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Registering a Multi-Sensor Ensemble of Images
Jeff Orchard, Member, IEEE, and Richard Mann, Member, IEEE

Abstract—Many registration scenarios involve aligning more
than just two images. These image sets – called ensembles – are
conventionally registered by choosing one image as a template,
and every other image is registered to it. This pairwise approach
is problematic because results depend on which image is chosen
as the template. The issue is particularly acute for multi-sensor
ensembles because different sensors create images with different
features. Also, pairwise methods use only a fraction of the
available data at a time. In this paper, we propose a maximum-
likelihood clustering method that registers all the images in
a multi-sensor ensemble simultaneously. Experiments involving
rigid-body and affine transformations show that the clustering
method is more robust and accurate than competing pairwise
registration methods. Moreover, the clustering results can be used
to form a rudimentary segmentation of the image ensemble.

Index Terms—registration, multi-sensor, multi-image, mutual
information, Gaussian mixture models.

I. INTRODUCTION

Image registration is a fundamental operation in image
analysis. It crops up in many realms, including medical
imaging, remote sensing, quality control, and super-resolution,
to mention only a few. A great deal of research has been
devoted to automatically register two images (or volumes).

This paper addresses the question of how to register more
than two images. Suppose you have several images – all of the
same content – and you want to register them all together. We
call this collection of images an ensemble. The vast majority of
registration methods are designed to register only two images
at a time. It is not clear how to use these pairwise methods
for ensemble registration.

The problem of registration becomes more difficult when the
images come from different sources. For example, a body part
could be imaged with different modalities such as magnetic
resonance imaging (MRI), computed tomography (CT), and
positron emission tomography (PET), or a region of the earth
captured by satellite imagery using a variety of different
sensors, or several images of a face acquired with different
illumination conditions. In these cases, the image intensities
cannot be compared directly because, although the images
depict the same content, they do so with different transfer
functions. We refer to such registration problems as multi-
sensor registration.

To illustrate the difficulty of multi-sensor ensemble registra-
tion, consider the “phantom” (to borrow a term from medical
imaging) shown in Fig. 1. The figure shows a contrived
example of multi-sensor imaging. The “true” object being
imaged, shown on the left of Fig. 1, consists of a large circle
encapsulating four ellipses. However, only two of the four
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Fig. 1. Success rate for pairwise registration of the multi-sensor phantom
dataset. The edge labels give the percentage of trials for which FLIRT’s 64-
bin NMI registration had an average pixel displacement of less than 3 pixels.
The circular ROI is outlined in image A.

ellipses are visible in each image, simulating the phenomenon
of multi-sensor image acquisitions. Moreover, a different pair
of ellipses is visible in each image, causing some pairs of
images to contain disjoint content. The outlined circle in
image A shows the region of interest (ROI) in which the
images were registered. The success-rate percentages reported
in the figure indicate that FLIRT [1], a popular pairwise
registration method, had difficulty registering image pairs
diagonally across from each other (the term “success” is fully
defined in section IV). It also had difficulty registering the
image pair that shared the smallest and roundest ellipse (D and
C). Hence, pairwise ensemble registration has the undesirable
property that the solution depends on which pairs of images are
chosen and registered. We will refer to this issue as selection
dependency.

In addition, most pairwise registration methods do not offer
a way to guarantee that redundancy in the solution is consis-
tent. Consider a pairwise method that registers phantom image
A to B and B to C. By composing those two transformations,
one can derive a transformation from A to C. However, it is
extremely unlikely that registering A to C will yield exactly the
same transformation. We refer to this phenomenon as internal
inconsistency.

We hypothesize that a registration strategy that registers all
the images simultaneously can avoid both selection depen-
dency and internal inconsistency. That is, including all the
images in a single, global registration problem precludes the
need to choose which pairs to register, while generating a so-
lution that is not redundant (and, thus, is internally consistent).
Moreover, we hypothesize that the statistical power of using
all the images at the same time, rather than just two at a time,
will yield more accurate registration solutions.

In this paper, we present a method that employs clustering
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to simultaneously register an entire ensemble of images. The
method computes the registration solution, and at the same
time generates a model of the transfer functions among the
images of the ensemble.

II. BACKGROUND

Consider two images, one overlaid on the other. Each pixel
corresponds to two intensity values, one from each of the two
images. This 2-tuple can be plotted in the joint intensity space,
where each axis corresponds to intensity from each of the
images. Plotting the points for all the pixels creates a scatter
plot in this joint intensity space, and we refer to this scatter
plot as the joint intensity scatter plot, or JISP.

The idea behind many multi-sensor registration methods is
to reduce the dispersion in the JISP. Why should this be the
case? The implicit assumption linking different images of the
same object is that they are recognizable as the same object
because of some consistency by which intensities are assigned
to components in the image. For example, bones show up as
black in an MR image, and white in a CT image. Even though
bones are rendered with a different intensity in each imaging
modality, we still recognize the similarity in global shape
because the intensity correspondence is consistent across many
pixels. That is, pixels with intensities near x in one image often
correspond to pixels with intensities near y in the other image.
We call this correspondence an intensity mapping. An intensity
mapping need not be one-to-one. Indeed, there are lots of
examples where two pixels with the same intensity in one
image correspond to different objects – and different intensities
– in another image. Using our MR/CT example again, white
matter and gray matter are virtually indistinguishable in CT,
yet yield noticeably different intensities in T1-weighted MRI.

