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One of the most robust qualities of our visual world is the scale invariance of natural images. Not 
only has scaling been found in different visual environments, but the phenomenon also appears to 
be calibration-independent. This paper proposes a simple property of natural images which 
explains this robustness: they are collages of regions corresponding to statistically independent 
"objects". Evidence is provided for these objects having a power-law distribution of sizes within 
images, from which follows scaling in natural images. It is commonly suggested that scaling instead 
results from edges, each with power spectrum 1/k2. This hypothesis is refuted by example. © 1997 
Elsevier Science Ltd. 
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INTRODUCTION 

The properties of our visual world greatly influence the 
design of creatures' visual systems. Most fundamental, 
perhaps, is the amount of light available for vision. 
Vertebrate eyes which are adapted to dim environments 
tends to be larger, have a greater predominance of rods 
over cones, and achieve greater numerical apertures than 
those adapted to photon-rich settings.$ However, the 
most important aspect of  these luminous environments is 
the pattern of light fluctuations, both in space and time, 
which reach the eye. It is in this signal that information 
about the environment is conveyed. The eye must not 
only be able to count photons; it must also reliably detect 
variations in this count. And, just as the number of 
photons available to the eye determines its design, so do 
we expect that the statistical properties of these images 
select basic aspects of the pattern processing performed 
by the visual system. 

This viewpoint has led to two interrelated areas of 
study in recent years. The first is in understanding how 
the statistical properties of natural images enter into the 
optimization of a visual system. By now, a large list of 
contributions has appeared using the specific optimiza- 
tion criteria of redundancy minimization or decorrelation 
(Laughlin, 1981; Srinivasan et al., 1982; Atick & 
Redlich, 1990 Atick & Redlich, 1992; Atick, 1992; Atick 
et al., 1992; Li & Atick, 1994; Dong & Atick, 1995b), 
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maximization of information transmission (Bialek et al., 
1991; van Hateren, 1992a,b; Laughlin, 1992), sparseness 
of the neural encoding (Field, 1994; Olshausen & Field, 
1996), and minimizing reconstruction error (Linsker, 
1994; Ruderman, 1994a). This body of work has 
demonstrated that simple optimization principles com- 
bined with knowledge o f  image statistics can predict 
visual processing strategies which are found in nature. 

The second research area is in the statistical character- 
ization of the natural images themselves. Of great interest 
has been the discovery of  scaling in these pictures 
(Burton & Moorhead, 1987; Field, 1987; Tolhurst et al., 
1992; van Hateren, 1992a; Ruderman & Bialek, 
1994a,b). The key result states that the power spectrum 
of natural scenes§ takes the form of a power-law in the 
spatial frequency: 

S(k)  = A / k  2-°,  (1) 

where k is the magnitude of the spatial frequency, t/is the 
"anomalous exponent" (usually small), and A is a 
constant which determines the overall image contrast. 
Our results (Ruderman & Bialek, 1994b) have revealed 
scaling over nearly three decades in spatial frequency we 
measured (up to approximately 30 cycles/deg), with 
r / =  0.19. Interestingly, Dong & Atick (1995a) have 
shown this scaling to continue also in the time domain, 
which will be discussed later. Scaling in natural images 
also presents itself in statistics beyond the second-order 
measure given by the power spectrum; the shapes of 
entire histograms of pixel values and other statistics are 
invariant to changes in scale (Ruderman & Bialek, 
1994b; Ruderman, 1994b), which demonstrates scaling to 
higher than just second-order. 

That the process of geological formation of hillsides 
and valleys, or the structure of forests due to the 
succession of flora, can exhibit scaling through their 
images is perhaps not altogether surprising. Many natural 
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processes such as diffusion-limited growth formation 
(Vicsek, 1992), hard turbulence (Procaccia, 1984; Zocchi 
et al., 1990), earthquakes (Turcotte, 1995), and even the 
large-scale structure of the universe (Coleman & 
Pietronero, 1992) produce scale-invariant patterns, with 
the universal presence of power-law correlations. It is 
striking, however, that the natural image datasets in 
which scaling was found are all quite different. No two 
sets of pictures were even from the same environment. 
Also, the methods of image capture differed not only in 
the choice of pictures taken, but in the spectral sensitivity 
of the medium (e.g., film or charge coupled device 
detectors) as well. Finally, the image data vary from raw, 
uncalibrated pixel values, to calibrated luminance, to the 
logarithm of the luminance. Despite these vast experi- 
mental differences in data collection the result is the 
same: natural images have scaling power spectra. 

The purpose of this paper is to explain the ubiquity of 
scaling in natural image data. The underlying reason must 
be robust to calibration changes and it must manifest 
itself in widely varying image environments. To devise 
an answer, the basic structure of images found in natural 
environments was appealed to. Since the power spectrum 
is a statistical quantity, its behavior will follow from the 
statistics of the contributing images. Heuristically, we 
can liken these images to collages of patches correspond- 
ing to different "objects", which can appear in many 
combinations under varying lighting conditions (Ruder- 
man, 1989, 1996; Baddeley, 1994). In the view of 
Helmholtz, objects contribute to the "ordinary conditions 
of vision", which occur when 

. . .  the visual organ is stimulated by light from 
outside; this outside light, coming from the opaque 
objects in its path that were the last to be 
encountered, and having reached the eye along 
rectilinear paths through an uninterrupted layer of 
air (von Helmholtz, 1881). 

For the purposes of this paper the notion of an object is 
defined in a statistical sense--when items tend to co- 
appear--rather than a semantic one. 

A given object contributes a finite set of pixels to an 
image. We expect that those pixels which belong to 
different objects will have less statistical dependence 
than pixels from a single object. Ultimately these 
statements can be quantified, as they will be shortly. 
The notion of statistically correlated and uncorrelated 
regions within images corresponding to objects provides 
a simple, robust path to scale invariance, as long as those 
objects appear in all sizes according to a power-law 
distribution. 

