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1 Introduction

Modeling problems in this article are addressed mainly from the computational
viewpoint. The primary concerns are how to define an objective function for
the optimal solution for an image analysis problem and how to find the optimal
solution. The reason for defining the solution in an optimization sense is due
to various uncertainties in imaging processes. It may be difficult to find the
perfect solution, so we usually look for an optimal one in the sense that an
objective, into which constraints are encoded, is optimized.

Contextual constraints are ultimately necessary in the interpretation of visual
information. A scene is understood in the spatial and visual context of the
objects in it; the objects are recognized in the context of object features at
a lower level representation; the object features are identified based on the
context of primitives at an even lower level; and the primitives are extracted
in the context of image pixels at the lowest level of abstraction. The use of
contextual constraints is indispensable for a capable image analysis system.

Markov random field (MRF') theory provides a convenient and consistent way
for modeling context dependent entities such as image pixels and correlated
features. This is achieved through characterizing mutual influences among
such entities using conditional MRF distributions. The practical use of MRF
models is largely ascribed to a theorem stating the equivalence between MRF's
and Gibbs distributions which was established by Hammersley and Clifford
[55] and further developed by Besag [12]. This is because the joint distribution
is required in most applications but deriving the joint distribution from condi-
tional distributions turns out to be very difficult for MRFs. The MRFs-Gibbs
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equivalence theorem points out that the joint distribution of an MRF is a
Gibbs distribution, the latter taking a simple form. This gives us a not only
mathematically sound but also mathematically tractable means for statistical
image analysis [50,46]. From the computational perspective, the local prop-
erty of MRF's leads to algorithms which can be implemented in a local and
massively parallel manner. Furthermore, MRF theory provides a foundation
for multi-resolution computation [49].

For the above reasons, MRF's have been widely employed to solve image analy-
sis problems at all levels. Most of the MRF models are for low level processing.
These include image restoration and segmentation
[61,56,23,36,46,21,27,85,89,92], surface reconstruction [8,53,98,17,99,24,43),
edge detection [103,131,44], texture analysis [23,30,40,34,35], optical flow
[64,63,78,118,60], shape from X [9,68], active contours [74,3,123], deformable
templates [97,95,70] data fusion [26], visual integration, and perceptual organi-
zation [2,125]. The use of MRFs in high level, such as for object matching and
recognition, has also emerged in recent years [100,29,51,4,42,76,28,87,90,91].

MRF theory tells us how to model the a priori probability of contextual depen-
dent patterns, such as textures and object features. A particular MRF model
favors the class of patterns encoded by itself by associating them with larger
probabilities than other pattern classes. MRF theory is often used in con-
junction with statistical decision and estimation theories, so as to formulate
objective functions in terms of established optimality principles. Mazimum a
posteriori (MAP) probability is one of the most popular statistical criteria for
optimality and in fact, has been the most popular choice in MRF modeling
for image analysis. MRFs and the MAP criterion together give rise to the
MAP-MRF framework adopted in this book as well as in most other MRF
works. This framework, advocated by Geman and Geman (1984) [46] and oth-
ers, enables us to develop algorithms for a variety of problems systematically
using rational principles rather than relying on ad hoc heuristics [22,96,88].

An objective function is completely specified by its form, i.e. the paramet-
ric family, and the involved parameters. In the MAP-MRF framework, the
objective is the joint posterior probability of the MRF labels. Its form and
parameters are determined, in turn, according to the Bayes formula, by those
of the joint prior distribution of the labels and the conditional probability of
the observed data. “A particular MRF model” referred in the previous para-
graph means a particular probability function (of patterns) specified by the
functional form and the parameters. Two major parts of the MAP-MRF mod-
eling is to derive the form of the posterior distribution and to determine the
parameters in it, so as to completely define the posterior probability. Another
important part is to design optimization algorithms for finding the maximum
of the posterior distribution.



This article, which is an excerpt from Chapter 1 of [88], describes fundamentals
of MRF modeling in image analysis. Basic definitions, important theoretical
results, and modeling approaches are introduced. The interested reader is re-
ferred to [88] for various applications of MRF modeling in image analysis and
related issues.

2 Image Labeling

Many image analysis problems can be posed as labeling problems; the solution
to a problem is represented by a set of labels assigned to image pixels or
features. Labeling is also a natural representation for the study of MRF's [12].

2.1 Sites and Labels

A labeling problem is specified in terms of a set of sites and a set of labels. Let
S index a discrete set of m sites

S={1,...,m} (1)

in which 1,...,m are indices. A site often represents a point or a region in the
Euclidean space such as an image pixel or an image feature such as a corner
point, a line segment or a surface patch. A set of sites may be categorized
in terms of their “regularity”. Sites on a lattice are considered as spatially
reqular. A rectangular lattice for a 2D image of size n X n can be denoted by

S={(i,j) | 1<i,j<n} (2)

Its elements correspond to the locations at which an image is sampled. Sites
which do not present spatial regularity are considered as irregular. This is the
usual case corresponding to features extracted from images at a more abstract
level, such as the detected corners and lines.

We normally treat the sites in MRF models as un-ordered. For an n x n image,
pixel (i, 7) can be conveniently re-indexed by a single number k& where k£ takes
on values in {1,2, ..., m} with m = n x n. This notation of single-number site
index is used in this article also for images unless an elaboration is necessary.
The inter-relationship between sites is maintained by a so-called neighborhood
system (to be introduced later).

A label is an event that may happen to a site. Let £ be a set of labels. A label
set may be categorized as being continuous or discrete. In the continuous case,



a label set may correspond to the real line R or a compact interval of it

L.=[X;, Xp] CR (3)

An example is the dynamic range for an analog pixel intensity. It is also
possible that a continuous label takes a vector or matrix value, for example,
L, = R**® where a and b are dimensions.

In the discrete case, a label assumes a discrete value in a set of M labels

‘C’d:{gla"':EM} (4)

or simply

Ed:{la""M} (5)

In edge detection, for example, the label set is £ ={edge,non-edge}.

Besides the continuity, another essential property of a label set is the ordering
of the labels. For example, elements in the continuous label set R (the real
space) can be ordered by the relation “smaller than”. When a discrete set, say
{0,...,255}, represents the quantized values of intensities, it is an ordered set
because for intensity values we have 0 < 1 < 2 < ... < 255. When it denotes
256 different symbols such as texture types, it is considered to be un-ordered
unless an artificial ordering is imposed.

For an ordered label set, a numerical (quantitative) measure of similarity be-
tween any two labels can usually be defined. For an unordered label set, a sim-
ilarity measure is symbolic (qualitative), typically taking a value on “equal” or
“non-equal”. Label ordering and similarity not only categorize labeling prob-
lems but more importantly, affect our choices of labeling algorithms and hence
the computational complexity.

2.2 The Labeling Problem

The labeling problem is to assign a label from the label set £ to each of the
sites in §. Edge detection in an image, for example, is to assign a label f; from
the set £ ={edge,non-edge} to site i € S where elements in S index the image
pixels. The set

f=A{fi-- fu} (6)



is called a labeling of the sites in S in terms of the labels in £. When each site
is assigned a unique label, f; = f(7) can be regarded as a function with domain
S and image L. Because the support of the function is the whole domain S,
it is a mapping from S to L, that is,

f:§—CL (7)

Mappings with continuous and discrete label sets are demonstrated in Figure 1.
A labeling is also called a coloring in mathematical programming.

In the terminology of random fields (cf. Section 3.2), a labeling is called a
configuration. In image analysis, a configuration or labeling can correspond to
an image, an edge map, an interpretation of image features in terms of object
features, or a pose transformation, and so on.