Each object in an image corresponds to a coherent collection
of points in the JISP. For many examples, such as bone in MR
and CT, the collection of points might be a distribution about
a single focal point. For two images of a face – each one
illuminated from a different angle – the collection of points
corresponding to skin forms a manifold because the gradation
of shades in one image corresponds to a different, though
consistent, gradation of shades in the other image, creating
a curve of points in the JISP.

As two images are moved out of register, the spatial corre-
spondence of objects in the images gets disturbed, causing the
coherence of the JISP to be disrupted. The clusters and swaths
of scatter points spread out and move around because some
bone pixels are now paired with muscle pixels, others with fat
pixels, etc. Intensity-based multi-sensor image registration is
based on this observation. The objective is to move the images
until the JISP is optimally coherent, or minimally disperse.

One of the most successful applications of this idea uses the
entropy of the joint histogram to quantify dispersion. Given
the JISP between two images, one forms a joint histogram
to reflect the density of points in the scatter plot. One can
compute the entropy of this histogram. The lower the entropy,
the more compact and tightly clustered the scatter plot, and
hence the more closely registered the two images. Extensions
on the same idea include mutual information (MI) [2], [3],
and normalized mutual information (NMI) [4].

The same idea can be applied to ensemble registration. The
problem with the entropy-based methods is that they do not
scale well for registration with more than two images. The
joint histogram is an intermediary to those cost functions,
and as you add more images to the problem, the number
of histogram bins increases exponentially. For example, the
joint histogram among five images, with each axis partitioned
into 64 bins, has 230 bins (over 1 billion). With 256 intensity
bins per image, it gives us 240 bins (over 1 trillion). Hence,
these histogram-based methods are infeasible for ensemble
registration.

Some registration methods measure the dispersion in the
JISP without the need to form the joint histogram. In [5],
dispersion is quantified as the length of a minimum-length
spanning tree on the joint intensity scatter plot. Roche et al. [6]
model the clusters in the JISP as a polynomial, thus assuming
a functional relation between the intensities in the two images.
This is often not the case. That method was expanded in [7]
where a two-pass “least trimmed squares” approach allowed
for the functional modeling of the outliers from the first
least-squares pass. Leventon et al. [8] present an iterative
method similar to ours, except they must specify the correct
JISP in advance, eg., from previously registered images. In
contrast, our method derives the JISP and registration solution
simultaneously.

The first demonstration of ensemble registration that we are
aware of was published in 1998 by Woods et al. [9]. Given a
set of images, Woods constructs his cost function by adding
together the sum of squared differences (SSD) between all
possible pairs of images. Minimizing this cost function yields
what Woods calls the “reconciled mean transformations”.
However, since his method uses the SSD cost function, it is
only suitable for mono-sensor image registration.

Some other ensemble registration methods have recently
emerged in the literature [10], [11], [12], [13], [14]. However,
these methods have not been demonstrated on multi-sensor im-
age ensembles, but rather focus on the problem of registering
a set of images from the same modality to form a template
(or so-called atlas). A different domain-specific method was
designed to simultaneously register sets of brain MR images,
but relies on the use of a human brain atlas to perform tissue
classification, and then aligns the tissue-classification images
[15]. Finally, one method [16] jointly registers and clusters
a set of motion-corrupted images, automatically grouping
images by similarity. However, their method assumes that the
set of images is composed of moved and noisy versions of
a set of prototype images, so the registration of the images
to their class archetype amounts to mono-modal registration.
Hence, these methods are not suitable for general-purpose
multi-sensor ensemble registration.

In this paper, we present an efficient method for multi-sensor
ensemble registration. Our method is based on clustering in the
JISP, jointly modeling the distribution of points in the JISP
as it estimates the motion parameters. Density estimation of
the clusters is modeled as a Gaussian mixture model (GMM),
and is established iteratively using an estimation-maximization
(EM) method. The motion parameters are also solved using
an iterative Newton-type method. The iterates of these two
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methods are interleaved, thereby solving the two problems
(density estimation and registration) in synchrony.

III. METHOD

Our approach to minimizing the dispersion in the JISP
involves two steps: (1) density estimation of the scatter points
in the JISP, followed by (2) moving the images to minimize the
dispersion of the scatter plot. We refer to these two processes
as density estimation and motion adjustment, respectively.
Figure 2 depicts density estimation and motion adjustment
pictorially.

Suppose we are registering an ensemble of D images. Then,
each pixel in our image domain has D values associated with
it. We will refer to the vector of intensities for a single pixel
as an “intensity vector”, and denote the intensity vector for
pixel x as Ix ∈ RD.

Let us represent our density estimate by φ. If we model
the pixels as spatially independent variables, the likelihood of
observing the images can be written

L(φ) =
∏
x

p (Ix|φ) , (1)

where p is a probability function (defined later) and x denotes
a pixel in our image domain (usually a subset of R2 or R3).
Thus, L(φ) is the probability of observing the set of intensity
vectors, given the distribution specified by φ.

To use this likelihood as a registration cost function, we add
the possibility to move the ensemble of images. Let θ represent
the set of motion parameters that specify the displacements
applied to the image ensemble. Then, our likelihood cost
function can be written not only as a function of the pixel
density model, φ, but also as a function of the motion
parameters, θ,

L(φ, θ) =
∏
x

p
(
Iθx|φ

)
. (2)

The expression Iθx represents the intensity vector for pixel x
after applying the spatial transformation with parameters θ.