The paper is organized as follows. In "Scaling in 
natural images: the evidence" the now classic result of 
scaling in the power spectrum is presented. To form a 
more intuitive approach the spectral scaling is Fourier 
transformed back to the spatial domain, where an 
equivalent result for the correlation function is derived. 
An explanation for the robustness of scaling in the 
correlation function (and thus the spectrum) is proposed 

in the section entitled "Underlying regularity: objects 
and edges". It appeals to the notion of objects and 
statistical variations between them. Data are presented 
which support the notion of vastly different statistics 
between pixels from different objects than within a single 
object. Calibration independence of image scaling is 
demonstrated, supporting the hypothesis that the pre- 
sence of overlapping objects is the dominant contribution 
to the second-order statistics. A simple two-dimension- 
al model is developed in the section entitled "Static 
images" which captures all the essential ingredients of 
the scaling model, most notably occluding objects. 
Finally, the section entitled "Moving images" extends 
the results to the temporal domain. 

SCALING IN NATURAL IMAGES: THE EVIDENCE 

Let me begin by showing an example image from our 
database. The photograph in Fig. 1 was gathered in a 
central New Jersey forest during the spring of 1992 (for 
details of the imaging procedure see Ruderman & Bialek, 
1994b). The image dataset used in this paper consists of 
45 pictures of similar subject matter, consisting mainly of 
trees, rocks, and a stream. The images are 256 pixels on a 
side, and measure about 15 deg in visual angle. The 
natural logarithm of the calibrated luminance is used as 
image data, minus a constant for each image which gives 
the data a mean of exactly zero for each image. This is 
similar to an image-wide luminance normalization 
procedure. 

The power spectrum 

Our data (Ruderman & Bialek, 1994b) show scaling in 
the power spectrum of the form: 

FIGURE 1. Example image from the dataset. All images were 
256 x 256 pixels, measuring 15 ° of visual angle on a side. Data were 

taken as the logarithm of each pixel's luminance. 



ORIGINS OF SCALING IN NATURAL IMAGES 3387 

S(k) = A / k  2-~, (2) 

where k is the spatial frequency (measured, for example, 
in cycles/deg), A is a constant representing the overall 
contrast power in the images, and for our data q = 0.19 
giving an overall exponent of 1.81. Images of waves and 
shoreline from the beach give an q ~ -0.3 (Ruderman & 
Bialek, unpublished). These data compare well with the 
work of others (Carlson, 1978; Burton & Moorhead, 
1987; Field, 1987; Tolhurst et al., 1992; Field, 1993; van 
der Schaaf & van Hateren, 1996), all of whom find a 
power-law of some exponent close to 2, though each uses 
a different set of data and varying measures of 
calibration.* 

The reasons for measuring all statistics of the power 
spectrum are two-fold. Power spectra are a function of 
spatial frequency. Since the mid-1960s much of the 
characterization of visual systems has been done with 
respect to sinusoidal stimuli of a given spatial frequency 
(Braddick et al., 1978). The contemporary visual 
scientist's understanding of vision is grounded largely 
in ideas about responses and sensitivities as a function of 
spatial frequency. Discussing natural stimuli in terms of 
spatial frequency content follows directly. Spectra also 
take a fundamental position in the statistical line-up since 
they embody all the second-order correlations in a 
translation-invariant ensemble of signals, which natural 
images are widely presumed to be.? Many of the 
optimization problems presented in the Introduction 
characterize natural images solely by their power 
spectrum. It has thus taken a prominent role in theories 
of sensory encoding. A notable exception is the work of 
Field (1994) and Olshausen & Field (1996), which relies 
on higher-order statistics. 

Scaling in space 

The Fourier analysis of images associated with 
measuring power spectra is not necessarily conducive 
to understanding which properties of natural images 
make them scale. Our grasp of image structure is best 
held in the spatial domain. Objects, after all, are generally 
spatially cohesive. In the Fourier domain, though, they 
spread and superpose over many frequency bands. 
Furthermore, the all-important process of occlusion, 
which occurs in projections of the three-dimensional 
world onto two-dimensional images, is not easily 
conceived of in relation to spatial frequency components. 
For these reasons I prefer, for the remainder of this paper, 
to work in the spatial domain. The advantages will 
become especially apparent when working with model 
image ensembles. 

*None of  the authors has reported the details of  the spectral response of 
their image detector, and so the precise nature of  the measurements 
is unknown for the purposes of  comparison. 

tSince sky occurs more often at the top of  image than at the bottom, 
this assumption can be brought into question. The answer to how 
good an approximation stationarity is must be answered quantita- 
tively. 

SThe case of ~/= 0 gives a logarithm instead of  a power-law in x; see 
the Appendix. 

To start, the scaling result of Eq. (1) can be expressed 
equally well in the spatial domain in terms of the usual 
correlation function C(x) as: 

C(x) -- - C l  + c s " ,  (3) 

where x is the separation distance between two pixels in 
an image, I/assumes the same value as it did in the power 
spectrum, and C1 and C2 are positive (negative) constants 
for q positive (negative).$ This expression is derived in 
the Appendix from the simple Fourier relation between 
the two-point correlation function and the power 
spectrum. 

This correlation function is found experimentally as 
the expected product of the image at two pixels separated 
by a distance x: 

C(x) = (((¢(x0)O(x0 + x))0)x0) ¢. (4) 

Here qS(x) is the image value at position x (a two- 
vector), and the triple expectation value is over (from the 
outside inwards) all images qS, all initial positions Xo, and 
all displacement vectors x of length x (parameterized by 
the angle 0). This this large expression can be rewritten 
schematically as C(x)= <~b(0)qS(x)>, with the ensemble 
average, shift over positions, and average over angles 
implied. 

In preference to the correlation function another 
quantity, the "difference function", is used: 

D(x) = - O(x)L2), ( 5 )  

with the meaning of the expectation value as already 
stated. The advantage of this formulation is that any 
unknown additive image offset does not enter the 
statistic. As mentioned above, a constant was added to 
all log-intensity image values in the database in order to 
make the average image value zero. This arbitrary 
constant does not appear in D(x) since it only measures 
pixel differences. Equivalently, this statistic tabulates the 
expected values of the squared logarithm of intensity 
ratios within images. Using intensity ratios prevents the 
overall image luminance from entering the image data. 
By expanding the square in Eq. (5) and taking the 
expectation value, it can easily be seen that D(x) is 
linearly related to C(x) and takes the form: 

O ( x )  ~-- O 1 - 0 2  X-77, (6)  

with D1 and D2 positive (negative) for q positive 
(negative). 

