusters. The advantage of using this al-
gorithm with a GMM is that each iteration has a closed-form,
least-squares solution.

In the context of ensemble registration, the expectation step
divvies-up the membership of each intensity vector among the

clusters. The membership of pixel to cluster is

(6)

Notice that for each .
The maximization step sets the parameters and to their

(weighted) maximum likelihood values, given by

(7)

(8)

Then the Gaussian component weights are re-estimated

(9)

C. Motion Adjustment

The other half of the method involves holding fixed,
and using it to find a motion increment that moves all the
scatter points so that the overall log-likelihood, , is
increased. We describe here a Newton-type step.

To optimize with respect to the parameters , we
set its gradient vector to zero

(10)

Note that if each image has motion parameters, and there are
images in the ensemble, then there are a total of motion

parameters in . Hence, the gradient vector in (10) is an
vector.

For notational brevity, we will use instead of
. Recall that denotes the intensity vector at

pixel location after applying the motion parameters to the
ensemble. The gradient vector of can be written

(11)

Substituting in the definition for [from (4)], and applying the
chain rule for differentiation, we can express the numerator of
the fraction as

(12)

where is an matrix holding the derivatives of
the pixel intensities with respect to each of the motion
parameters, and is the gradient vector of

the normal function. It is worth noting that since each motion
parameter affects only one image in the ensemble, the matrix

is sparse and block-diagonal.
Finally, the derivative can be written

(13)

Putting it all together, we can write as

(14)

We want to find motion parameters that set
to a zero vector. To accomplish

this, we wish to find a small motion increment so that
is zero. We replace in the

term of (14) with a nudged version of our ensemble, .
Approximating the spatial transformation so that it is a linear
function of gives us

(15)

where is a small increment to the motion parameters (a
“nudge”). Setting (14) to zero then yields a linear equation in

(16)

By simply factoring out and collecting the remaining terms,
we get

(17)

or

(18)

where is the system matrix, and the
vector defined inside the parentheses on the right-hand side of
(17). As an example, consider an ensemble with five images
(i.e., ), each with three motion parameters (i.e.,

). Then (18) is a linear system of 15 equations involving 15
unknowns. Solving this system for gives us the optimal motion
increment, according to the linear approximation. We use this
increment to adjust our current estimate for .

D. Implementation

We implemented our method in Matlab (Mathworks Inc.,
Natick, Massachusetts). Algorithm 1 summarizes the code
for our method. Here we outline a few details about our
implementation.
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Algorithm 1 Ensemble clustering registration

input: initial ensemble

input: initial motion parameters

input: initial GMM parameters

for each scale do

scale ensemble

apply motion to ensemble

repeat

for iterations do

EM step (see Section III-B)

end for

for iterations do

motion adjustment (see Section III-C)

apply motion to ensemble

end for

until converged ( is small)

end for

output: is registered ensemble at full scale

output: holds the optimal motion parameters

output: holds the GMM parameters

As is common practice for image registration (including
FLIRT), we use a multiresolution framework in which images
are registered first at a low resolution, and then at successively
higher resolutions [18], [19]. The solution at each scale is used
as an initial guess for the next scale. In general, images were
registered at scales 10%, 20%, 50%, and then finally 100%.
Exceptions to that schedule are noted in Section IV.

Though not required in our model, each image in the en-
semble was subject to the same type of spatial transformation
(either rigid-body, or affine). Each image then had the same
number of motion parameters, , associated with its own trans-
formation. Thus, the total number of motion parameters stored
in the vector is .

Our method requires an initial density estimate. Following the
method outlined in Section III-B, we implemented a simple EM
iteration that attempts to find a GMM (represented by ) to max-
imize (3). The initialization has three phases, with increasing
degrees of freedom in the maximization step. In the first phase,
only the means are adjusted using (7). In the second phase,
the weights are also adjusted using (9). Finally, in the last
phase, the covariances are also adjusted using (8). Ten EM
iterations are executed for each of these three phases.