Because of the form of L, it is easier to optimize its
logarithm, logL, because the product over x turns into a sum,

logL(φ, θ) =
∑
x

log p
(
Iθx|φ

)
. (3)

Our goal in multi-sensor ensemble registration is to maxi-
mize logL(φ, θ) (and hence L(φ, θ)) by appropriate choice of
φ and θ. The remainder of this section describes an iterative
method that alternately optimizes L with respect to φ, and
with respect to θ.

A. Gaussian Mixture Model

We will model the density of points in the JISP using a
Gaussian Mixture Model (GMM) [17]. The mixture consists
of K Gaussian components, each specified by a mean µ and
covariance matrix Σ. Then, for a single pixel location x, the
likelihood of observing the intensity vector Iθx is

p(Iθx|φ) =
K∑
k=1

πkN
(
Iθx;µk,Σk

)
, (4)

where the kth Gaussian component is specified by µk and
Σk, and πk are the component weights, with

∑
k πk = 1. The

function N denotes the normal (Gaussian) distribution,

N (Iθx;µ,Σ) =
exp

(
− 1

2

(
Iθx − µ

)T Σ−1
(
Iθx − µ

))√
(2π)D |Σ|

. (5)

B. Density Estimation

Taking θ to be the correct motion, we can improve our
density estimate by optimizing logL(φ, θ) with respect to the
probability density function φ.

For the GMM described above, we can find the optimal φ
iteratively using the expectation-maximization (EM) algorithm
[17]. The algorithm has an expectation step that maps scatter
points to clusters, followed by a maximization step that re-
estimates the optimal clusters. The advantage of using this
algorithm with a GMM is that each iteration has a closed-
form, least-squares solution.

In the context of ensemble registration, the expectation step
divvies-up the membership of each intensity vector among the
K clusters. The membership of pixel Iθx to cluster k is

τkx =
πkN (Iθx|φk)∑
κ πκN (Iθx|φκ)

. (6)

Notice that
∑
k τkx = 1 for each x.

The maximization step sets the parameters µk and Σk to
their (weighted) maximum likelihood values, given by

µ′k =
∑
x τkxI

θ
x∑

x τkx
, (7)

Σ′k =
∑
x τkx(Iθx − µ′k)(Iθx − µ′k)T∑

x τkx
. (8)

Then the Gaussian component weights are re-estimated,

π′k =
∑
x τkx∑

κ

∑
x τκx

. (9)

C. Motion Adjustment

The other half of the method involves holding φ fixed,
and using it to find a motion increment that moves all the
scatter points so that the overall log-likelihood, logL(φ, θ), is
increased. We describe here a Newton-type step.

To optimize logL(φ, θ) with respect to the parameters θ,
we set its gradient vector to zero,

∂
∂θ logL(φ, θ) = 0. (10)

Note that if each image has M motion parameters, and there
are D images in the ensemble, then there are a total of MD
motion parameters in θ. Hence, the gradient vector in (10) is
an MD × 1 vector.

For notational brevity, we will use Nk(Iθx) instead of
N (Iθx;µk,Σk). Recall that Iθx denotes the intensity vector at
pixel location x after applying the motion parameters θ to the
ensemble. The gradient vector of logL can be written

∂
∂θ logL(φ, θ) =

∑
x

∂
∂θp

(
Iθx|φ

)
p (Iθx|φ)

. (11)
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Fig. 2. The two main processes in ensemble registration. In density estimation, the motion parameters are held fixed while a better density estimate is
computed by moving and stretching the cluster density components, as shown in (a). In motion adjustment, the density estimate is held fixed and the optimal
motion is determined using least-squares. As the images move, the corresponding scatter points move toward the cluster centres (on average), as shown in
(b).

Substituting in the definition for p (from (4)), and applying the
chain rule for differentiation, we can express the numerator of
the fraction as

∂

∂θ
p
(
Iθx|φ

)
=

K∑
k=1

πk
∂Iθx
∂θ

∂

∂Iθx
Nk
(
Iθx
)
, (12)

where ∂Iθx
∂θ is an MD × D matrix holding the derivatives of

the D pixel intensities with respect to each of the MD motion
parameters, and ∂

∂Iθx
Nk(Iθx) is the D × 1 gradient vector of

the normal function. It is worth noting that since each motion
parameter affects only one image in the ensemble, the matrix
∂Iθx
∂θ is sparse and block-diagonal.

Finally, the derivative ∂
∂Iθx
Nk(Iθx) can be written

−Σ−1
k

(
Iθx − µk

)
Nk
(
Iθx
)
. (13)

Putting it all together, we can write ∂
∂θ logL(φ, θ) as

∑
x

−1
p (Iθx|φ)

K∑
k=1

πkNk
(
Iθx
) ∂Iθx
∂θ Σ−1

k

(
Iθx − µk

)
(14)

We want to find motion parameters θ that set ∂
∂θ logL(φ, θ)

to a zero vector. To accomplish this, we wish to find a small
motion increment θ̃ so that ∂

∂θ logL(φ, θ + θ̃) is zero. We
replace Iθx in the (Iθx − µk) term of (14) with a nudged
version of our ensemble, Iθ+θ̃x . Approximating the spatial
transformation so that it is a linear function of θ̃ gives us

Iθ+θ̃x = Iθx + ∂Iθx
∂θ

T

θ̃, (15)

where θ̃ is a small increment to the motion parameters (a
“nudge”). Setting (14) to zero then yields a linear equation in

θ̃,∑
x

1
p(Iθx|φ)

K∑
k=1

πkNk
(
Iθx
) ∂Iθx
∂θ Σ−1

k

(
Iθx + ∂Iθx

∂θ

T

θ̃ − µk
)

= 0.