A power-law spectrum thus yields a power-law 
difference function, except for the presence of an added 
constant. D(x) was measured by selecting 105 point pairs 
at random from each image and tabulating their joint 
statistics. In the resulting data the best choice for the 
constant D1 was found so that the resulting difference 
gave the best power-law (of any exponent) by minimiz- 
ing the mean-squared error between a power-law fit and 
the "residual function" R(x) = DI-D(x).  The best fit was 
found for D1 = 0.79 and D2 = 0.64; the resulting power- 
law residual had a slope of ~/= 0.19, matching the 
anomalous dimension from the power spectrum. This 
residual function is plotted in Fig. 2, showing a 
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FIGURE 2. The residual function R(x)= D1 --D(x) for natural scenes; both axes are logarithmic, and the best fit linear 
regression gives a slope q = 0.19. 

remarkably good fit to a power-law with the expected 
exponent. 

Calibration independence 

One of the most compelling features in the data on 
natural image scaling is invariance to choice of calibra- 

tion. Indeed, if calibration were crucial it is doubtful that 
scaling would ever have been found. Furthermore, neural 
responses in the visual system are non-linear, and so the 
statistical effects of passing images through this "recali- 
bration" are clearly important for understanding visual 
system design (Laughlin, 1981; van Hateren & van der 
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FIGURE 3. Residual function R(x) for recalibrated images plotted on a log- log  scale demonstrating its power-law nature. The 
best fit slope is r/' = 0.20, only slightly different from the t / ~  0.19 value for the original data. 
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Schaaf, 1996). This section demonstrates that not only is 
calibration unimportant in different datasets, but that 
even recalibration of a single dataset fails to upset its own 
scaling. 

As a simple experiment, a rather dramatic rescaling 
was preformed by converting all images in the dataset to 
black-and-white. Those pixels having a value greater 
than zero became white pixels, and the remainder became 
black. This recalibration produced a new dataset, on 
which the difference function D(x) was recomputed. It 
again had the form of Eq. (6), though the best-fit 
exponent changed slightly from r/--0.19 to q '=  0.20. 
Given the drastic nature of the recalibration procedure, 
this change is surprisingly small. The residual function 
R(x) for these images is plotted in Fig. 3. 

This example is meant to demonstrate the robustness of 
scaling in natural images by pushing an extreme limit of 
recalibration. Of course it cannot be expected that 
entirely arbitrary recalibration (e.g., a random reassign- 
ment of pixel values) would preserve the correlational 
structure of the images. More reasonably, it probably 
holds as long as nearby pixel values generally remain 
nearby under recalibration. These ideas will be expanded 
upon shortly. 

UNDERLYING REGULARITY: OBJECTS AND EDGES 

What causes the pixel difference function D(x) to take 
the form it does? Recall that it is found by choosing pairs 
of points within images and averaging the resulting 
squares of the pixel differences between those point pairs. 
I claim that each point pair can be considered as either 
belonging to the same object or to two different objects. 
This simple observation, though somewhat heuristic, can 
explain much about correlations in natural images. 

Defining objects 
The notion of objects is best grounded in the actual 

process of image generation, that is, the probability 
distribution of natural images. The model proposed in 
this study places randomly chosen objects in the world at 
random locations. The world is then illuminated and 
imaged, complete with occlusions. Since objects are 
chosen at random, pixels corresponding to different 
objects will have little statistical dependence on one 
another.* However, it is expected that pixels from the 
same object will be more closely related, if not only 
because of the likelihood of them originating from the 
same material and receiving similar lighting. How well 
this procedure actually mimics the environments of the 
datasets is unknown, but it will suffice as a first step. The 
model presented in the section entitled"Static images" 
will implement the procedure to yield exact results in this 
regime. 

Suppose, then, that the difference function is being 
tabulated under such conditions. Point pairs separated by 

*Issues such as shadows which cover both objects, as well as the 
likelihood of nearby objects in the real world being related are no 
doubt important, but will be ignored in this elementary treatment. 

a distance x are chosen, and the pixel differences 
~b(0)-qS(x) are squared and averaged together. There is 
a probability Psame(X) that a given point pair of separation 
distance x belong to the same object. Recall that x is 
measured in degrees of visual angle, and so this 
probability depends on the actual spatial sizes of objects, 
their distribution of distances from the observer, and their 
shapes. Given that the two points belong to a single object 
there is then an associated difference function for same- 
object points separated by a distance x, Dsame(X) (isotropy 
is assumed). Similarly, if the points are from different 
objects then their difference function takes another form, 
say Ddiff(X ). 

By assigning all measurements to one of these two 
categories the overall difference function can be 
expressed as: 

D(x) = esam~(x)Osam~(X) + [1 - esame(x)]Odiff(X). (7) 

The advantage of working in the spatial domain now 
becomes clear. This type of expression which comes 
from thinking about how images are composed does not 
have a simple analogy in Fourier space. Global frequency 
analysis does not provide good intuition about image 
structure whose character is fundamentally local. 

But now the problem appears harder. Whereas before 
we had a single function D(x), now we have three: 
Psame(X), Osame(X), and Odiff(X ). What we gain ultimately 
is insight into how images are made. Fortunately, as is 
demonstrated below, the problem actually becomes 
simpler when expressed this way. Suppose we wish to 
measure these functions. Instead of working with raw 
images we now have to "segment" them into objects and 
tabulate different sets of statistics, as well as the sizes of 
objects to get Psame(X). The following section is an 
attempt to gather just such data. 