When all the sites have the same label set £, the set of all possible labelings,
that is, the configuration space, is the following Cartesian product

F=LxL--xL=L" (8)
~—_—————

m times

where m is the size of S. In image restoration, for example, £ contains ad-
missible pixel values which are common to all pixel sites in S and F defines
all admissible images. When £ = R is the real line, F = R™ is the m dimen-
sional real space. When L is a discrete set, the size of F is combinatorial. For
a problem with m sites and M labels, for example, there exist a total number
of M™ possible configurations in F.

In certain circumstances, admissible labels may not be common to all the
sites. Consider, for example, feature based object matching. Supposing there
are three types of features: points, lines and regions, then a constraint is that
a certain type of image features can be labeled or interpreted in terms of the
same type of model features. Therefore, the admissible label for any site is
restricted to one of the three types. In an extreme case, every site 7 may have
its own admissible set, £;, of labels and this gives the following configuration
space

F:£1X£2"'X£m (9)

This imposes constraints on the search for wanted configurations.



Fig. 1. A labeling of sites can be considered as a mapping from the set of sites S to
the set of labels £. The above shows mappings with continuous label set (left) and
discrete label set (right).

2.8 Labeling Problems in Image Analysis

In terms of the regularity and the continuity, we may classify a labeling prob-
lem into one of the following four categories:

LP1I: Regular sites with continuous labels.
LP2: Regular sites with discrete labels.
LP3: Irregular sites with discrete labels.
LPj: Trregular sites with continuous labels.

The first two categories characterize low level processing performed on ob-
served images and the other two do high level processing on extracted token
features. The following describes some typical problems in terms of the four
categories.

Restoration or smoothing of images having continuous pixel values is an LP1.
The set S of sites corresponds to image pixels and the set £ of labels is a real
interval. The restoration is to estimate the true image signal from a degraded
or noise-corrupted image.

Restoration of binary or multi-level images is an LP2. Similar to the continuous
restoration, the aim is also to estimate the true image signal from the input
image. The difference is that each pixel in the resulting image here assumes a
discrete value and thus £ in this case is a set of discrete labels.



Region segmentation is an LP2. It partitions an observation image into mu-
tually exclusive regions, each of which has some uniform and homogeneous
properties whose values are significantly different from those of the neighbor-
ing regions. The property can be, for example, grey tone, color or texture.
Pixels within each region are assigned a unique label.

The prior assumption in the above problems is that the signal is smooth or
piecewise smooth. This is complementary to the assumption of abrupt changes
made for edge detection.

Edge detection is also an LP2. Each edge site, located between two neighboring
pixels, is assigned a label in {edge, non-edge} if there is a significant difference
between the two pixels. Continuous restoration with discontinuities can be
viewed as a combination of LP1 and LP2.

Perceptual grouping [94] is an LP3. The sites usually correspond to initially
segmented features (points, lines and regions) which are irregularly arranged.
The fragmentary features are to be organized into perceptually more sig-
nificant features. Between each pair of the features is assigned a label in
{connected,disconnected}, indicating whether the two features should be linked.

Feature-based object matching and recognition is an LP3. Each site indexes an
image feature such as a point, a line segment or a region. Labels are discrete in
nature and each of them indexes a model feature. The resulting configuration
is a mapping from the image features to those of a model object.

Pose estimation from a set of point correspondences might be formulated as
an LP4. A site is a given correspondence. A label represents an admissible
(orthogonal, affine or perspective) transformation. A prior (unary) constraint
is that the label of transformation itself must be orthogonal, affine or perspec-
tive. A mutual constraint is that the labels fi,-- -, f,, should be close to each
other to form a consistent transformation.

For a discrete labeling problem of m sites and M labels, there exist a total
number of M™ possible labelings. For a continuous labeling problem, there
are an infinite number of them. However, among all labelings, there are only
a small number of them which are good solutions and may be just a few
are optimal in terms of a criterion. How to define the optimal solution for
a problem and how to find it are two important topics in the optimization
approach to visual labeling.



2.4 Labeling with Contextual Constraints

The use of contextual information is ultimately indispensable in image un-
derstanding [107]. The use of contextual information in image analysis and
pattern recognition dates back to [25,1]. In [25] character recognition is con-
sidered as a statistical decision problem. A nearest neighborhood dependence
of pixels on an image lattice is obtained by going beyond the assumption of
statistical independence. Information on the nearest neighborhood is used to
calculate conditional probabilities. That system also includes parameter es-
timation from sample characters; recognition is done by using the estimated
parameters. The work by [1] is probably the earliest work using the Markov
assumption for pattern recognition. There, a Markov mesh model is used to
reduce the number of parameters required for the processing using contextual
constraints. Fu and Yu (1980) use MRF's defined on an image lattice to develop
a class of pattern classifiers for remote sensing image classification. Another
development of context-based models is relaxation labeling (RL) [115]. RL
is a class of iterative procedures which use contextual constraints to reduce
ambiguities in image analysis. A theory is given in [57] to explain RL from a
Bayes point of view.

In probability terms, contextual constraints may be expressed locally in terms
of conditional probabilities P(f; | {fi}), where {f»} denotes the set of labels
at the other sites 7' # i, or globally as the joint probability P(f). Because local
information is more directly observed, it is normal that a global inference is
made based on local properties.

In situations where labels are independent of one another (no context), the
joint probability is the product of the local ones

P(f)= 1] P(f:) (10)

1€S

The above implies conditional independence

P(fi | {fe}) =P(f;) & #1i (11)

Therefore, a global labeling f can be computed by considering each label f;
locally. This is advantageous for problem solving.

In the presence of context, labels are mutually dependent. The simple relation-
ships expressed in (10) and (11) do not hold any more. How to make a global
inference using local information becomes a non-trivial task. Markov random
field theory provides a mathematical foundation for solving this problem.



3 Markov Random Fields and Gibbs Distributions

Markov random field theory is a branch of probability theory for analyzing
the spatial or contextual dependencies of physical phenomena. It is used in
visual labeling to establish probabilistic distributions of interacting labels.
This section introduces notations and results relevant to image analysis.

3.1 Neighborhood System and Cliques

The sites in S are related to one another via a neighborhood system. A neigh-
borhood system for S is defined as

N ={N, | Vie S} (12)

where N is the set of sites neighboring i. The neighboring relationship has
the following properties:

(1) a site is not neighboring to itself: i & N;
(2) the neighboring relationship is mutual: i € Ny <= i’ € N,.

For a regular lattice S, the set of neighbors of i is defined as the set of sites
within a radius of \/r from i

N; = {i' € S| [dist(pixel,, pixel,)]* < 7, i’ # i} (13)

where dist(A, B) denotes the Euclidean distance between A and B and r
takes an integer value. Note that sites at or near the boundaries have fewer
neighbors.

In the first order neighborhood system, also called the 4-neighborhood system,
every (interior) site has four neighbors, as shown in Fig.2(a) where z denotes
the considered site and 0’s its neighbors. In the second order neighborhood
system, also called the 8-neighborhood system, there are eight neighbors for
every (interior) site, as shown in Fig.2(b). The numbers n = 1,...,5 shown
in Fig.2(c) indicate the outermost neighboring sites in the n-th order neigh-
borhood system. The shape of a neighbor set may be described as the hull
enclosing all the sites in the set.