(16)
By simply factoring out θ̃ and collecting the remaining terms,
we get(∑

x

1
p(Iθx|φ)

K∑
k=1

πkNk
(
Iθx
) ∂Iθx
∂θ Σ−1

k
∂Iθx
∂θ

T
)
θ̃ (17)

=

(∑
x

1
p(Iθx|φ)

K∑
k=1

πkNk
(
Iθx
) ∂Iθx
∂θ Σ−1

k

(
Iθx − µk

))
,

or,
Aθ̃ = b (18)

where A is the MD×MD system matrix, and b the MD×1
vector defined inside the parentheses on the right-hand side of
(17). As an example, consider an ensemble with five images
(i.e. D = 5), each with three motion parameters (i.e. M =
3). Then (18) is a linear system of 15 equations involving
15 unknowns. Solving this system for θ̃ gives us the optimal
motion increment, according to the linear approximation. We
use this increment to adjust our current estimate for θ.

D. Implementation

We implemented our method in Matlab (Mathworks Inc.,
Nattick, Massachusets). Algorithm 1 summarizes the code
for our method. Here we outline a few details about our
implementation.

As is common practice for image registration (including
FLIRT), we use a multi-resolution framework in which images
are registered first at a low resolution, and then at successively
higher resolutions [18], [19]. The solution at each scale is used
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Algorithm 1 Ensemble clustering registration
input: initial ensemble I0
input: initial motion parameters θ
input: initial GMM parameters φ
for each scale do
Iscaled ← scale ensemble I0
I ← apply motion (θ) to ensemble Iscaled
repeat

for K1 iterations do
φ← EM step (see Section III-B)

end for
for K2 iterations do
θ̃ ← motion adjustment (see Section III-C)
θ ← θ + θ̃
I ← apply motion (θ) to ensemble Iscaled

end for
until converged (θ̃ is small)

end for
output: I is registered ensemble at full scale
output: θ holds the optimal motion parameters
output: φ holds the GMM parameters

as an initial guess for the next scale. In general, images were
registered at scales 10%, 20%, 50%, and then finally 100%.
Exceptions to that schedule are noted in section IV.

Though not required in our model, each image in the en-
semble was subject to the same type of spatial transformation
(either rigid-body, or affine). Each image then had the same
number of motion parameters, M , associated with its own
transformation. Thus, the total number of motion parameters
stored in the vector θ is MD.

Our method requires an initial density estimate. Following
the method outlined in Section III-B, we implemented a simple
EM iteration that attempts to find a GMM (represented by
φ) to maximize (3). The initialization has three phases, with
increasing degrees of freedom in the maximization step. In
the first phase, only the means (µk) are adjusted using (7).
In the second phase, the weights (πk) are also adjusted using
(9). Finally, in the last phase, the covariances (Σk) are also
adjusted using (8). Ten EM iterations are executed for each of
these three phases.

IV. EXPERIMENTS

Our new ensemble clustering registration method was com-
pared to two pairwise registration methods, as well as a least-
squares ensemble method, to test our hypotheses regarding the
advantages of ensemble registration versus pairwise registra-
tion. We used our method in its full ensemble registration
mode, where all the available images were simultaneously
registered. We also used registration methods implemented
in FLIRT, a product of the Oxford FMRIB group [1]. Their
program is a popular registration tool, and is able to register
using a number of different cost functions – we used three
of them: normalized mutual information (NMI), correlation
ratio (CR), and normalized correlation (NC). We also used our
clustering method in a pairwise fashion, where we registered

only two images at a time. This pairwise clustering registration
method was included to act as a rough experimental control to
differentiate between the effects of ensemble registration, and
the effects of registration using clustering. Finally, we modified
our clustering registration method to implement the sum of
squared differences (SSD) cost function, where the cost of a
scatter point is measured as the square of its perpendicular
distance from the identity line in the JISP. The purpose for
including this method was to demonstrate the importance of
density estimation in the process of multi-sensor ensemble
registration.

The performance of each registration method was gauged
by comparing the estimated transformations to the gold stan-
dard transformations. This difference was quantified using the
average pixel displacement, defined as the distance of each
pixel from its true, registered position, averaged over all pixels
used in the registration. Hence, an average pixel displacement
of 0 indicates perfect registration, and a large average pixel
displacement means poor registration. If the average pixel
displacement is greater than 3 pixels, then the registration is
considered a failure. Hereafter, we will use the word error to
denote the average pixel displacement.

The registration methods were tested in five different reg-
istration applications. For each application, we generated trial
ensembles by applying known displacements to the initially-
regsitered images. For most of the image ensembles, multiple
trials were run. The different experiments are outlined below.

A. Mono-Sensor Time Series
This image set contains a time series of 56 snapshots of

a simulated functional MRI experiment (see Fig. 3). The
snapshots were created by duplicating a single 80× 80 pixel
T2*-weighted MRI 56 times. Artificial activation was added
to a large part of the occipital lobe, adding 5% of the average
brain intensity to the active region during three 8-frame active
periods. Then, randomly-generated rigid-body displacements
were applied to all the images, choosing the translations
and rotations uniformly from the range [−10, 10] pixels or
degrees. Thus, there were 168 motion parameters in total.
Finally, Gaussian distributed white noise was added to each
image (σ = 4.5% of mean brain instensity).