Image segmentation: the difference functions 
Each image in the database was segmented by eye into 

areas belonging to different objects. For example, the 
image shown in Fig. 1 was divided into regions 
corresponding to the stream, the rocks, the riverbank, 
the log on the riverbank, etc. Some less obvious decisions 
had to be made, such as identifying the whitecaps in the 
water as part of the stream as a whole, instead of defining 
them as independent. Leaves on trees were considered 
integral parts instead of objects in their own right (while 
their luminance may be significantly different from that 
of tree bark, they are statistically highly linked in 
appearance within the image). Suffice it to say that there 
is no entirely objective way of doing this. As it happened, 
the segmentation generally followed gross semantic 
boundaries. A more formal statistical definition will be 
presented in the section on image modeling. 

Since objects can be differentiated down to micro- 
scopic scales, a cut-off of 5 pixels was chosen as a scale 
on which to define objects. A bed of leaves, each 
occupying 1 or 2 pixels in size, was considered a single 
object: "bed of leaves". If the leaves were each large 
enough to cover a 5 x 5 pixel square then they were 
considered independent objects. This procedure intro- 
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FIGURE 4. The difference functions Ddiff(x ) (upper) and D . . . .  (x) (lower). Neither obeys a significant linear trend, and so they 
can be approximated by constants. 

duced a "scale of uniformity" of 5 pixels, and so 
measurements below this scale have a separate meaning 
and were excluded. Some image regions were too dense 
with small branches and background to be segmented and 
were also excluded. In total, 1000 examples each of same 
and different object pixel regions were identified.* From 
each of these region pairs all possible pixel pairs were 
taken as data. Thus, two 5 x 5 image patches would 
produce 625 items of data (25 x 25). But since all of them 
originated in the same image regions, they do not 
represent independent data (of which we only really have 
2000 examples). As such, during the estimation of 
standard errors the number of independent measurements 
(and not individual pixel pairs) was taken as the number 
of degrees of freedom. 

Data are shown in Fig. 4. Two sets of datapoints are 
plotted. The upper ones correspond to D d i f t { x ) ,  and the 
lower ones are D . . . .  (X). The horizontal axis measures 
pixel separation. Note that the standard error bars are 
sizeable. On average, the number of independent region 
measurements contributing to each data point was nearly 
n = 100, so the data clearly involve large fluctuations. 
Next, all the data from Ddi f l {X  ) are  larger than those for 
Dsame(X ). Simply put, pixels in different objects have a 
larger mean squared difference than those from the same 
object. This makes intuitive sense. More interestingly, 
within error bars neither of these graphs deviates 
significantly from a constant. Further, the separation 
between the graphs is somewhat larger than the 

*The less biased alternative of  allowing the computer to select these 
areas at random is not in practice workable. Too many of  these 
random regions cannot be clearly identified as belonging to single 
objects. As such, I chose a somewhat  biased, but reproducible, 
procedure. 

fluctuations within graphs, thus providing another scale 
for comparison. Simply put, there are no obvious trends 
in the data. 

Why might this be? Suppose two points belong to 
different objects. Then it does not really matter how far 
apart those two objects are separated, the pixels are 
always very much uncorrelated. A small effect might be 
similarity of illuminant for nearby objects, and so we 
expect a slight rise in the graph with distance. Similarly, 
for points within the same object, say a tree trunk, the 
separation distance is only marginally important. For 
instance, the bark on a tree remains at nearly the same 
luminance regardless of location on the trunk (again, 
modulo illuminant changes). So there is a reasonable 
expectation that the data appear the way they do. 

Implications 

The estimates for the constant difference functions are: 

Ddi ff • 0.75 zk 0.02 

Dsame = 0.22 + 0.01 (8) 

Rewriting Eq. (7) in terms of these constants gives: 

D(x) = Odi ff - -  (Ddi ff - -  Dsame)Psame(X), (9)  

while experimentally, D(x) was found to take the form: 

D(x) ~ 0.79 - 0.64x 0.19. (10)  

Equating the measured and estimated difference 
function gives: 

Psame(X) - -  a + bx 0.19, (11) 

where a and b are constants. That is, the probability of 
remaining inside a given object at a separation distance x 
has a power-law component in the distance. Here we see 
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FIGURE 5. The form of Ps~c(x) for the image ensemble as given by Eq. (12). Note the sizable probability of remaining in the 
same object even at separation distances of 100 pixels. 

the origins of scaling in an occluding object model: it is 
the visible sizes of the objects themselves. The fact that 
many datasets show scaling implies that the manner in 
which objects occlude each other within many different 
environments universally produces a power-law such as 
Eq. (11). 

From the measured values of Dsame and Odiff, as well as 
the measured difference function of Eq. (10), the 
constants a and b can be found, giving a probability: 

Psame(X) = - 0 . 0 8  q- 1.21x -0"19, (12) 

which is plotted in Fig. 5. This probability is invalid for 
short distances (less than 2 pixels or so) since it is larger 
than unity there. The objects previously defined were on 
scales greater than 5 pixels, and so it is not feasible to 
draw conclusions about objects on scales smaller than 
this. Had objects been discriminated on a smaller scale 
the constants within Eq. (12) would have been different. 
They reflect an intrinsic scale of measurement just as the 
multiplicative coefficient in the power spectrum reflects 
the spatial cut-off scales. At very large x this probability 
function also becomes invalid, as it becomes negative; a 
straightforward computation shows that this occurs at 
angular separations much larger than 360 deg, and it is 
thus unimportant. 

The classical problem of image segmentation is that of 
identifying the borders of objects. Many techniques have 
been invoked to solve this very important problem in 
image processing (for a review see Pal & Pal, 1993). 
Some recent algorithms take into account local image 
statistics within and between objects in order to make 
segmentation decisions Bongiovanni et al., 1993, 1994. 
A characterization of inter- and intra-object statistics is 
needed to optimize these approaches and to estimate the 

frequency of segmentation errors while using a given 
algorithm. Furthermore, these statistics are the starting 
point for the development of optimal algorithms. 

Calibration independence (revisited) 

Calibration independence of scaling follows naturally 
from Eq. (9). If we change the calibration of images, that 
is, the definition of ~b(x) then the objects within each 
image do not change in location, shape, or identity. 
Furthermore, the relative constancy of the functions 
Dsame(X) and Ddiff(X ) is not expected to alter either; they 
should remain flat. Their values will merely differ in a 
manner reflecting the recalibration. Thus, the only 
difference we expect in Eq. (9) is in the coefficients. 
Scaling will remain present, and the exponent will not 
change. This is exactly what was demonstrated at the end 
of the section entitled "Calibration independence". 