Fig. 3. Images used in mono-sensor time series experiments (FMRI). (a) Image
during the inactive period, as well as the outline of the ROI used for one of the
experiments. (b) Image from one of the active periods, displaced randomly. The
activity in the occipital region (toward the bottom of the image) is very slightly
brighter in (b) than (a).

IV. EXPERIMENTS

Our new ensemble clustering registration method was com-
pared to two pairwise registration methods, as well as a least-
squares ensemble method, to test our hypotheses regarding the
advantages of ensemble registration versus pairwise registra-
tion. We used our method in its full ensemble registration mode,
where all the available images were simultaneously registered.
We also used registration methods implemented in FLIRT, a
product of the Oxford FMRIB group [1]. Their program is a
popular registration tool, and is able to register using a number
of different cost functions—we used three of them: normalized
mutual information (NMI), correlation ratio (CR), and normal-
ized correlation (NC). We also used our clustering method in a
pairwise fashion, where we registered only two images at a time.
This pairwise clustering registration method was included to
act as a rough experimental control to differentiate between the
effects of ensemble registration, and the effects of registration
using clustering. Finally, we modified our clustering registration
method to implement the sum of squared differences (SSD) cost
function, where the cost of a scatter point is measured as the
square of its perpendicular distance from the identity line in the
JISP. The purpose for including this method was to demonstrate
the importance of density estimation in the process of multi-
sensor ensemble registration.

The performance of each registration method was gauged by
comparing the estimated transformations to the gold standard
transformations. This difference was quantified using the av-
erage pixel displacement, defined as the distance of each pixel
from its true, registered position, averaged over all pixels used in
the registration. Hence, an average pixel displacement of 0 indi-
cates perfect registration, and a large average pixel displacement
means poor registration. If the average pixel displacement is
greater than 3 pixels, then the registration is considered a failure.
Hereafter, we will use the word error to denote the average pixel
displacement.

The registration methods were tested in five different reg-
istration applications. For each application, we generated trial
ensembles by applying known displacements to the initially-
regsitered images. For most of the image ensembles, multiple
trials were run. The different experiments are outlined below.
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Fig. 4. Slice from the RIRE ensemble used to test 3-D registration.

Fig. 5. Satellite images used to test the affine registration. The ROI is outlined in image A.

A. Mono-Sensor Time Series

This image set contains a time series of 56 snapshots of
a simulated functional MRI experiment (see Fig. 3). The
snapshots were created by duplicating a single 80 80 pixel

-weighted MRI 56 times. Artificial activation was added
to a large part of the occipital lobe, adding 5% of the average
brain intensity to the active region during three 8-frame active
periods. Then, randomly-generated rigid-body displacements
were applied to all the images, choosing the translations and
rotations uniformly from the range [ 10, 10] pixels or degrees.
Thus, there were 168 motion parameters in total. Finally,
Gaussian distributed white noise was added to each image
( of mean brain instensity).

Because of the time it takes to complete the 3080 pairwise
registration runs, we produced just one trial ensemble. The
ensemble clustering and the pairwise clustering registration
methods were each run with only one Gaussian component,
and each used a multiresolution framework with scales 20%,
50%, and 100%. The FLIRT method was run using the normal-
ized correlation cost function. We also ran the ensemble SSD
method on this dataset. The entire set of registration scenarios
was run twice by each registration method, once using all the
pixels in the image, and once using only the pixels in a region
of interest that included roughly 75% of the brain [outlined in
Fig. 3(a)].