When the ordering of the elements in S is specified, the neighbor set can be
determined more explicitly. For example, when & = {1,...,m} is an ordered
set of sites and its elements index the pixels of a 1D image, an interior site
i € {2,...,m—1} has two nearest neighbors, N; = {i—1,i+1}, and a site at the
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Fig. 2. Neighborhood and cliques on a lattice of regular sites.
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Fig. 3. Neighborhood and cliques on a set of irregular sites.

boundaries (the two ends) has one neighbor each, N7 = {2} and N, = {m—1}.
When the sites in a regular rectangular lattice S = {(3,7) | 1 < 4,5 < n}
correspond to the pixels of an n X n image in the 2D plane, an internal site
(4, ) has four nearest neighbors as N; ; = {(i—1, j), (i+1, 5), (¢, j—1), (¢, j+1)},
a site at a boundary has three and a site at the corners has two.

For an irregular S, the neighbor set N; of 7 is defined in the same way as (13)
to comprise nearby sites within the radius of /7

N; = {i' € S | [dist(featurey, feature;)]* < r, i’ # i} (14)
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The dist(A, B) function needs to be defined appropriately for non-point fea-
tures. Alternatively, the neighborhood may be defined by the Delaunay trian-
gulation,® or its dual, the Voronoi polygons, of the sites [13]. In general, the
neighbor sets N; for an irregular S have varying shapes and sizes. Irregular
sites and their neighborhoods are illustrated in Fig.3(a). The neighborhood
areas for sites ¢ and j are marked by the dotted circles. The sizes of the two
neighbor sets are #N; = 3 and #N; = 2.

The pair (S,N) = G constitutes a graph in the usual sense; S contains the
nodes and NV determines the links between the nodes according to the neigh-
boring relationship. A clique ¢ for (S,N) is defined as a subset of sites in
S. It consists either of a single site ¢ = {i}, or of a pair of neighboring sites
¢ = {i,7'}, or of a triple of neighboring sites ¢ = {4,4',7"}, and so on. The
collections of single-site, pair-site and triple-site cliques will be denoted by Ci,
Cy and C3, respectively, where

C=1{i|ieS)} (15)

C={{i,i'} | i eN;, i€ S8} (16)

and

Cs = {{i,i,i"} | i,7,7" € S are neighbors to one another} (17)

Note that the sites in a clique are ordered, and {i,i'} is not the same clique
as {7, 1}, and so on. The collection of all cliques for (S, N) is

C=CUCUCz--- (18)

¢,

where “ -.” denotes possible sets of larger cliques.

The type of a clique for (S, ') of a regular lattice is determined by its size,
shape and orientation. Fig.2(d)-(h) show clique types for the first and sec-
ond order neighborhood systems for a lattice. The single-site and horizontal
and vertical pair-site cliques in (d) and (e) are all those for the first order
neighborhood system (a). The clique types for the second order neighborhood
system (b) include not only those in (d) and (e) but also diagonal pair-site
cliques (f) and triple-site (g) and quadruple-site (h) cliques. As the order of
the neighborhood system increases, the number of cliques grow rapidly and so
the involved computational expenses.

3 Algorithms for constructing a Delaunay triangulation in k£ > 2 dimensional space
can be found in [18,133].
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Cliques for irregular sites do not have fixed shapes as those for a regular lattice.
Therefore, their types are essentially depicted by the number of involved sites.
Consider the four sites f, i, m and n within the circle in Fig.3(a) in which m
and n are supposed to be neighbors to each other and so are n and f. Then
the single-site, pair-site and triple-site cliques associated with this set of sites
are shown in Fig.3(b). The set {m, 1, f} does not form a clique because f and
m are not neighbors.

3.2 Markov Random Fields

Let F = {Fy,...,Fy} be a family of random variables defined on the set
S, in which each random variable F; takes a value f; in £. The family F' is
called a random field. We use the notation F; = f; to denote the event that
F; takes the value f; and the notation (Fy = fi, ..., F, = fn) to denote
the joint event. For simplicity, a joint event is abbreviated as F' = f where
f=Af1,---, fm} is a configuration of F, corresponding to a realization of the
field. For a discrete label set £, the probability that random variable F; takes
the value f; is denoted P(F; = f;), abbreviated P(f;) unless there is a need
to elaborate the expressions, and the joint probability is denoted P(F = f) =
P(Fy = fi1,...,F, = fn) and abbreviated P(f). For a continuous £, we have
probability density functions (p.d.f.’s), p(F; = fi) and p(F = f).

F is said to be a Markov random field on & with respect to a neighborhood
system N if and only if the following two conditions are satisfied:

P(f)y>0, VfeF (positivity) (19)

P(fi | fs—@y) = P(fi | fan) (Markovianity) — (20)

where S — {i} is the set difference, fs_;} denotes the set of labels at the sites
in § — {7} and

fxo =A{fe |1 € N3} (21)

stands for the set of labels at the sites neighboring 7. The positivity is assumed
for some technical reasons and can usually be satisfied in practice. For exam-
ple, when the positivity condition is satisfied, the joint probability P(f) of
any random field is uniquely determined by its local conditional probabilities
[12]. The Markovianity depicts the local characteristics of F'. In MRFs, only
neighboring labels have direct interactions with each other. If we choose the
largest neighborhood in which the neighbors of any sites include all other sites,
then any F'is an MRF with respect to such a neighborhood system.

12



An MRF can have other properties such as homogeneity and isotropy. It is
said to be homogeneous if P(f; | fu;) is independent of the relative location
of the site ¢ in S. So, for a homogeneous MRF, if f; = f; and fu; = fu;, there

will be P(fi|fa;) = P(fjlfn;) even if i # j. The isotropy will be illustrated in
the next subsection with clique potentials.

In modeling some problems, we may need to use several coupled MRF's; each
of the MRF's is defined on one set of sites, and the sites due to different MRF's
are spatially interwoven. For example, in the related tasks of image restoration
and edge detection, two MRF's, one for pixel values ({f;}) and the other for
edge values ({l/;;}), can be defined on the image lattice and its dual lattice,
respectively. They are coupled to each other e.g. via conditional probability

P(fi | fir,ligr)-

The concept of MRFs is a generalization of that of Markov processes (MPs)
which are widely used in sequence analysis. An MP is defined on a domain
of time rather than space. It is a sequence (chain) of random variables {...,
Fi, ..., F, ...} defined on the time indices {...,1,...,m,...}. An n-th order
unilateral MP satisfies

P(fi| ..., fice, fic1) = P(fi | fi=1s---5 fizn) (22)

A bilateral or non-causal MP depends not only on the past but also on the
future. An n-th order bilateral MP satisfies

P(fz | ---afi—2;fi—1:fi+1:fi+2:---) :P(fz | fi—|—na---afi+1afi—1:---afi—n)
(23)

It is generalized into MRFs when the time indices are considered as spatial
indices.

There are two approaches for specifying an MRF, that in terms of the condi-
tional probabilities P(f; | fu;) and that in terms of the joint probability P(f).
Besag (1974) argues for the joint probability approach in view of the disad-
vantages of the conditional probability approach: Firstly, no obvious method
is available for deducing the joint probability from the associated conditional
probabilities. Secondly, the conditional probabilities themselves are subject
to some non-obvious and highly restrictive consistency conditions. Thirdly,
the natural specification of an equilibrium of statistical process is in terms of
the joint probability rather than the conditional distribution of the variables.
Fortunately, a theoretical result about the equivalence between Markov ran-
dom fields and Gibbs distributions [55,12] provides a mathematically tractable
means of specifying the joint probability of an MRF.