To test this further, statistics were categorized at the 
same image locations identified earlier as either belong- 
ing to the same object or to different ones, but now on the 
recalibrated images mentioned earlier. This again 
provides two difference functions which are plotted in 
Fig. 6. Once again, the difference functions are 
essentially fiat, with Ddi ff > Dsame- Recalibration has 
not affected the basic form of Eq. (9). 

Since recalibration does not affect the locations of 
objects within images, Psame(X) is the same regardless of 
exactly how the images are calibrated or even the spectral 
sensitivity of the instrument making the measurements. 
Furthermore as the intra- and inter-object difference 
functions are constant, independent of calibration, we 
expect the scaling form of the difference function to be 
very robust, as it indeed appears to be. 
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FIGURE 6. The difference functions Ddiff(x ) (upper) and Dsame(X ) (lower) for the same image locations as Fig. 4, but with the 
images recalibrated to black-and-white pixel values. The difference functions remain essentially flat to within error bars. 

MODELING NATURAL IMAGES 

The statements made so far constitute a plausible 
hypothesis. The claim is that the statistically independent 
components of images can be identified as "objects" 
which appear independently of one another in the natural 
environment. To obtain scaling in natural images those 
objects must have a viewable size distribution which 
obeys a power-law in angular separation. The data 
presented in the previous section were meant to supply 
evidence for this conclusion. 

This section demonstrates that a simple planar model 
of occluding objects can be solved to provide this power- 
law distribution if the original objects are power-law 
distributed. That a power-law object distribution placed 
by hand produces power-law correlations within images 
is perhaps not surprising. However, this model allows us 
to generate scale-invariant images of given power 
spectrum in the spatial instead of the more usual Fourier 
domain, giving more control over the image structure. 
Furthermore, the model explicitly includes occlusion of 
one object by another, an important factor which is absent 
in those image models which use superposition such as 
linear independent components analysis (Olshausen & 
Field, 1996; Bell & Sejnowski, 1997). The model also 
explicitly demonstrates that scaling in images is not 
simply due to the 1/k 2 spectrum of individual edges 
within images, thus laying to rest this popular notion. 

Static images 

Imagine walking on an infinite image plane. At a 
random location you blindly select from a number of 
choices an infinitesimally thin cardboard "cut-out" of 
some shape. You paint it a gray tone chosen from a 

distribution, and then drop it on the ground. This done, 
you continue to another random location and repeat the 
process. 

This simple procedure creates images whose statistics 
can be easily assessed. The reason for studying such a 
model is that it explicitly identifies statistically indepen- 
dent objects and these objects occlude one another as they 
do in the real world. In these images the true 
"independent components" are the objects themselves, 
which have random size, location, and intensity. The 
model 's most important deficiency is its two-dimension- 
ality, whereas real images are projected and occluded in 
three dimensions. A treatment of this more complex and 
realistic case will have to await future study. 

According to the previous section sufficient conditions 
for scaling of correlations within images are (a) that the 
probability distribution of not crossing an object border 
scale in distance; and (b) that objects have nearly uniform 
correlation within their borders and between different 
objects. Painting the objects in the model randomly 
assures condition (b), since correlations are uniform 
within the objects and zero between them. I show below 
that condition (a) is satisfied if the objects themselves are 
chosen with a power-law distribution of sizes. The form 
of this distribution explicitly determines the correlation 
function of the image ensemble, which can be chosen 
arbitrarily. 

The correlation function of the model will be: 

C(x) = CoPsame(X), (13) 

where Co is the constant correlation within objects, and 
the term for different objects is absent since they have 
zero correlation. Once again, a power-law in the 
correlation function implies a power-law in the spectrum. 
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OR 

FIGURE 7. Possible relationships between rectangular objects and a 
pair of points separated by a distance x. Top: object contains neither 
point. Middle: object contains one point or the other. Bottom: object 

contains both points. 

To obtain this scaling we must determine Psame(X) itself 
to be power-law. The form of this function is derived 
below. 

Imagine two fixed points in the plane a distance x apart. 
What is the probability that they are both within the same 
object in one of these randomly created images? Consider 
each of the flat objects in turn, starting with the most 
recently placed one. It may be considered to be "above"  
the rest, as it is not occluded by any others. There are 
three possibilities: (1) only one of the two points is within 
that object; (2) both points are situated within the object; 
and (3) neither point lies within the object (see Fig. 7). 
Let pl(x) be the probability that condition (1) occurs, 
p2(x) be the probability that condition (2) occurs, and 
po(x) be the probability that condition (3) occurs (note 
that they sum to unity). 

If  either condition (1) or (2) occurs, then we know the 
answer for that particular image. I f  condition (3) arises 
then the object and the two points are entirely disjointed. 
We may simply ignore that object and repeat the 
procedure for the next one down the "stack" of objects. 
Thus, the probability of  two points being in the same 
object may be determined recursively as: 

Psame(X) = p2(x) +po(x)Psame(X). (14) 

Here the probability is the sum of the probability that 

*Another way to arrive at this result is to imagine that we add another 
object to a given image. Ps~me(X) must be invariant to this addition, 
since we still have an image of the same class. The probability of 
two points lying within the same object after the addition of another 
object is the probability that the new object contains both points 
(p2(x)) plus the probability that the new object did not cover either 
point and both points were previously within the same object 
(po(x)P . . . .  (x)). Thus, we have the same result as before. 

the highest object contains both points plus the 
probability that it contains neither point times the 
probability we seek.* Using 1 - p o  = Pl + P2, we have: 

esame(X) - -  p2(X) ( 1 5 )  
el(x) + re(x) 

The problem is reduced to evaluating the functions 
pl(x) and pz(x). 