B. Three-Dimensional

We also tested our registration method on an ensemble of
medical imaging volumes. The Retrospective Image Registra-
tion Evaluation (RIRE) project’s training set was used [20]
(one slice is shown in Fig. 4). The set consists of five vol-
umes: three MR (magnetic resonance) volumes (T1-weighted,
T2-weighted, and PD-weighted), a computed tomography
(CT) volume, and a positron emission tomography (PET)
volume. The volumes were resampled into register using the
true displacement parameters supplied by the RIRE project,
then scaled so that each volume was isotropic

voxels. The volumes were then padded to to
avoid image content from leaving the field of view after being
displaced. Ten trial ensembles were generated using randomly
generated 3-D rigid-body transformations, uniformly choosing
the three rotations and three translations from the range [ 5,
5] (degrees or pixels). The ensemble clustering method was
initialized with six Gaussian components, while the pairwise
clustering method was initialized with four. Both clustering
methods used a multiresolution framework with scales 20%,
50%, and 100%. The FLIRT pairwise registration method was
run using the correlation ratio cost function.

C. Satellite

A set of six Landsat satellite images, shown in Fig. 5, were
used for testing. Each image was acquired with a different
sensor. These six images (761 748 pixels in size) were used
to generate ten trial ensembles, each with a different set of
randomly-generated 6-degree-of-freedom affine displacements
(two scales, one shear, one rotation, and two translations). The
motion parameters were chosen uniformly from the following
ranges: [0.95, 1.05] for scales, [ 0.2, 0.2] for the shear, [ 5, 5]
degrees for the rotation, and [ 5, 5] pixels for the translations.
Registration was performed on the region of interest outlined in
A of Fig. 5. The ensemble clustering registration method was
initialized with six Gaussian components, while the pairwise
clustering method was initialized with three components. The
FLIRT method was run using the correlation ratio as the cost
function.

D. Variable Illumination

Fig. 6 shows an image ensemble of the same face (640
480) with five very different light positions, ranging from far
left to far right. The images were taken from the Extended Yale
Face Database B [21]. Registration was performed using only
the pixels in the region of interest, outlined on F1 of Fig. 6.
This set of images poses a very difficult registration scenario,
since images F1 and F5 have very little illuminated content in
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Fig. 6. Face images used to test the effect of variable illumination. The ROI is outlined in image F1.

common within the region of interest. Ten trial ensembles were
generated by applying randomly-generated rigid-body displace-
ments, chosen uniformly from the range [ 10, 10] pixels or
degrees.

The ensemble clustering registration method was initialized
with six Gaussian components, while the pairwise clustering
method was initialized with four components. The FLIRT
method was run using the NMI cost function with 64 bins. The
ensemble SSD method was also run on this dataset.

E. Disjoint Content

Ten trial ensembles of the multisensor phantom (shown in
Fig. 1) were generated using randomly-generated rigid-body
displacements chosen uniformly from the range [ 10, 10]
pixels or degrees. The ensemble clustering method was initial-
ized with five clusters, while the pairwise clustering method
was initialized with four. Both clustering methods used a mul-
tiresolution framework with scales 20%, 50% and 100%. The
FLIRT method was run using the NMI cost function with 64
bins. We ran the ensemble SSD method on this dataset as well.

F. Number of Gaussian Components

One of the parameters that needs to be specified in our method
is the number of Gaussian components to include in the mix-
ture model. We wanted to know how our the ensemble regis-
tration method would behave over a range of different values.
We ran only our ensemble registration method (not the pairwise
methods) on the multisensor phantom dataset for three different
numbers of components: , , and . The
trial datasets are the same as those used in the “disjoint content”
experiment. Over the ten trial datasets, we recorded the mean
error for all trials, the mean error for converged trials (those
with an error of less than three pixels), and the number of failed
registrations.