Because of the time it takes to complete the 3080 pairwise
registration runs, we produced just one trial ensemble. The
ensemble clustering and the pairwise clustering registration
methods were each run with only one Gaussian component,
and each used a multiresolution framework with scales 20%,
50% and 100%. The FLIRT method was run using the normal-
ized correlation cost function. We also ran the ensemble SSD
method on this dataset. The entire set of registration scenarios
was run twice by each registration method, once using all the
pixels in the image, and once using only the pixels in a region
of interest that included roughly 75% of the brain (outlined in
Fig. 3(a)).

B. Three-Dimensional
We also tested our registration method on an ensemble of

medical imaging volumes. The Retrospective Image Registra-
tion Evaluation (RIRE) project’s training set was used [20]
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(one slice is shown in Fig. 4). The set consists of five volumes:
three MR (magnetic resonance) volumes (T1-weighted, T2-
weighted, and PD-weighted), a computed tomography (CT)
volume, and a positron emission tomography (PET) volume.
The volumes were resampled into register using the true
displacement parameters supplied by the RIRE project, then
scaled so that each volume was 80×80×26 isotropic voxels.
The volumes were then padded to 80×80×32 to avoid image
content from leaving the field of view after being displaced.
Ten trial ensembles were generated using randomly generated
3D rigid-body transformations, uniformly choosing the three
rotations and three translations from the range [−5, 5] (degrees
or pixels). The ensemble clustering method was initialized
with six Gaussian components, while the pairwise clustering
method was initialized with four. Both clustering methods used
a multiresolution framework with scales 20%, 50% and 100%.
The FLIRT pairwise registration method was run using the
correlation ratio cost function.

C. Satellite

A set of six Landsat satellite images, shown in Fig. 5, were
used for testing. Each image was acquired with a different
sensor. These six images (761× 748 pixels in size) were used
to generate ten trial ensembles, each with a different set of
randomly-generated 6-degree-of-freedom affine displacements
(two scales, one shear, one rotation, and two translations). The
motion parameters were chosen uniformly from the following
ranges: [0.95, 1.05] for scales, [−0.2, 0.2] for the shear, [−5, 5]
degrees for the rotation, and [−5, 5] pixels for the translations.
Registration was performed on the region of interest outlined
in A of Fig. 5. The ensemble clustering registration method
was initialized with six Gaussian components, while the pair-
wise clustering method was initialized with three components.
The FLIRT method was run using the correlation ratio as the
cost function.

D. Variable Illumination

Figure 6 shows an image ensemble of the same face
(640 × 480) with five very different light positions, ranging
from far left to far right. The images were taken from the

(a) Inactive period with ROI (b) Active period

Fig. 3. Images used in mono-sensor time series experiments (FMRI). (a)
shows an image during the inactive period, as well as the outline of the ROI
used for one of the experiments. (b) shows an image from one of the active
periods, displaced randomly. The activity in the occipital region (toward the
bottom of the image) is very slightly brighter in (b) than (a).

Extended Yale Face Database B [21]. Registration was per-
formed using only the pixels in the region of interest, outlined
on F1 of Fig. 6. This set of images poses a very difficult
registration scenario, since images F1 and F5 have very little
illuminated content in common within the region of interest.
Ten trial ensembles were generated by applying randomly-
generated rigid-body displacements, chosen uniformly from
the range [−10, 10] pixels or degrees.

The ensemble clustering registration method was initialized
with six Gaussian components, while the pairwise clustering
method was initialized with four components. The FLIRT
method was run using the NMI cost function with 64 bins.
The ensemble SSD method was also run on this dataset.

E. Disjoint Content

Ten trial ensembles of the multi-sensor phantom (shown in
Fig. 1) were generated using randomly-generated rigid-body
displacements chosen uniformly from the range [−10, 10]
pixels or degrees. The ensemble clustering method was initial-
ized with five clusters, while the pairwise clustering method
was initialized with four. Both clustering methods used a
multiresolution framework with scales 20%, 50% and 100%.
The FLIRT method was run using the NMI cost function with
64 bins. We ran the ensemble SSD method on this dataset as
well.

F. Number of Gaussian Components

One of the parameters that needs to be specified in our
method is the number of Gaussian components to include in
the mixture model. We wanted to know how our the ensemble
registration method would behave over a range of different
values. We ran only our ensemble registration method (not
the pairwise methods) on the multi-sensor phantom dataset
for three different numbers of components: K = 3, K = 5,
and K = 8. The trial datasets are the same as those used in
the “disjoint content” experiment. Over the ten trial datasets,
we recorded the mean error for all trials, the mean error for
converged trials (those with an error of less than three pixels),
and the number of failed registrations.