For illustrative purposes, consider the simplest possi- 
ble scaling images of  this type, where all objects are 
circular and distributed in size according to the power- 
law: 

, s ( s  > s0) = --s0C ( s ~ )  -~ , (16) 

with the diameter s > So, some short-distance cut-off. 
With ~ > 1 this distribution is integrable to infinite-sized 
objects. In fact, ~ > 3 is required to make the model well- 
behaved, as the second moment  of  P~ must exist to 
evaluate the probabilities used below. By using a power- 
law distribution of object sizes we will obtain a power- 
law for Psame(x). 

It can be shown for these circles placed at random that: 

pl(x) = 2C(so/L)2[-£-S-~ - B(ct)(X/So)-(~-3) 1 (17) 

p2(x) ---- C(so/L)2B(a)(x/so) -(a-3), 

where L is the image size. Here B(a)  = 
J~duu2-~g(1/u) where g(u) is a geometrical factor 
for the fraction of area within a unit-diameter circle 
which can be occupied by a point given that another point 
a fixed distance u away is also within the circle: 

g/0 <_ 1)_- u (18/ 

Using Eq. (15) gives: 

Psame (x) =- B(°~)(x/so)3-a 
2 / ( a  - 3) - B(c~)(x/so) 3-~" (19) 

For x >> So the probability becomes a power-law: 

Psame(/>> so) c t - 3  B(oz) ( s ~ )  -(c~-3) - 2 ( 2 0 )  

Thus, the scaling of inter-object probability follows 
directly from the scaling of apparent object sizes. In 
images of  the real world this apparent size (in degrees) 
depends on an object 's  actual size as well as its distance 
from the observer. The overall distribution of apparent 
object size is thus a function of the distributions of  object 
sizes and that of  their distances. The preceding example 
is meant to demonstrate that the model can be solved and 
that it can give a power-law spectrum. 

The above result was determined for pixel values 
associated with different objects being statistically 
independent. In fact, each object could display a texture 
on its surface without changing the essential result of  Eq. 
(6), as long as the ensemble power spectrum of the 
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FIGURE 8. An image made of occluding squares whose size 
distribution is chosen to give the ensemble correlation function a 

power-law exponent q = 0.19. 

textures is relatively flat so that Dsame(X ) is essentially 
constant. Recalibration also would not affect the result, as 
long as some correlation remains within the objects. Note 
finally that by choosing an appropriate object size 
distribution Ps and object pixel histogram one can use 
this image generation method to produce an image 
ensemble both of given spectrum and of given pixel 
histogram. This is certainly not a trivial matter if one 
creates the images in the Fourier domain by enforcing a 
particular power spectrum. If the phases are chosen 
randomly then upon transforming back to the spatial 
domain the pixel histogram will be very nearly gaussian, 
since many independent numbers are combined at each 
pixel. Control over both the pixel histogram and the 
spectrum is thus not simple to achieve. 

FIGURE 10. The orientationally-averaged correlation function (log- 
log scale) for the ensemble from which image 8 is drawn 
(slope=-0.19).  This correlation function is derived in a similar 

manner to that of the section Static images. 

It has often been suggested that the origin of scaling in 
natural images is due to their being composed of 
luminance edges, each of which has a l / k  2 spectrum 
(see Carlson, 1978, for example). The occluding objects 
model does not support this conjecture. The important 
feature is not the characteristic form of object transitions 
(i.e., sharp edges), but rather the distribution of their 
occurrence as given by Psame(X). This point is illustrated 
by presenting two images (Fig. 8 and Fig. 9), each of 
which consists entirely of edges, but are derived from 
ensembles with different two-point correlation functions. 
The image in Fig. 8 comes from an ensemble with power- 
law correlation, whereas the one in Fig. 9 has exponential 
correlations. These correlation functions are shown in 
Fig. 10 and Fig. 11, and can be derived from the same 
model as before. The choice of correlation function is 
made by selecting the functional form of p,., the 
probability of object sizes, to be either power-law or 
exponential. The gray values of the squares were chosen 
independently from a Gaussian distribution. 
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FIGURE 9. An image made of occluding squares whose size 
distribution is chosen to give the ensemble correlation function an 

exponential form. 

FIGURE 11. The orientationally-averaged correlation function (semi- 
log scale) for the ensemble from which image 9 is drawn (l/e height at 

6.2 pixels). 
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Moving images 
Recent measurements on natural "movies" by Dong & 

Atick (1995a) have demonstrated that their correlations 
take the particular scaling form: 

S(k, co) oc k-~_ F(co/k), (21) 

where S is the power spectrum, k is the magnitude of the 
spatial frequency, ~o is the temporal frequency, and 2 - q  
is the spectral exponent for static scenes. The linkage 
between spatial and temporal frequencies demonstrated 
in the functional form F(o)lk) implies a scaling relation 
between the two. Dong and Atick argue that since the unit 
of their quotient is a velocity the dynamics of these 
scenes can be understood physically in terms of object 
motion. They proceed to derive this scaling form by 
considering images of a given static spatial spectrum 
moving at a random velocity chosen from a distribution. 
The resulting spatio-temporal spectrum contains a 
function F(oolk) which is specified by the choice of 
velocity distribution. 

The simple assumption of a scaling distribution implies 
that the spectrum must be of the form: 

S(k,~o) = k f3O(cok-5)So(k), (22) 

where So is the static spectrum of Eq. (1), and Q(u) is a 
( du lg distribution which integrates to unity J ~ Q( ) = 1). That 

this integration should yield the static spectrum follows 
from the fact that taking a snapshot adds together the 
power in all of the temporal frequency band. The 
exponent fl depends on the exact nature of the dynamic 
scaling. The fact that Dong and Atick find fi = 1 means 
that object velocity is a fundamental quantity. 

Can the method of dividing the visual world into 
uncorrelated objects reproduce the result? First, the Dong 
and Atick result is expressed in terms of spatial 
correlations (through a calculation similar to that in the 
Appendix) as: 

C(x, t) = a + Bx-OG(x/t), (23) 

again assuming spatial isotropy. Extending the original 
model to include the time domain, circular objects are 
considered, whose sizes are chosen from the distribution 
of Eq. (16), whose velocities are chosen randomly from 
an isotropic distribution Pv(v), and whose gray values are 
uncorrelated between objects. Just as before each object 
lay in its own infinitesimal plane, so now do they each 
move with constant velocity within these planes. This 
model's correlation function is given by: 

C(x, t) = CsamePsame(X, t), (24) 

where P . . . .  (x, t) is the probability that two points 
separated by a distance x in space and a delay t in time 
belong to the same object. 