13



3.8 Gibbs Random Fields

A set of random variables F' is said to be a Gibbs random field (GRF) on §
with respect to A if and only if its configurations obey a Gibbs distribution.
A Gibbs distribution takes the following form

P(f)=2" x e 1) (24)
where
Z=3 el (25)
fEF

is a normalizing constant called the partition function, T is a constant called
the temperature which shall be assumed to be 1 unless otherwise stated, and
U(f) is the energy function. The energy

U(f) =2 Ve(f) (26)

ceC

is a sum of clique potentials V,(f) over all possible cliques C. The value of V_(f)
depends on the local configuration on the clique ¢. Obviously, the Gaussian
distribution is a special member of this Gibbs distribution family.

A GREF is said to be homogeneous if V,.(f) is independent of the relative po-
sition of the clique ¢ in S. It is said to be isotropic if V, is independent of the
orientation of c. It is considerably simpler to specify a GRF distribution if it is
homogeneous or isotropic than one without such properties. The homogeneity
is assumed in most MRF models for mathematical and computational conve-
nience. The isotropy is a property of direction-independent blob-like regions.

To calculate a Gibbs distribution, it is necessary to evaluate the partition
function Z which is the sum over all possible configurations in F. Since there
are a combinatorial number of elements in F for a discrete £, as illustrated in
Section 2.2, the evaluation is prohibitive even for problems of moderate sizes.
Several Approximation methods exist for solving this problem.

P(f) measures the probability of the occurrence of a particular configuration,
or “pattern”, f. The more probable configurations are those with lower ener-
gies. The temperature T controls the sharpness of the distribution. When the
temperature is high, all configurations tend to be equally distributed. Near
the zero temperature, the distribution concentrates around the global energy
minima. Given T and U(f), we can generate a class of “patterns” by sampling
the configuration space F according to P(f).

14



For discrete labeling problems, a clique potential V.(f) can be specified by
a number of parameters. For example, letting f. = (fi, fi, fir) be the local
configuration on a triple-clique ¢ = {i,7',i"}, f. takes a finite number of states
and therefore V,.(f) takes a finite number of values. For continuous labeling
problems, f, can vary continuously. In this case, V,(f) is a (possibly piecewise)
continuous function of f,.

Sometimes, it may be convenient to express the energy of a Gibbs distribution
as the sum of several terms, each ascribed to cliques of a certain size, that is,

U(f) = Z Vi(fi) + Z Va(fi, fir) + Z Va(fi, firs fir) + -+

{i1}eC1 {i,i' }€Co {2,!,i" }€C3
(27)

The above implies a homogeneous Gibbs distribution because Vi, V5 and V3
are independent of the locations of i, 7' and ¢”. For non-homogeneous Gibbs
distributions, the clique functions should be written as Vi (i, f;), Va(4, 7, fi, fir),
and so on.

An important special case is when only cliques of size up to two are considered.
In this case, the energy can also be written as

US) =Y Vilfi)+D. D Valfir fo) (28)

€S i€S i EN;

Note that in the second term on the RHS, {i,4'} and {¢,:} are two distinct
cliques in Cy because the sites in a clique are ordered. The conditional proba-
bility can be written as

(RS, atisi)]
P(fil fx) =

(29)
o U Dy, Vi)
fiec

3.4  Markov-Gibbs Equivalence

An MREF is characterized by its local property (the Markovianity) whereas a
GRF is characterized by its global property (the Gibbs distribution). The
Hammersley-Clifford theorem [55] establishes the equivalence of these two
types of properties. The theorem states that F' is an MRF on S with re-
spect to N if and only if F is a GRF on S with respect to N'. Many proofs of
the theorem exist, e.g. in [12,102,77].

A proof that a GRF is an MRF is given as follows. Let P(f) be a Gibbs
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distribution on S with respect to the neighborhood system A . Consider the
conditional probability

P(fi, fs—{i}) __ P{)
P(fs—1iy) Ypec P(f)

P(fi| fs-(iy) = (30)

where f' = {fi,..., fi—1, f,..., fm} is any configuration which agrees with f
at all sites except possibly i. Writing P(f) = Z7! x e~ e V) out gives?

e_ ECEC ‘/C(f)
Zf{ ei ZCGC ‘/C(f’)

P(fi| fs—iy) = (31)

Divide C into two set A and B with A consisting of cliques containing ¢ and
B cliques not containing 7. Then the above can be written as

[e* Leea Vc(f)] [e* EceBVc(f)]
5 ([ S ] Ee

P(fi| fs—@y) =

Because V.(f) = V.(f') for any clique ¢ that does not contain 7, e~ Yeen Velf)
cancels from both the numerator and denominator. Therefore, this probability
depends only on the potentials of the cliques containing 7,

e ZCEA Vc(f)
Zf{ e Deea Vel

P(fi| fs—giy) = (33)

that is, it depends on labels at ¢’s neighbors. This proves that a Gibbs random
field is a Markov random field. The proof that an MRF is a GRF is much
more involved; a result to be described in the next subsection, which is about
the unique GRF representation [52], provides such a proof.

The practical value of the theorem is that it provides a simple way of spec-
ifying the joint probability. One can specify the joint probability P(F = f)
by specifying the clique potential functions V,.(f) and choosing appropriate
potential functions for desired system behavior. In this way, he encodes the a
priori knowledge or preference about interactions between labels.

How to choose the forms and parameters of the potential functions for a proper
encoding of constraints is a major topic in MRF modeling. The forms of the
potential functions determine the form of the Gibbs distribution. When all

4 This also provides a formula for calculating the conditional probability
P(fi | fx;) = P(fi | fs—{s) from potential functions.
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the parameters involved in the potential functions are specified, the Gibbs
distribution is completely defined.

To calculate the joint probability of an MRF, which is a Gibbs distribution,
it is necessary to evaluate the partition function (25). Because it is the sum
over a combinatorial number of configurations in F, the computation is usually
intractable. The explicit evaluation can be avoided in maximum-probability
based MRF models when U(f) contains no unknown parameters, as we will see
subsequently. However, this is not true when the parameter estimation is also
a part of the problem. In the latter case, the energy function U(f) = U(f | 6)
is also a function of parameters 6 and so is the partition function Z = Z(6).
The evaluation of Z(6) is required. To circumvent the formidable difficulty
therein, the joint probability is often approximated in practice.

3.5 Normalized and Canonical Forms

It is known that the choices of clique potential functions for a specific MRF
are not unique; there may exist many equivalent choices which specify the
same Gibbs distribution. However, there exists a unique normalized potential,
called the canonical potential, for every MRF [52].

Let £ be a countable label set. A clique potential function V,(f) is said to
be normalized if V,(f) = 0 whenever for some i € ¢, f; takes a particular
value in £. The particular value can be any element in £, e.g. 0 in £ =
{0,1,..., M}. Griffeath (1976) [52] establishes the mathematical relationship
between an MRF distribution P(f) and the unique canonical representation
of clique potentials V. in the corresponding Gibbs distribution [52,77]. The
result is described below.

Let F' be arandom field on a finite set S with local characteristics P(f; | fs—{i}) =

P(fi | fa;)- Then F is a Gibbs field with canonical potential function defined
by the following:

Vi) =1° = (34)
) Soce(=1) U In P(f?) ¢ # ¢

where ¢ denotes the empty set, |c — b| is the number of elements in the set
c¢—band

. fiifieb (35)

0 otherwise
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is the configuration which agrees with f on set b but assigns the value 0 to all
sites outside of b. For nonempty ¢, the potential can also be obtained as

Vo(f) =X (=1 "InP(f] | fR) (36)

bCc

where 7 is any element in b. Such canonical potential function is unique for the
corresponding MRF. Using this result, the canonical V.(f) can be computed
if P(f) is known.