V. RESULTS

A. Mono-Sensor Time Series

Among the 56 images in the simulated functional MRI time
series, the pairwise methods performed 3080 pairwise regis-
trations. The initial average error for the unregistered images
was 10.6 pixels for the trials that involved the ROI. On those
trials, the ensemble clustering and ensemble SSD methods
successfully registered all the images. The pairwise clustering
method failed on 686 (22%) of the registrations, while FLIRT’s
normalized correlation registration method failed on only

Fig. 7. Initial misregstration for a case on which the pairwise clustering method
failed. The large portion of the background of image “b” inside the ROI creates
a cluster near the “a”-axis in the JISP that distracts the Gaussian component and
causes the registration to diverge.

one. Of the successful cases, the mean error was 0.028 for
the ensemble clustering method, 0.035 for the ensemble SSD
method, 0.046 for the pairwise clustering method, and 0.12
for FLIRT. These results suggest a number of things. 1) When
compared to the pairwise clustering method, FLIRT is quite a
robust pairwise registration method. 2) The ensemble methods
(clustering and SSD) avoided all the failures that the pairwise
clustering methods encountered. 3) The error was substantially
lower for the ensemble methods than for FLIRT.

The cases that failed in the pairwise clustering method were
those where the initial misregistration was sufficiently large to
cause the solution to diverge. Fig. 7(a) shows one such initial
displacement. The image labeled “b” in the figure was displaced
to the right far enough that its background filled a significant
part of the ROI (which is fixed in relation to image “a”). This
region forms a cluster in the JISP along the “a”-axis, which
the Gaussian component automatically models [as shown in
Fig. 7(b)]. Then, moving image “b” further to the right rein-
forces that erroneous cluster, and causes the solution to diverge
until only the background of “b” is inside the ROI. We do not
observe this phenomenon during the ensemble registration be-
cause the erroneous clusters are scattered incoherently; they es-
sentially cancel each other out.

For the trials that used the entire image for registration, the
initial average error was 11.2 pixels, and all four methods cor-
rectly registered all the images. There were differences, how-
ever, in the accuracy. The mean error for the ensemble clustering
and ensemble SSD registration methods were 0.022 and 0.023
pixels (respectively). The pairwise clustering method was only
slightly less accurate, with a mean error of 0.024 pixels. The nor-
malized correlation registration of FLIRT yielded a mean error
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TABLE I
AVERAGE ERROR FOR 3-D ENSEMBLE (RIRE). INITIAL AVERAGE ERROR WAS 6.2 PIXELS

Fig. 8. Three-dimensional joint intensity scatter plot (stereo pair) and corresponding Gaussian components for the 3-D registration test. Note that only three of
the five dimensions of the JISP are plotted. To view the stereo pair, hold the page approximately 30 cm from your face and have your left eye focus on the left plot,
and your right eye focus on the right plot. You might find it helpful to place a piece of paper vertically between the plots so that your left eye cannot see the right
image, and your right eye cannot see the left image.

of 0.087, almost four times larger than the error exhibited by the
ensemble clustering registration method.

B. Three-Dimensional

The results for the 3-D registration test, using the RIRE en-
semble, are shown in Table I. The initial average error for the un-
registered images was 6.2 pixels. Both pairwise methods were
less accurate than the ensemble method. The ensemble clus-
tering method successfully registered the entire set of images,
with the exception of what appears to be a slight misregistration
of the PET image.

Fig. 8 plots three of the five dimensions of the JISP as a stereo
pair (see the figure caption for instructions on how to view the
stereo pair). That is, only the CT, PET and MRI-T2 intensi-
ties are represented in the scatter plot; the other two dimensions
of the space—corresponding to MRI-PD and MRI-T1—are not
shown in the figure even though they were used in the reg-
istration process. The figure also includes a representation of
the Gaussian components derived by the clustering registration
process, each drawn as an ellipse that indicates its location and
covariance. Notice how the six ellipses fit the data, collectively
acting as a density estimator. Bear in mind that the Gaussian
components are scalar functions in a 5-D space, so our 2-D el-
lipses drawn in 3-D express only part of the full picture. In par-
ticular, each ellipse is drawn to indicate the covariance in the
plane of largest variation. The 2-D ellipse is drawn in 5-D and
then projected onto the 3-D subspace depicted in the figure.