As before we must seek the two functions pl(x, t) and 
p2(x, t), the probabilities that a randomly placed moving 
object contains only one of two points separated by (x, t), 
or both points, respectively. The relation of Eq. (15) is 
again used to determine Psame(X, t). Since the size of an 

object and its velocity are chosen independently, the 
spatio-temporal probabilities can be expressed as: 

pl(x, t) = (pl(lX - -  vtl))v , (25) 

and similarly for P2. 
We start first with the expression for pa, which requires 

an integration over the magnitude of the velocity and its 
orientation: 

p2(x ,  t) = 

= aCs2B(c~)(x/so) 3 - G(x/t), (26) 

where G(v) is a function which depends on the velocity 
distribution Pv(v), and B(e) is as before. For Pl we have: 

Pl (x, t) = 2aCs2 [ l_~ -~ -  

(27) 
Combining these functions gives: 

Psame(X, t) = B(°l)(x/so)3-~G(x/t) 
- 3 )  - ( 2 8 )  

In the limit x >> So we arrive at: 

(s0, Psame(X, t) -- c~ - 3 B(c~) G(x/t). (29) 

This is precisely the form required to satisfy Eq. (23). 
Once again, the objects could be textured or be of 

different shapes without affecting the result. A primary 
restriction, however, is the motion of objects only within 
their own planes. In the real world the looming of objects 
due to motion of the observer, as well as changes in 
object velocity are both highly salient. However, 
reproducing the second-order statistics of real images 
can be achieved with this simple model. It is the higher- 
order ones which describe more precisely the structure of 
natural images. 

CONCLUSIONS 

The first goal of this paper has been to understand why 
so many disparate measurements all draw the same 
conclusion: natural images scale. The cause of this 
scaling must be robust, both to changes in environment 
and to recalibration. The answer proposed here is that 
natural images are composed primarily of statistically 
independent objects which occlude one another. Further, 
natural environments tend to arrange themselves so that 
the image regions corresponding to these objects are 
power-law in size. Combined, these two properties give 
rise to scaling universally. It should be noted that other 
models of natural images (e.g., based on superposition; 
Field, 1994) can also account for scaling. The advantage 
of the current model is its ability to capture the process of 
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object occlusion and to explain the calibration indepen- 
dence of scaling. 

Scaling is usually expressed in terms of the power 
spectrum. However, as shown in the Appendix, the result 
is equally well expressed in the spatial domain in terms of 
the correlation function or the difference function defined 
here. What this reformulation provides best is some 
intuition toward the origins of scaling. It has been 
proposed in this study that the measurement of the 
difference function corresponds to two disjointed sets: 
data from same object point pairs, and data from different 
object pairs. Scaling then follows from the probability 
distribution of object crossings as a function of separation 
distance. The final explanation for scaling in natural 
images must then rest on understanding why many 
different image environments display scaling in apparent 
object sizes. It appears that these environments consis- 
tently arrange themselves to obey power-law statistics, 
much like those found in self-organized critical systems 
(Bak & Paczuski, 1995). 

A simple measurement performed on a natural image 
database showed that the difference functions within and 
between objects are both relatively fiat. This distance 
independence does not falter under recalibration, thus 
lending support to the "images from objects" model of 
natural scenes. Finally, a two-dimensional image model 
was demonstrated which can be selected to give any 
ensemble power spectrum (by choosing the distribution 
of object sizes) and any image histogram. This degree of 
control is not readily available by synthesizing images 
purely in the Fourier domain. The model was used to 
show that edges are not the essential features within 
images which cause scaling. 

The model presented in this study is too simple to 
model imaging of the real world completely accurately. 
To do so requires a truly three-dimensional model of 
moving objects (or perhaps of a changing point-of-view) 
bathed in an illuminant which scatters off surfaces. A 
basic analytical result still awaits, though progress could 
surely also be made simply through rendering naturalistic 
environments by computer. The robustness of scaling 
could then be tested in a number of model environments 
created using various parameters, such as object size 
distributions and texture maps. The near photo-reality of 
contemporary computer graphics could well save much 
experimental effort in this endeavor. 

It should be noted that the only statistics I have 
attempted to model are those of second-order. At the 
same time it is also known that higher-order statistics also 
show scaling, such as those of pixel difference histo- 
grams (Ruderman & Bialek, 1994b; Ruderman, 1994b). 
This deeper scaling places further restrictions on image 
models used to explain natural image statistics, and itself 
remains to be illuminated theoretically. The notion of 
statistically independent image patches belonging to 
different objects does, however, imply that there is a 
single scaling exponent in these images. An explanation 
for why the power spectrum of local variance images has 
the same exponent as the spectrum of the images 

themselves (Ruderman, 1994b) thus appears to be at 
hand. 

Finally, the understanding we gain about the images 
our visual system interprets ultimately helps us to 
understand the process of vision itself. Barlow's notion 
of optimally in non-redundant representations and 
factorial coding is, in practice, linked to the statistically 
independent objects present in the world, and their optical 
projections as visual stimuli. Combining efficient coding 
with the visual ecology of image statistics offers the 
promise of a unified approach to the systematic 
exploration of visual system design. 

DERIVING THE CORRELATION FUNCTION 

In this Appendix the form of the correlation function from the power- 
law spectrum is derived in detail. Since the results of the calculation 
are important and not obvious at first sight this calculation is included 
for completeness. Those with little mathematical inclination may wish 
simply to view the table of results at the end. 

The theory of wide-sense stationary processes (Papoulis, 1991) 
states that the power spectrum and the correlation function are related 
through the Fourier transform: 

S(k) ¢=~ C(x). (AI) 

In two dimensions we have the precise relations: 

f 
S(k) = jd2xC(x> ik.x 

C(x) = [ dzk S(k)e ih (A2) 
J (2/r) 2 

where the integrals are over all space and frequencies, respectively. 
The frequency variable, k, is measured in 27r cycles/deg, and the spatial 
variable, x, is measured in degrees. For the purposes of this Appendix, 
we will be interested in the second equation of this pair. 