However, in MRF modeling using Gibbs distributions, P(f) is defined after
Ve(f) is determined and therefore, it is difficult to compute the canonical V,(f)
from P(f) directly. Nonetheless, there is an indirect way: Use a non-canonical
representation to derive P(f) and then canonicalize it using Griffeath’s result
to obtain the unique canonical representation.

The normalized potential functions appear to be immediately useful. For in-
stance, for the sake of economy, one would use the minimal number of clique
potentials or parameters to represent an MRF for a given neighborhood sys-
tem. The concept of normalized potential functions can be used to reduce the
number of nonzero clique parameters.

4 TUseful MRF Models

The following introduces some useful MRF models for modeling image prop-
erties such as regions and textures. We are interested in their conditional and
joint distributions, and the corresponding energy functions. The interested
reader may refer to Derin and Kelly (1989) [37] for a systematic study and
categorization of Markov random processes and fields in terms of what is called
there strict-sense Markov and wide-sense Markov properties.

4.1 Auto-Models

Contextual constraints on two labels are the lowest order constraints to convey
contextual information. They are widely used because of their simple form and
low computational cost. They are encoded in the Gibbs energy as pair-site
clique potentials. With clique potentials of up to two sites, the energy takes
the form

U(f) =D Vilfi) + > > Valfi, fir) (37)

€S i€S i EN;
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where “Y ;57 is equivalent to “Y riee,” and “Pics Yien;” 10 “2giinee,” - The
above is a special case of (27), which we call a second-order energy because
it involves up to pair-site cliques. It the most frequently used form owing to
the mentioned feature that it is the simplest in form but conveys contextual
information. A specific GRF or MRF can be specified by proper selection of
Vi’s and V5’s. Some important such GRF models are described subsequently.
Derin and Kelly (1989) [37] present a systematic study and categorization of
Markov random processes and fields in terms of what they call strict-sense
Markov and wide-sense Markov properties.

When Vl(fz) = fZGZ(fZ) and ‘/é(fz,le) = ﬁi,ilfifil, where Gz() are arbitrary
functions and f; ; are constants reflecting the pair-site interaction between %
and 7', the energy is

Uf)= > LGi(fi)+ D, Biglifs (38)

{itet {i,i'}eCo

The above is called auto-models [12]. The auto-models can be further classified
according to assumptions made about individual f;’s.

An auto-model is said to be an auto-logistic model, if the f;’s take on values
in the discrete label set £ = {0,1} (or £ = {—1,+1}). The corresponding
energy is of the following form

Uf)= > afi+ Y, Biwfife (39)

{i}eC1 {1,i’}€Ca

where ; » can be viewed as the interaction coefficients. When N is the nearest
neighborhood system on a lattice (4 nearest neighbors on a 2D lattice or
2 nearest neighbors on a 1D lattice), the auto-logistic model is reduced to
the Ising model. The conditional probability for the auto-logistic model with
L=1{0,1}is

eaifi+zi’€/\/'i ﬂfi,i’ fifq eaifi+zil€/\/i IBi,i’ fifq

P(f't ‘ sz) = aifi+2i’€/\/'i ﬂi,i’fifi’ - 1 _{_eai_}—Zi’GNi ﬁi,i’fi’

(40)
2 fiefo,1} ©

When the distribution is homogeneous, we have a; = a and 3; y = 3, regard-
less of 7 and 7'

An auto-model is said to be an auto-binomial model if the f;’s take on values
in {0,1,..., M — 1} and every f; has a conditionally binomial distribution of
M trials and probability of success ¢

PU | f) = (M . 1>qﬁ(1 g (1)
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where

eOCH'Zi/ eN; ﬁ“/ far

q= 1 + eai+2i’€N’i ﬂi,ilfil

The corresponding energy takes the following form

Uf)y=—= > In (M_ 1) - > aifi—= Y Bifif (43)

{i}ecy fi {i}ec, {i,i' }eCo

It reduces to the auto-logistic model when M = 1.

An auto-model is said to be an auto-normal model , also called a Gaussian
MRF [21] , if the label set £ is the real line and the joint distribution is
multivariate normal. Its conditional p.d.f. is

1 — 5o fi—pi— s ([ — g
p(fi | fai) = oz lfim =T e, B Fir —p )P (a4)

V2mo?

It is the normal distribution with conditional mean

E(fi | fa;) = pi — Z Biir (fir — par) (45)

i'eN;

and conditional variance

var(fi | fa;) = o (46)

The joint probability is a Gibbs distribution

det(B) (¢-wTBG-w
p(f) = F——=re 22 (47)

(2ma2)m

where f is viewed as a vector, p is the m x 1 vector of the conditional means,
and B = [b; #] is the m X m interaction matriz whose elements are unity and
off-diagonal element at (i,7') is =B, i.e. by = 0 — iy With f;; = 0.
Therefore, the single-site and pair-site clique potential functions for the auto-
normal model are

Vi(fi) = (fi — mi)* /207 (48)
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and

Vo(fi, fir) = Biw (fi — i) (fir — par) /207 (49)

respectively. A field of independent Gaussian noise is a special MRF whose
Gibbs energy consists of only single-site clique potentials. Because all higher
order clique potentials are zero, there is no contextual interaction in the inde-
pendent Gaussian noise. B is related to the covariance matrix X by B = 71
The necessary and sufficient condition for (47) to be a valid p.d.f. is that B is
symmetric and positive definite.

A related but different model is the simultaneous auto-regression (SAR) model.
[136] Unlike the auto-normal model which is defined by the m conditional
p.d.f.’s, this model is defined by a set of m equations

fi=wi+ > Biw(fo — pr) + € (50)

where e; are independent Gaussian, e; ~ N(0,02). It also generates the class
of all multivariate normal distributions but with joint p.d.f. as

det(B)  u=wTrTry-
o(f) = et(B) L G (51)

(2mo?)™

where B is defined as before. Any SAR model is an auto-normal model with
the B matrix in (47) being B = By + B} — Bj By where By = Bjuto—regressive-
The reverse can also be done, though in a rather unnatural way via Cholesky
decomposition [111]. Therefore, both models can have their p.d.f.’s in the form
(47). However, for (51) to be a valid p.d.f., it requires only that Bayto—regressive
be non-singular.

4.2 Multi-Level Logistic Model

The auto-logistic model can be generalized to multi-level logistic (MLL) model
[40,34,35], also called Strauss process [124] and generalized Ising model [46].
There are M (> 2) discrete labels in the label set, £ = {1, ..., M}. In this type
of models, a clique potential depends on the type ¢ (related to size, shape and
possibly orientation) of the clique and the local configuration f, 2 {fili€c}
For cliques containing more than one site (#c¢ > 1), the MLL clique potentials
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Fig. 4. Clique types and associated potential parameters for the second order neigh-
borhood system. Sites are shown in dots and neighboring relationships in joining
lines.

are defined by

(. if all sites on ¢ have the same label
Ve(f) = (52)

—(, otherwise

where (. is the potential for type-c cliques; for single site cliques, they depend
on the label assigned to the site

Ve(f)=Ve(fi)=ar if fi=1€ Ly (53)

where o7 is the potential for label value I. Fig.4 shows the clique types and the
associated parameters in the second order (8-neighbor) neighborhood system.