V. RESULTS

A. Mono-Sensor Time Series

Among the 56 images in the simulated functional MRI time
series, the pairwise methods performed 3080 pairwise regis-
trations. The initial average error for the unregistered images
was 10.6 pixels for the trials that involved the ROI. On those
trials, the ensemble clustering and ensemble SSD methods
successfully registered all the images. The pairwise clustering
method failed on 686 (22%) of the registrations, while FLIRT’s
normalized correlation registration method failed on only one.
Of the successful cases, the mean error was 0.028 for the
ensemble clustering method, 0.035 for the ensemble SSD
method, 0.046 for the pairwise clustering method, and 0.12
for FLIRT. These results suggest a number of things: (1)
When compared to the pairwise clustering method, FLIRT is
quite a robust pairwise registration method. (2) The ensemble
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CT PET PD-MRI T1-MRI T2-MRI
Fig. 4. A slice from the RIRE ensemble used to test 3D registration.

A and ROI B C D E F
Fig. 5. Satellite images used to test the affine registration. The ROI is outlined in image A.

F1 and ROI F2 F3 F4 F5
Fig. 6. Face images used to test the effect of variable illumination. The ROI is outlined in image F1.

methods (clustering and SSD) avoided all the failures that the
pairwise clustering methods encountered. (3) The error was
substantially lower for the ensemble methods than for FLIRT.

The cases that failed in the pairwise clustering method were
those where the initial misregistration was sufficiently large
to cause the solution to diverge. Figure 7(a) shows one such
initial displacement. The image labeled “b” in the figure was
displaced to the right far enough that its background filled
a significant part of the ROI (which is fixed in relation to
image “a”). This region forms a cluster in the JISP along
the “a”-axis, which the Gaussian component automatically
models (as shown in Fig. 7(b)). Then, moving image “b”
further to the right reinforces that erroneous cluster, and causes
the solution to diverge until only the background of “b” is
inside the ROI. We do not observe this phenomenon during
the ensemble registration because the erroneous clusters are
scattered incoherently; they essentially cancel each other out.

For the trials that used the entire image for registration,
the initial average error was 11.2 pixels, and all four methods
correctly registered all the images. There were differences,
however, in the accuracy. The mean error for the ensem-
ble clustering and ensemble SSD registration methods were
0.022 and 0.023 pixels (respectively). The pairwise clustering
method was only slightly less accurate, with a mean error of
0.024 pixels. The normalized correlation registration of FLIRT
yielded a mean error of 0.087, almost four times larger than the
error exhibited by the ensemble clustering registration method.

(a) (b)

Fig. 7. Initial misregstration for a case on which the pairwise clustering
method failed. The large portion of the background of image “b” inside the
ROI creates a cluster near the “a”-axis in the JISP that distracts the Gaussian
component and causes the registration to diverge.

B. Three-Dimensional

The results for the 3D registration test, using the RIRE
ensemble, are shown in Table I. The initial average error
for the unregistered images was 6.2 pixels. Both pairwise
methods were less accurate than the ensemble method. The
ensemble clustering method successfully registered the entire
set of images, with the exception of what appears to be a slight
misregistration of the PET image.

Figure 8 plots three of the five dimensions of the JISP
as a stereo pair (see the figure caption for instructions on
how to view the stereo pair). That is, only the CT, PET
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TABLE I
AVERAGE ERROR FOR 3D ENSEMBLE (RIRE). INITIAL AVERAGE ERROR WAS 6.2 PIXELS.

CT- CT- CT- CT- PET- PET- PET- PD- PD- T1-
Method PET PD T1 T2 PD T1 T2 T1 T2 T2 Mean

NMI (pairwise) 6.1 7.7 2.6 8.2 7.6 5.9 6.7 6.0 4.9 7.7 6.34
Cluster (pairwise) 3.4 3.8 2.5 2.9 7.4 6.4 5.4 2.8 4.5 3.2 4.23
Cluster (ensemble) 2.3 1.7 1.7 1.8 2.8 2.5 2.9 0.93 0.56 1.1 1.83

Fig. 8. 3D joint intensity scatter plot (stereo pair) and corresponding Gaussian components for the 3D registration test. Note that only three of the five
dimensions of the JISP are plotted. To view the stereo pair, hold the page approximately 30 cm from your face and have your left eye focus on the left plot,
and your right eye focus on the right plot. You might find it helpful to place a piece of paper vertically between the plots so that your left eye cannot see the
right image, and your right eye cannot see the left image.

and MRI-T2 intensities are represented in the scatter plot;
the other two dimensions of the space – corresponding to
MRI-PD and MRI-T1 – are not shown in the figure even
though they were used in the registration process. The figure
also includes a representation of the Gaussian components
derived by the clustering registration process, each drawn as an
ellipse that indicates its location and covariance. Notice how
the six ellipses fit the data, collectively acting as a density
estimator. Bear in mind that the Gaussian components are
scalar functions in a 5D space, so our 2D ellipses drawn in 3D
express only part of the full picture. In particular, each ellipse
is drawn to indicate the covariance in the plane of largest
variation. The 2D ellipse is drawn in 5D and then projected
onto the 3D subspace depicted in the figure.

Each point in the scatter plot maintains a fractional mem-
bership to each of the Gaussian components. Using (6), we
can compute τkx, the membership of pixel x to Gaussian
component k. Hence, once the registration method is complete
and the GMM is stable, we can view the spatial distribution
of the influence of a chosen Gaussian component by creating
an image of τkx for a fixed value of k. We call this image
the membership map for component k. Brighter regions show
pixels that are strongly linked to component k. The six mem-
bership maps corresponding to Fig. 8 are shown in Fig. 9. In

the figure, one can see that the different Gaussian components
model coherent structures in the image.