The power spectrum of natural images takes the form S(k) = Ak 'l 2, 
where any orientational dependence has been ignored. The corre- 
sponding correlation function will also be of an orientationally 
averaged nature. The orientation dependence of Eq. (A2) can then be 
integrated out, yielding a Hankel transform: 

C(x) = A [ dkU,_l Jo(kx ) (13) 
2~ .! 

The limits of this k integral must be examined. Using the following 
small and large argument limits of the Bessel function [Gradshteyn & 
Ryzfiik, 1994; (Eqs 8.441.1) and (8.451.1)]: 

J0 (u---+0) ----+ 1 

f ~ 2  
Jo(u----4oo)---+ , i / Q o s ( u  - rr /4) ,  ( 14 )  

¥ 7rH 

we see that (for finite x) the k--+0 limit of the integral is non-divergent 
for t />  0. The upper limit is well-behaved for t /<  3•2, as will be 
discussed shortly. So for 0 < 1/< 312 the integral converges and no cut- 
offs need be imposed. Of course the process of imaging itself always 
introduces a high-frequency roll-off, and since arbitrarily low spatial 
frequencies do not exist (what does one cycle per 720 deg mean when 
the image wraps around at 360 deg?), we will generally need to 
introduce cut-offs. Since no q has yet been found as large as 3/2 this 
limitation is not expected to be significant. The high-frequency cut-off 
will turn out to be irrelevant in this regime, as long as it is much larger 
than llx. As a first-pass result, taking the complete range of frequencies 
as opposed to imposing cut-offs gives for Eq. (A3): 

C(x) oc x-" (15) 

(valid for 0 < q < 3/2), thus showing immediately that we expect the 
correlation function to include a power-law along with cut-off- 
dependent terms. 
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The preceding paragraph was meant to motivate the need to 
introduce high- and low-frequency cut-offs, which we define as 
2 < k < A. Solving for the correlation function begins in earnest by 
expressing it in two pieces: 

C(x) = A x-  ~ [I~ (x) - IA (x)], (A6) 

with 

1 l~(x) = ~ I dO LxdUU~-l eiUC°s° (A7) 

being the integral from the low cut-off to infinite frequency, and 
similarly for IA(x). I will assume for the remainder of the discussion 
that 2x < Ax; that is, the length scales over which we wish to measure 
the correlation function are far from those corresponding to the cut-off 
frequencies. Let us examine each of these integrals in turn. 

Using an expression for the incomplete gamma function [Grad- 
shteyn & Ryzhik, 1994; Eq. (3.381.3)] gives: 

1 JdO(-icosO) W(r/,-i~xcos0). (A8) l~(x) = 

As 2x--*0 the incomplete Gamma function can be expanded to 
lowest order as F(tl,q~O)~F(tl)-qtl/tl [Gradshteyn & Ryzhik, 1994; 
Eq. (8.354.2)], giving: 

l~(x) -- (Ax)" Jr P(r/) i7 ~ J dO(cosO)-". (A9) 
27r 

The 0 integral can now be done [Gradshteyn & Ryzhik, 1994; Eq. 
(3.621.1)]: 

I i"(cos0)-~ = 21-ne~in/2cos(Tr~/2] F2(1~2) (A10) 
" " " r ( 1 - ~ ) "  

This gives our final expression (valid for t/<< 3/2,~x ( (  1): 

= 2. cos(.~2~ r ( ~ ) r ~ ( ~ ) ( ~ x ) "  ( A l l )  
l~(x) 7r ' ' r (1  - r/) r/ 

Using the large distance behavior of the Bessel function as given by 
Eq. (A3), we can write IA in the limit Ax--* oo as: 

1 I °° 73 = du u -~[cosu + sinu]. (A12) IA(x) -~ ~x 

The cosine and sine integrals can be performed [Gradshteyn & 
Ryzhik, 1994; Eq. (3.761)] to give: 

1[ ] 
lA(x) = - ~  e-"i(n-½)/2F(~l - ,iAx) + c.c. , (A13) 

where "c.c." denotes the complex conjugate of the same expression. 
Expanding the incomplete Gamma function in large Ax and keeping 
the dominant term [Gradshteyn & Ryzhik, 1994; Eq. (8.857)]: 

y,(~? _ 1, q ~ oo) ---+ qn-½e-q (A14) 

gives: 

lA(x) = W~-2(Ax)O-½sin(Ax). (A15) 

For t /<  3/2, as A x ~  0o at fixed x, IA(X) becomes negligible whereas 
l~(x) remains finite. Thus the high-frequency cut-off can be ignored for 
x > >I/A, or when we measure the correlation function at distances 
greater than the pixel spacing. The final expression for the correlation 
function becomes (valid for 2x << 1 << Ax, t / <  3/2): 

C ( x ) = ( A ) [  ~c°s(Tr~l/2)F(rl)F2(~)~l(1-~ x - ~ - ~ 1 "  (A16) 

The case t / =  0 is special, and the correlation function can be found 
from Eq. (A16) by a limiting procedure as: 

TABLE 1. Behavior of the correlation function at various, t/. 

Regime C(x) 

t / >  0 -ICll + IC21x Inl 
r / =  0 _ A ln(2x) 
t /<  0 ICll - IC21x I'll 

A 
C(x) = - ~ l n ( A x ) .  (A17) 

The correlation function for an exponent of exactly two is thus 
logarithmic. 

To summarize, except for the case r /=  0 which gives a logarithmic 
correlation function, the correlation function takes the form: 

C(x) = --Cl + C2x -n, (A18) 

with CI and C2 determined by Eq. (A16). The smoothness of the 
transition through the logarithm at t / =  0 is well-controlled by the 
dependences of Cl and C2 on t/. It can be shown that for t/positive 
(negative) CI and C2 are both positive (negative), thus always 
providing a correlation function which falls with separation distance. 
This is summarized in Table 1. Note that the value of C1 depends on 
the lower cut-off frequency 2. 
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