Each point in the scatter plot maintains a fractional member-
ship to each of the Gaussian components. Using (6), we can
compute , the membership of pixel to Gaussian compo-
nent . Hence, once the registration method is complete and the

GMM is stable, we can view the spatial distribution of the in-
fluence of a chosen Gaussian component by creating an image
of for a fixed value of . We call this image the member-
ship map for component . Brighter regions show pixels that
are strongly linked to component . The six membership maps
corresponding to Fig. 8 are shown in Fig. 9. In the figure, one
can see that the different Gaussian components model coherent
structures in the image.

C. Satellite

Out of the 300 pairwise registrations (ten trials, each with 30
registration pairs), the initial average error for the unregistered
images was 15.9 pixels. The ensemble clustering registration
method failed on 20 of them. The pairwise clustering method
failed on 150 pairs (50%), and FLIRT’s correlation ratio method
failed on 37 of the pairs (12%). It is worth noting that the 20
misregistration cases for the ensemble method were the result
of only two registration failures. In each of two trials, one of the
six images failed to converge to the other five (and vice versa),
and was thus recorded as ten misregistered image pairs. Of the
successful cases, the ensemble clustering method had a mean
error of 0.31, while the pairwise clustering method and FLIRT’s
CR method reported 0.65 and 0.41, respectively.

D. Variable Illumination

The results for the variable illumination experiment (in-
volving the face images) are shown in Table II. The initial
average error for the unregistered images was 20.3 pixels. As
one would expect, the pairwise methods had a great deal of
difficulty registering images with vastly different illumination
conditions. For example, image F1 is illuminated from the left,
while F5 is illuminated from the right. When registering F1
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Fig. 9. Membership maps for the 3-D registration test. The scatter plot is the same as shown in Fig. 8. For each Gaussian component, we also show its membership
map, an image representation of � for a fixed Gaussian component �. The membership maps show that each Gaussian component models a coherent set of pixels.
Starting from the top-right and moving clockwise, the membership maps roughly delineate bone, muscle/fat, skin, background (showing only the part inside the
ROI), eyeballs, and brain.

TABLE II
AVERAGE ERROR FOR VARIABLE ILLUMINATION ENSEMBLE (FACE). INITIAL AVERAGE ERROR WAS 20.3 PIXELS

and F5, the mean error was 41 pixels for FLIRT (using NMI
with 64 intensity bins), and 36 pixels for the pairwise clustering
method. However, the ensemble clustering registration method
had a mean average pixel displacement of only 2.8 pixels for
those two images. As one would expect, the ensemble SSD
method did not perform well on this dataset.

Interestingly, the pairwise methods seemed to do better reg-
istering the extreme images (i.e., F1 with F5) than registering
images that were two conditions apart (i.e., F1 with F3, F2 with
F4, or F3 with F5). This effect might stem from the fact that
images with overlapping regions of illumination have more lat-
itude to wander away from the correct solution, while extreme
images are more constrained by the sharp shadow border down
the centre of the face.

E. Disjoint Content

The initial average error for the unregistered phantom trials
was 10.0 pixels. As Table III shows, a number of image pairs in
the multisensor phantom proved to be very difficult for the pair-
wise methods to register accurately. The most notable case is
the pairwise registration of A-to-C, and B-to-D. In those image
pairs, none of the smaller ellipses are common between the two
images. That is, neither of the two ellipses in A are visible in
C (and vice versa). It should come as no surprise, then, that the
pairwise methods exhibited large errors for those image pairs.
However, the ensemble clustering registration method success-
fully registered all the trials. Again, the ensemble SSD method
was not successful on this dataset.