C. Satellite

Out of the 300 pairwise registrations (10 trials, each with 30
registration pairs), the initial average error for the unregistered
images was 15.9 pixels. The ensemble clustering registration
method failed on 20 of them. The pairwise clustering method
failed on 150 pairs (50%), and FLIRT’s correlation ratio
method failed on 37 of the pairs (12%). It is worth noting that
the 20 misregistration cases for the ensemble method were the
result of only two registration failures. In each of two trial,
one of the six images failed to converge to the other five (and
vice versa), and was thus recorded as 10 misregistered image
pairs. Of the successful cases, the ensemble clustering method
had a mean error of 0.31, while the pairwise clustering method
and FLIRT’s CR method reported 0.65 and 0.41, respectively.

D. Variable Illumination

The results for the variable illumination experiment (in-
volving the face images) are shown in Table II. The initial
average error for the unregistered images was 20.3 pixels. As
one would expect, the pairwise methods had a great deal of
difficulty registering images with vastly different illumination
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Fig. 9. Membership maps for the 3D registration test. The scatter plot is the same as shown in Fig.8. For each Gaussian component, we also show its
membership map, an image representation of τkx for a fixed Gaussian component k. The membership maps show that each Gaussian component models a
coherent set of pixels. Starting from the top-right and moving clockwise, the membership maps roughly delineate bone, muscle/fat, skin, background (showing
only the part inside the ROI), eyeballs, and brain.

TABLE II
AVERAGE ERROR FOR VARIABLE ILLUMINATION ENSEMBLE (FACE). INITIAL AVERAGE ERROR WAS 20.3 PIXELS.

F1- F1- F1- F1- F2- F2- F2- F3- F3- F4-
Method F2 F3 F4 F5 F3 F4 F5 F4 F5 F5 Mean

NMI (pairwise) 33 96 10 41 64 89 47 49 99 15 54.6
Cluster (pairwise) 28 67 13 36 24 27 15 23 44 10 28.6
SSD (ensemble) 122 72 95 29 69 49 141 26 94 117 81.4

Cluster (ensemble) 0.55 1.2 2.8 2.8 0.73 2.5 2.6 2.0 2.1 0.32 1.77

conditions. For example, image F1 is illuminated from the
left, while F5 is illuminated from the right. When registering
F1 and F5, the mean average pixel displacement was 41
pixels for FLIRT (using NMI with 64 intensity bins), and
36 pixels for the pairwise clustering method. However, the
ensemble clustering registration method had a mean average
pixel displacement of only 2.8 pixels for those two images. As
one would expect, the ensemble SSD method did not perform
well on this dataset.

Interestingly, the pairwise methods seemed to do better reg-
istering the extreme images (i.e. F1 with F5) than registering
images that were two conditions apart (i.e. F1 with F3, F2
with F4, or F3 with F5). This effect might stem from the
fact that images with overlapping regions of illumination have
more latitude to wander away from the correct solution, while
extreme images are more constrained by the sharp shadow
border down the centre of the face.

E. Disjoint Content

The initial average error for the unregistered phantom trials
was 10.0 pixels. As Table III shows, a number of image pairs
in the multi-sensor phantom proved to be very difficult for
the pairwise methods to register accurately. The most notable
case is the pairwise registration of A-to-C, and B-to-D. In

TABLE IV
EFFECT OF VARYING THE NUMBER OF GAUSSIAN COMPONENTS, K , IN

THE ENSEMBLE CLUSTERING METHOD

Mean Error Mean Error of
K (std. dev.) converged (std. dev.) Success Rate
3 8.57 (±11.2) 1.16 (±0.737) 63.3%
5 1.00 (±0.681) 1.00 (±0.681) 100%
8 1.32 (±0.943) 1.18 (±0.804) 93.3%

those image pairs, none of the smaller ellipses are common
between the two images. That is, neither of the two ellipses
in A are visible in C (and vice versa). It should come as
no surprise, then, that the pairwise methods exhibited large
errors for those image pairs. However, the ensemble clustering
registration method successfully registered all the trials. Again,
the ensemble SSD method was not successful on this dataset.

F. Number of Gaussian Components

Table IV shows the results of running the ensemble cluster-
ing method using different numbers of Gaussian components.
The mean error (over 10 trials) suggests that K, the number of
Gaussian components, plays a significant role in the success
– or failure – of the ensemble clustering registration method.
With too few components (3 instead of 5), the registration
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TABLE III
AVERAGE ERROR FOR DISJOINT CONTENT ENSEMBLE (MULTIMODAL PHANTOM). INITIAL AVERAGE ERROR WAS 10.0 PIXELS.

Method A-B A-C A-D B-C B-D C-D Mean
NMI (pairwise) 0.59 4.1 0.31 0.83 7.2 4.2 2.87

Cluster (pairwise) 7.0 9.0 6.5 9.8 12 9.7 9.10
SSD (ensemble) 34 76 60 62 50 41 53.9

Cluster (ensemble) 0.89 1.5 0.16 1.0 0.90 1.5 1.00

success rate declined from 100% to 63.3%. Having too many
components also reduced the success rate, though only slightly
(93.3%). However, the number of components did not seem
to have a significant impact on the accuracy of the trials that
did converge.

Figure 10 shows some more results for this experiment. The
phantom dataset is particularly informative because we know
that there are five different clusters in the 4-D joint intensity
space, since there are five regions in total: 4 small ellipses, and
the large embedding circle. Note that the black background is
outside the ROI, so does not form a cluster.