Assume that an MLL model is of second-order as in (37), so that only « (for
single-site cliques) and § (for pair-site cliques) parameters are non-zero. The
potential function for pair-wise cliques is written as

B if sites on {i,7'} = ¢ € C, have the same label

— (. otherwise

where (. is the [ parameter for type-c cliques and Cy is set of pair-site
cliques. For the 4-neighborhood system, there are four types of pair-wise
cliques (¢f. Fig.4) and so there can be four different 3.’s. When the model
is isotropic all the four take the same value. Owing to its simplicity, the pair-
wise MLL model (54) has been widely used for modeling regions and textures
[40,46,34,35,105,80,135].
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When the MLL model is isotropic, it depicts blob-like regions. In this case,
the conditional probability can be expressed as follows [124]

e—a;—ﬂni(l)

Z;VI:1 e—ar —Bni(I)

P(fi=1]fx)= (55)

where n;(I) is the number of sites in N; which are labeled I. It reduces to (40)
when there are only two labels, 0 and 1. In contrast, an anisotropic model
tends to generate texture-like patterns.

A hierarchical two-level Gibbs model has been proposed to represent both
noise-contaminated and textured images [34,35]. The higher level Gibbs dis-
tribution uses an isotropic random field, e.g. MLL, to characterize the blob-like
region formation process. A lower level Gibbs distribution describes the filling-
in in each region. The filling-in may be independent noise or a type of texture,
both of which can be characterized by Gibbs distributions. This provides a
convenient approach for MAP-MRF modeling. In segmentation of noisy and
textured image [34,35,80,66,135], for example, the higher level determines the
prior of f for the region process while the lower level Gibbs contributes to the
conditional probability of the data given f. Note that different levels of MRF's
in the hierarchy can have different neighborhood systems.

4.8 The Smoothness Prior

A generic contextual constraint on this world is the smoothness. It assumes
that physical properties in a neighborhood of space or in an interval of time
present some coherence and generally do not change abruptly. For example,
the surface of a table is flat, a meadow presents a texture of grass, and a tem-
poral event does not change abruptly over a short period of time. Indeed, we
can always find regularities of a physical phenomenon with respect to certain
properties. Since its early applications [53,64,68] aimed to impose constraints,
in addition to those from the data, on the computation of image properties,
the smoothness prior has been one of the most popular prior assumptions in
low level problems. It has been developed into a general framework, called
regularization [109,11], for a variety of low level problems.

Smoothness constraints are often expressed as the prior probability or equiv-
alently an energy term U(f) measuring the extent to which the smoothness
assumption is violated by f. There are two basic forms of such smoothness
terms corresponding to situations with discrete and continuous labels, respec-
tively.

The equations (52) and (54) of the MLL model with negative ¢ and (3 coef-
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ficients provide a method for constructing smoothness terms for un-ordered,
discrete labels. Whenever all labels f. on a clique ¢ take the same value, which
means the solution f is locally smooth on ¢, they incur a negative clique po-
tential (cost); otherwise, if they are not all the same, they incur a positive
potential. Such an MLL model tends to give a smooth solution which prefers
uniform labels.

For spatially (and also temporally in image sequence analysis) continuous
MRFs, the smoothness prior often involves derivatives. This is the case with
the analytical regularization. There, the potential at a point is in the form of
[f™ (x)]%. The order n determines the number of sites in the involved cliques;
for example, [f’(z)]*> where n = 1 corresponds to a pair-site smoothness po-
tential. Different orders implies different class of smoothness.

Let us take continuous restoration or reconstruction of non-texture surfaces as
an example. Let f = {f1,..., fm} be the sampling of an underlying “surface”
f(z) on = € [a,b] where the surface is one-dimensional for simplicity. The
Gibbs distribution P(f), or equivalently the energy U(f), depends on the
type of the surface f we expect to reconstruct. Assume that the surface is
flat — a priori. A flat surface which has equation f(z) = ay should have zero
first-order derivative, f'(x) = 0. Therefore, we may choose the prior energy as

U(f) = [If @)Pde (56)

which is called a string. The energy takes the minimum value of zero only if
f is absolutely flat or a positive value otherwise. Therefore, the surface which
minimizes (56) alone has a constant height (grey value for an image).

In the discrete case where the surface is sampled at discrete points a < x; < b,
1 € S8, we use the first order difference to approximate the first derivative and
use a summation to approximate the integral; so the above energy becomes

Uu(f) = Z[fz — fia]? (57)

where f; = f(z;). Expressed as the sum of clique potentials, we have

U(f) =D Ve(f) =D > Valfis fir) (58)

ceC 1€S i/ ENj

where C = {(1,2),(2,1),(2,3),---,(m = 2,m — 1), (m,m — 1), (m — 1,m)}
consists of only pair-site cliques and

Vi) = Vil fi) = (5 = o) (59)
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Its 2D equivalent is

[ [{5@. ) + 15, (e, ) dzdy (60)

and is called a membrane.
Similarly, the prior energy U(f) can be designed for planar or quadratic sur-

faces. A planar surface, f(z) = ap + ayx, has zero second-order derivative,
f"(x) = 0. Therefore, the following may be chosen

Uf) = [1f"(@)Pde (61)

which is called a rod. The surface which minimizes (61) alone has a constant
gradient. In the discrete case, we use the second-order difference to approxi-
mate the second-order derivative and the above energy becomes

U(f) = Z[fiJrl —2f; + fina]? (62)

For a quadratic surface, f(r) = ag + a1x + agz?, the third-order derivative is
zero, f"(z) = 0 and the prior energy may be

U(f) = [I/"@)Pda (63)

The surface which minimizes the above energy alone has a constant curvature.
In the discrete case, we use the third-order difference to approximate the
second-order derivative and the above energy becomes

u(f) = Z[fz’+1 — 3fi+3fi1 — fia]? (64)

The above smoothness models can be extended to 2D. For example, the 2D
equivalent of the rod, called a plate , comes in two varieties, the quadratic
variation

[ J{Ual@, )P + 2Ly (2, 9) + Uy o,y Hdady (65)

and the squared Laplacian

| [ Faale,9) + Fi(,9))2drdy (66)
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The surface which minimizes one of the smoothness prior energy alone has
either a constant grey level, a constant gradient or a constant curvature. This
is undesirable because constraints from other sources such as the data are not
used. Therefore, a smoothness term U(f) is usually utilized in conjunction
with other energy terms. In regularization, an energy consists of a smoothness
term and a closeness term and the minimal solution is a compromise between
the two constraints.

The encodings of the smoothness prior in terms of derivatives usually lead to
isotropic potential functions. This is due to the assumption that the underlying
surface is non-textured. Anisotropic priors have to be used for texture patterns.
This can be done, for example, by choosing (37) with direction-dependent V5’s.

4.4 Hierarchical GRF Model

A hierarchical two-level Gibbs model has been proposed to represent both
noise-contaminated and textured images [34,35]. The higher level Gibbs dis-
tribution uses an isotropic random field, e.g. MLL, to characterize the blob-like
region formation process. A lower level Gibbs distribution describes the filling-
in in each region. The filling-in may be independent noise or a type of texture,
both of which can be characterized by Gibbs distributions. This provides a
convenient approach for MAP-MRF modeling. In segmentation of noisy and
textured image [34,35,80,66,135], for example, the higher level determines the
prior of f for the region process while the lower level Gibbs contributes to the
conditional probability of the data given f. Note that different levels of MRF's
in the hierarchy can have different neighborhood systems.

Various hierarchical Gibbs models result according to what are chosen for the
regions and for the filling-in’s, respectively. For example, each region may be
filled in by an auto-normal texture [120,135] or an auto-binomial texture [66];
the MLL for the region formation may be substituted by another appropriate
MRF.