TABLE III
AVERAGE ERROR FOR DISJOINT CONTENT ENSEMBLE (MULTIMODAL

PHANTOM). INITIAL AVERAGE ERROR WAS 10.0 PIXELS

TABLE IV
EFFECT OF VARYING THE NUMBER OF GAUSSIAN COMPONENTS,

� , IN THE ENSEMBLE CLUSTERING METHOD

F. Number of Gaussian Components

Table IV shows the results of running the ensemble clus-
tering method using different numbers of Gaussian components.
The mean error (over ten trials) suggests that , the number of
Gaussian components, plays a significant role in the success—or
failure—of the ensemble clustering registration method. With
too few components (3 instead of 5), the registration success rate
declined from 100% to 63.3%. Having too many components
also reduced the success rate, though only slightly (93.3%).
However, the number of components did not seem to have a sig-
nificant impact on the accuracy of the trials that did converge.
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Fig. 10. Sample solutions for varying � , the number of Gaussian components. Overlaid images are shown beside the corresponding JISP with Gaussian compo-
nents indicated by ellipses. The cases shown in (b) and (e) did not converge to the correct solution, while the others did. (a) � � �, ����� � ����; (b) � � �,
����� � 	
�	; (c) � � �, ����� � ���
; (d) � � 
, ����� � 	�	�; (e) � � 
, ����� � ���.

Fig. 10 shows some more results for this experiment. The
phantom dataset is particularly informative because we know
that there are five different clusters in the 4-D joint intensity
space, since there are five regions in total: four small ellipses,
and the large embedding circle. Note that the black background
is outside the ROI, so does not form a cluster.

The cases shown in Fig. 10(a) and (b) were run with only three
Gaussian components, and the scatter plots show that single
components were forced to stretch to model multiple clusters.
The case shown in (b) did not converge to the correct solution;
one component was stretched enough to enable stable modeling
of many clusters, some of which correspond to misregistered
image content. The case shown in (c) was run with five Gaussian
components, each one accurately modeling one of the JISP clus-
ters. Cases (d) and (e) were each run with eight components.
While the case in (d) converged to the correct solution, the ad-
ditional components facilitated the modeling of partial-volume
artifacts (caused by interpolation at the high-contrast edges).
This accommodation allowed some pixels to deviate from their
proper cluster, and instead rest in the corridor modeled by the
additional Gaussian component, thereby increasing the error
slightly. Case (e) did not converge to the correct solution. One
of the Gaussian components (the largest in the JISP) was avail-
able to accommodate the misregistered ellipse (indicated by the
arrow in the image). As a result, what should have been two
clusters in the JISP (one for the ellipse, and one for the embed-

ding circle) was split into four co-planar clusters, as shown by
the four arrows in the JISP.

It should be noted that the cluster-modeling hiccups observed
in Fig. 10 can be observed with any number of Gaussian com-
ponents. For example, some cases showed stretching of
a Gaussian component to model two clusters, thereby freeing
up one component to model a partial-volume branch [similar to
that shown in (d)]. However, these variations do not necessarily
devastate the final result.

VI. DISCUSSION

Density estimation of the JISP realizes a combination of the
advantages from mutual information (MI) and least-squares
(LS). Our method can be viewed as a parametric regression
method, with the number of parameters dictated by the number
of Gaussian components. At one end of the spectrum, a single
Gaussian component with infinite covariance along one direc-
tion, and unit covariance along all other directions, is equivalent
to least squares. From there, more and more modeling com-
ponents can be added, each increasing the flexibility of the
model. There is a strong connection between our method and
entropy-based measures such as MI. Consider, for example,
covering the joint intensity space with a grid of Gaussian
components. The weights of the components are comparable
to the frequencies stored in histogram bins. We plan to fully
explore this link in a future paper.
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Fig. 11. Rudimentary segmentation of the RIRE dataset. In (a), the pixels are
colour-coded according to their memberships to the ten Gaussian components
that were derived during registration. For reference, the corresponding T2 and
CT slices are shown in (b) and (c). (a) Segmentation; (b) T2-MRI; (c) CT.