A drawback of the hierarchical model is that the conditional probability P(d; | f; =
I) for regions given by {i € S | f; = I} can not always be written exactly.
For example, when the lower level MRF is a texture modeled as an auto-
normal field, its joint distribution over an irregularly shaped region is not
known. This difficulty may be overcome by using approximate schemes such

as pseudo-likelihood [13,14] (a proof of the consistency of the pseudo-likelihood
estimate is given in [47]) or by using the eigen-analysis method [137].
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5 Optimization-Based Approach

Optimization has been playing an essential and important role in image analy-
sis. A problem can be formulated as optimizing a criteria, explicitly or implic-
itly. The extensive use of optimization principles is due to various uncertainties
in imaging processes. Noise and other degradation factors, such as caused by
disturbances and quantization in sensing and signal processing, are sources of
uncertainties. Different appearances and poses of objects, their mutual and
self occlusion and possible shape deformation also cause ambiguities in vi-
sual interpretation. Under such circumstances, we can hardly obtain exact or
perfect solutions and have to resort to inexact yet optimal solutions.

In a pioneer vision system [114], object identification and pose estimation
are performed using the simplest least squares (LS) fitting. Nowadays, opti-
mization is pervasive in all aspects of image analysis, including image restora-
tion and reconstruction [53,127,46,82,67,93|, shape from shading [68], stereo,
motion and optical flow [132,64,63,105,7], texture [61,73,30], edge detection
[131,126], image segmentation [119,85], perceptual grouping [94,101,62], inter-
pretation of line drawings [83], object matching and recognition
[41,32,117,16,10,100,106,134,42,86,87], and pose estimation [58].

In all of the above cited examples, the solution is explicitly defined as an op-
timum of an objective function by which the goodness, or otherwise cost, of
the solution is measured. Optimization may also be performed implicitly: the
solution may optimize an objective function but in an implicit way which may
or may not be realized. Hough transform [65,39,6,69] is a well-known tech-
nique for detecting lines and curves by looking at peaks of an accumulation
function. It is later found to be equivalent to template matching [122] and can
be reformulated as a maximizer of some probabilities such as the likelihood
[59]. Edge detection was performed using some simple operators like deriva-
tives of Gaussian [116]. The operators can be derived by using regularization
principles in which an energy function is explicitly minimized [110].

We find it important to study image analysis problems from the viewpoint of
optimization and to develop methodologies for optimization-based modeling.
The following presents some discussions on the optimization-based approach.

5.1 Research Issues

There are three basic issues in the optimization-based approach to image anal-
ysis: problem representation, objective function and optimization algorithms.
There are two aspects of a representation: descriptive and computational. The
former concerns how to represent image features and object shapes, which re-
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lates to photometry and geometry [79,104,72] and is not an emphasis of this
article. The latter concerns how to represent the solution, which relates to
the choice of sites and label set for a labeling problem. For example, in im-
age segmentation, we may use a chain of boundary locations to represent the
solution; we may alternatively use a region map to do the same job. Compar-
atively speaking, however, the region map is a more natural representation for
MRFs.

The second issue is how to formulate an objective function for the optimiza-
tion. The objective function maps a solution to a real number measuring the
quality of the solution in terms of some goodness or cost. The formulation de-
termines how various constraints, which may be pixel properties like intensity
and color and/or context like relations between pixels or object features, are
encoded into the function. Because the optimal solution which is the optimum
of the objective function, the formulation defines the optimal solution.

The third is how to optimize the objective, i.e. how to search for the optimal
solution in the admissible space. Two major concerns are (1) the problem
of local minima existing in non-convex functions and (2) the efficiency of
algorithms in space and time. They are somewhat contradictory and currently
there is no algorithms which guarantee the global solution with good efficiency.

These three issues are related to one another. In the first place, the scheme
of representation influences the formulation of the objective function and the
design of the search algorithm. On the other hand, the formulation of an objec-
tive function affects the search. For example, suppose two objective functions
have the same point as the unique global optimum but one of them is con-
vex whereas the other is not; obviously the convex one is much more desired
because it provides convenience for the search.

In the following presentation, we will be mainly dealing with minimization
problems. An objective function is in the form of an energy function and is to
be minimized.

5.2  Role of Energy Functions

The role of an energy function is twofold: (1) as the quantitative measure of the
global quality of the solution and (2) as a guide to the search for a minimal
solution. As the quantitative cost measure, an energy function defines the
minimal solution as its minimum, usually a global one. In this regard, it is
important to formulate an energy function so that the “correct solution” is
embedded as the minimum. We call this the correctness of the formulation.

To understand an optimization approach, one should not mix problems in for-
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mulation and those in search. Differentiating the two different kinds of prob-
lems helps debug the modeling. For example, if the output of an optimization
procedure (assuming the implementation is correct) is not what is expected,
there are two possible reasons: (1) the formulation of the objective function is
not a correct one for modeling the reality and (2) the output is a low quality
local minimum. Due to which one is the problem should be identified before
the modeling can be improved.

The role of an energy function as a guide to the search may or may not be
fully played. In real minimization, for example, when the energy function is
smooth and convex w.r.t. its variables, global minimization is equivalent to
local minimization and the gradient of the energy function provides sufficient
information about where to search for the global solution. In this case, the
role of guiding the search can be fully played. However, when the problem
is non-convex, there is no general method which can efficiently utilize the
energy function to guide the search. In this case, the role as the search-guide
is underplayed.

In certain cases, it may be advantageous to consider the formulation of an en-
ergy function and the search simultaneously. This is to formulate the function
appropriately to facilitate the search. The work of graduated non-convexity
(GNC) [17] is an example in this regard. There, the energy function is de-
formed gradually from a convex form to its target form in the process of
approximating the global solution using a gradient-based algorithm.

Local minimization in real spaces is the most mature area in optimization and
many formal approaches exist for solving it. This is not so for combinatorial
and global minimization. In the latter cases, heuristics become an important
and perhaps necessary element in practice. In the heuristic treatment of global
minimization, rather restrictive assumptions are made. An example is the
bounded model [5,19]. It assumes that a measurement error is upper-bounded
by a certain threshold (within the threshold, the error may be assumed to be
evenly distributed). Whether the assumption is valid depends on the threshold.
It is absolutely true when the threshold is infinitely large. But in practice, the
threshold is almost always set to a value which is less than that required
to entirely validate the bounded-error assumption. The lower the value, the
higher the efficiency is, but the less general the algorithm becomes.

In the hypothesis-verification approach, efficient algorithms are used to gen-
erate hypothetical solutions, such as Hough transform [65,39], interpretation
tree search [54] and geometric hashing [81]. The efficiency comes from the fast
elimination of infeasible solutions, or pruning of the solution space, by tak-
ing advantage of heuristics. In this way, a relatively small number of solution
candidates are picked up relatively quickly and are then verified or evaluated
thoroughly, for example, by using an energy function. In this strategy, the
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energy function is used for the evaluation only, not as a guide to the search.

Note that the advantage of formal approaches is in the evaluation and the
advantage of heuristic approaches is in the search. A good strategy for the
overall design of a specialized system may be the following: use a heuristic
algorithm to quickly find a small number of solution candidates and then
evaluate the found candidates using an energy function derived formally to
give the best solution.

5.8  Formulation of Objective Functions

In pattern recognition, there are two basic approachesto formulating an en-
ergy function: parametric and nonparametric. In the parametric approach, the
types of underlying distributions are known and the distributions are parame-
terized by a few parameters. Therefore, the functional form of the energy can
be obtained and the energy function is completely defined when the parame-
ters are specified.

In the nonparametric approach, sometimes called distribution free approach,
no assumptions about the distributions are made. There, a distribution is
either estimated from the data or approximated by a pre-specified basis func-
tions with several unknown parameters in it to be estimated. In the latter
case, the pre-specified basis functions will determine the functional form of
the energy.

Despite the terms parametric and nonparametric, both approaches are some-
what parametric in nature. This is because in any case, there are always pa-
rameters that must be determined to define the energy function.

The two most important aspects of an energy function are its form and the
involved parameters. The form and parameters together define the energy
function which in turn defines the minimal solution. The form depends on
assumptions about the solution f and the observed data d. We express this
using the notation E(f | d). Denote the set of involved parameters by 6. With
6, the energy is expressed further as E(f | d, 6). In general, given the functional
form for E, a different d or 6 defines a different energy function, E(f | d,0),
w.r.t. f and hence a (possibly) different minimal solution f*.

Since the parameters are part of the definition of the energy function E(f | d, ),
the minimal solution f* = argmin; E(f | d) is not completely defined if the
parameters are not specified even if the functional form is known. These pa-
rameters must be specified or estimated by some means. This is an important
area of study in the MRF modeling.
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5.4 Optimality Criteria

In formal models, as opposed to heuristic ones, an energy function is formu-
lated based on an established criterion. Because of inevitable uncertainties in
imaging and vision processes, principles from statistics, probability and infor-
mation theory are often used as the formal basis. When the knowledge about
the data distribution is avaliable but not about the prior information, the maz-
imum likelihood (ML) criterion may be used, f* = argmax P(d | f). On the
other hand, if only the prior information is available, the maximum entropy
criterion may be chosen, f* = argmax— Y, P(f;) In P(f;). The maximum
entropy criterion is simply taking this fact into account: Configurations with
higher entropy are more likely because nature can generate them in more ways
[71].

When both the prior and likelihood distributions are known, the best result
is achieved by that maximizes a Bayes criterion according to Bayes statistics
[129]. Bayes statistics is a theory of fundamental importance in estimation and
decision making. Although there have been philosophical and scientific con-
troversies about their appropriateness in inference and decision making (see
[26] for a short review), Bayes criteria, the MAP principle in particular, are
the most popular ones in image analysis and in fact, MAP is the most popu-
lar criterion in optimization-based MRF modeling. The equivalence theorem
of between Markov random fields and Gibbs distribution established in Sec-
tion 3.4 provides a convenient way for specifying the joint prior probability,
solving a difficult issue in MAP-MRF labeling.

In the principle of minimum description length (MDL) [112,113], the optimal
solution to a problem is that needs the smallest set of vocabulary in a given
language for explaining the input data. The MDL has close relationships to
the statistical methods such as the ML and MAP [113]. For example, if P(f) is
related to the description length and P(d | f) related to the description error,
then MDL is equivalent to MAP. However, it is a more natural and intuitive
when prior probabilities are not well defined. The MDL has been used for im-
age analysis problems at different levels such as segmentation [82,108,31,33,75]
and object recognition [20].

6 Bayes Labeling of MRFs

Bayes statistics is a theory of fundamental importance in estimation and de-
cision making. According to this theory, when both the prior distribution and
the likelihood function of a pattern are known, the best that can be estimated
from these sources of knowledge is the Bayes labeling. The maximum a pos-
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Fig. 5. Two choices of cost functions.

terior (MAP) solution, as a special case in the Bayes framework, is sought in
many image analysis algorithms.

The MAP-MRF framework is advocated by Geman and Geman (1984) and
others [48,35,47,38,15,125,45]. Since the paper of [46], numerous problems have
been formulated in this framework. This section reviews related concepts and
derives involved probabilistic distributions and energies in MAP-MRF label-
ing. For more detailed materials on Bayes theory, the reader is referred to
books like [129].

6.1 Bayes Estimation

In Bayes estimation, a risk is minimized to obtain the optimal estimate. The
Bayes risk of estimate f* is defined as

R(f) = [ €U 0P | dydf (67)

fer

where d is the observation, C'(f*, f) is a cost function and P(f | d) is the pos-
terior distribution. First of all, we need to compute the posterior distribution
from the prior and the likelihood. According to the Bayes rule, the posterior
probability can be computed by using the following formulation

d | f)P(f)

Pf | d) = R (68)

where P(f) is the prior probability of labelings f, p(d | f) is the conditional
p.d.f. of the observations d, also called the likelihood function of f for d fixed,
and p(d) is the density of d which is a constant when d is given.

The cost function C(f*, f) determines the cost of estimate f when the truth
is f*. It is defined according to our preference. Two popular choices are the
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quadratic cost function

c =1 =11 (69)

where ||a — b|| is a distance between a and b, and the § (0-1) cost function

oif || F* — )
) - { If* = fll < -

1 otherwise

where § > 0 is any small constant. A plot of the two cost functions are shown
in Fig.5.

The Bayes risk under the quadratic cost function measures the variance of the
estimate

R = [ = FIPP(f | d)df (71)

fer

Letting %{—*1 = 0, we obtain the minimal variance estimate

fr=[ fP(f | d)df (72)

fer

The above is the mean of the posterior probability.

For the ¢ cost function, the Bayes risk is

RfY= [ PUlad=1- [ PUladg (1)
Fillf*=f11>6 Fillf*=flI<é

When § — 0, the above is approximated by

R(f") =1-rP(f | d) (74)

where & is the volume of the space containing all points f for which || f*— f|| <
0. Minimizing the above is equivalent to maximizing the posterior probability.
Therefore, the minimal risk estimate is

f*=arg max P(f | d) (75)

33



which is known as the MAP estimate. Because p(d) in (68) is a constant for a
fixed d, P(f | d) is proportional to the joint distribution

P(f [ d) o< P(f,d) = p(d | [)P(f) (76)

Then the MAP estimate is equivalently found by

= arg max {p(d | /)P(f)} (77)

Obviously, when the prior distribution, P(f), is flat, the MAP is equivalent
to the maximum likelihood.

6.2 MAP-MRF Labeling

In the MAP-MRF labeling, P(f | d) is the posterior distribution of an MRF.
An important step in Bayes labeling of MRFs is to derive this distribution.
Here we use a simple example to illustrate the formulation of a MAP-MRF
labeling problem. The problem is to restore images from noisy data. Assuming
that the image surfaces are flat, then the joint prior distribution of f is

P(f) = e 0) (78)

where U(f) = X Yieqim1,1)(fi — fi)? is the prior energy for the type of
surfaces. Assuming that the observation is the true surface height plus the
independent Gaussian noise, d; = f; + e;, where e; ~ N(u,0?), then the
likelihood distribution is

__ v vaip
where
Uld| f)=>_(fi—d)?/20° (80)
i1

is the likelthood energy. Now the posterior probability is

P(f|d) xe VU 1D (81)
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where

m

U(F | d)= U] )+ U() = (= /207 + 30— Fia)? (52)

=1

is the posterior energy. The MAP estimate is equivalently found by minimizing
the posterior energy function

[fr= argmfin U(f|d) (83)

There is only one parameter in this simple example, o;. When it is determined,
U(f | d) is fully specified and the MAP-MRF solution is completely defined.

X %k %k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

This text has described the most important results in MRF theory perti-
nent to image analysis, and introduced general approaches for solving prob-
lems therein. The interested reader is referred [88] for more specific topics,
techniques and algorithms; including the use of MRFs in various applications
ranging from image restoration, segmentation texture modeling at lower level
to object matching and recognition at higher level, and related issues such as
how to cope with discontinuities, relations with robust estimators, modeling
parameter estimation for image and texture analysis and for object recogni-
tion, and local and global optimization techniques and algorithms.
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