From our results, it is clear that the strength of our method
stems from the concept of ensemble registration, and not from
the clustering method itself. Indeed, the pairwise clustering
method was less successful than FLIRT in many of the exper-
iments, suggesting that there might be room for improvement.
In particular, we could either improve the optimization search
process for clustering registration, or improve our density
estimation, perhaps incorporating a GMM with a “catch all”
component to explain outliers.

The clustering registration method scales linearly with the
number of Gaussian components , and the number of pixels

. However, the computation time is proportional to the
cube of the number of motion parameters , and the cube
of the number of images ) because of the matrix products in
(17). More precisely, the method has computational complexity

.
In addition to registering an ensemble, our method inherently

offers a rudimentary segmentation. As shown in Fig. 9, member-
ship maps tend to reflect regions in the image that contain con-
sistent intensity combinations across the ensemble of images. In
medical imaging, tissue types tend to be manifested as different,
but consistent, intensities among the different imaging modal-
ities (e.g., CT and MRI). The notion can even be extended to
tissue function if a functional modality is included, such as PET.
Fig. 11 shows a segmentation that resulted from registering the
RIRE ensemble using ten Gaussian components. Each compo-
nent was given its own colour, and Fig. 11 shows the superposi-
tion of all ten tissue classes. This concept was first pointed out
by Leventon and Grimson [8], where they generated a segmen-
tation based on a GMM of a 2-D joint histogram. The difference
here is that we generate our GMM density estimation as part of
our registration procedure, while Leventon and Grimson gener-
ated their GMM based on images that were already registered.
Furthermore, our segmentation has the benefit of a full ensemble
of images, while the method proposed in [8] considers only two
images.

In this paper, we have not considered strategies for increasing
or decreasing the number of Gaussian components during reg-
istration. However, we conjecture that the number of Gaussian
components can be used in a manner similar to a multiresolu-
tion strategy; starting with fewer components will help guide
the registration process toward the global optimum, while in-
creasing the number of components as convergence progresses
can improve accuracy. We plan to investigate the impact of such
techniques.

Prior knowledge could also be applied when choosing the
number of Gaussian components. In fact, some applications

might even permit a standard GMM as a starting point; such a
strategy was demonstrated in [22]. Alternatively, one could em-
ploy a graph-theoretic approach such as normalized min-cuts
[23] to determine an initial clustering of the scatter plot.

VII. CONCLUSION

Ensemble registration is the process of registering multiple
images together simultaneously within a single optimization
problem. This approach for multisensor registration was not
previously feasible because the high-dimensional joint his-
togram was too large to store in memory. Instead, we use a
Gaussian mixture model to perform density estimation of the
content in the joint intensity space. This GMM model naturally
leads to a cost function based on likelihood.

We formulate an optimization problem that has two aspects,
developing solutions for the density estimation and motion pa-
rameters in synchrony. Within each iteration, we hold the mo-
tion parameters fixed and update the density estimation param-
eters, and then hold the density estimation parameters fixed and
update the motion parameters.

Our experiments show that ensemble registration is more ro-
bust than pairwise registration. The content shared by one pair
of images might be quite different from the content shared by
another pair of images. The key is to leverage all these corre-
spondences simultaneously. Ensemble registration does exactly
that, implicitly coupling the content of all the images into one
optimization problem.

The experiments also show that ensemble registration is more
accurate than pairwise registration. Not only does ensemble
registration offer more image correspondences (as described
above), but it is also less susceptible to noise. This benefit stems
from the fact that the estimate of an entity gets more accurate
as you include more observations. Adding more images yields
greater statistical confidence.

The density estimate generated by our clustering registration
method can be viewed as a rudimentary segmentation of the en-
semble. This idea offers promising future work in segmentation,
labeling pixels and adaptively adjusting the cluters as the align-
ment is performed.

Our clustering registration method can be used for nonrigid
registration as long as the motion transformation can be param-
eterized (in the variable ). Examples of nonrigid parametric
transformation models include B-splines, Fourier basis func-
tions, and elastic deformation.
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