The cases shown in Figs. 10(a) and (b) were run with only
three Gaussian components, and the scatter plots show that
single components were forced to stretch to model multiple
clusters. The case shown in (b) did not converge to the correct
solution; one component was stretched enough to enable stable
modeling of many clusters, some of which correspond to
misregistered image content. The case shown in (c) was run
with five Gaussian components, each one accurately modeling
one of the JISP clusters. Cases (d) and (e) were each run
with eight components. While the case in (d) converged to
the correct solution, the additional components facilitated the
modeling of partial-volume artifacts (caused by interpolation
at the high-contrast edges). This accommodation allowed some
pixels to deviate from their proper cluster, and instead rest in
the corridor modeled by the additional Gaussian component,
thereby increasing the error slightly. Case (e) did not converge
to the correct solution. One of the Gaussian components
(the largest in the JISP) was available to accommodate the
misregistered ellipse (indicated by the arrow in the image).
As a result, what should have been two clusters in the JISP
(one for the ellipse, and one for the embedding circle) was
split into four co-planar clusters, as shown by the four arrows
in the JISP.

It should be noted that the cluster-modeling hiccups ob-
served in Fig. 10 can be observed with any number of Gaussian
components. For example, some K = 5 cases showed stretch-
ing of a Gaussian component to model two clusters, thereby
freeing up one component to model a partial-volume branch
(similar to that shown in (d)). However, these variations do
not necessarily devastate the final result.

VI. DISCUSSION

Density estimation of the JISP realizes a combination of the
advantages from mutual information (MI) and least-squares
(LS). Our method can be viewed as a parametric regression
method, with the number of parameters dictated by the number
of Gaussian components. At one end of the spectrum, a
single Gaussian component with infinite covariance along

one direction, and unit covariance along all other directions,
is equivalent to least squares. From there, more and more
modeling components can be added, each increasing the
flexibility of the model. There is a strong connection between
our method and entropy-based measures such as MI. Consider,
for example, covering the joint intensity space with a grid
of Gaussian components. The weights of the components are
comparable to the frequencies stored in histogram bins. We
plan to fully explore this link in a future paper.

From our results, it is clear that the strength of our method
stems from the concept of ensemble registration, and not from
the clustering method itself. Indeed, the pairwise clustering
method was less successful than FLIRT in many of the exper-
iments, suggesting that there might be room for improvement.
In particular, we could either improve the optimization search
process for clustering registration, or improve our density
estimation, perhaps incorporating a GMM with a “catch all”
component to explain outliers.

The clustering registration method scales linearly with the
number of Gaussian components (k), and the number of pixels
(N ). However, the computation time is proportional to the
square of the number of motion parameters (M ), and the cube
of the number of images (D) because of the matrix products
in (17). More precisely, the method has computational com-
plexity O(kNM2D3).

In addition to registering an ensemble, our method inher-
ently offers a rudimentary segmentation. As shown in Fig. 9,
membership maps tend to reflect regions in the image that
contain consistent intensity combinations across the ensem-
ble of images. In medical imaging, tissue types tend to be
manifested as different, but consistent, intensities among the
different imaging modalities (eg. CT and MRI). The notion can
even be extended to tissue function if a functional modality
is included, such as PET. Figure 11 shows a segmentation
that resulted from registering the RIRE ensemble using 10
Gaussian components. Each component was given its own
colour, and Fig. 11 shows the superposition of all 10 tissue
classes. This concept was first pointed out by Leventon and
Grimson [8], where they generated a segmentation based
on a GMM of a 2D joint histogram. The difference here
is that we generate our GMM density estimation as part
of our registration procedure, while Leventon and Grimson
generated their GMM based on images that were already
registered. Furthermore, our segmentation has the benefit of
a full ensemble of images, while the method proposed in [8]
considers only two images.

In this paper, we have not considered strategies for in-
creasing or decreasing the number of Gaussian components
during registration. However, we conjecture that the number
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(a) K = 3, Error = 2.64 (b) K = 3, Error = 18.1

(c) K = 5, Error = 0.678

(d) K = 8, Error =1.14 (e) K = 8, Error = 7.45

Fig. 10. Sample solutions for varying K, the number of Gaussian components. Overlaid images are shown beside the corresponding JISP with Gaussian
components indicated by ellipses. The cases shown in (b) and (e) did not converge to the correct solution, while the others did.

(a) Segmentation (b) T2 (c) CT

Fig. 11. Rudimentary segmentation of the RIRE dataset. In (a), the pixels are
colour-coded according to their memberships to the 10 Gaussian components
that were derived during registration. For reference, the corresponding T2 and
CT slices are shown in (b) and (c).

of Gaussian components can be used in a manner similar to a
multi-resolution strategy; starting with fewer components will
help guide the registration process toward the global optimum,
while increasing the number of components as convergence
progresses can improve accuracy. We plan to investigate the
impact of such techniques.

Prior knowledge could also be applied when choosing the
number of Gaussian components. In fact, some applications
might even permit a standard GMM as a starting point; such
a strategy was demonstrated in [22]. Alternatively, one could
employ a graph-theoretic approach such as normalized min-
cuts [23] to determine an initial clustering of the scatter plot.

VII. CONCLUSIONS

Ensemble registration is the process of registering multiple
images together simultaneously within a single optimization
problem. This approach for multi-sensor registration was not
previously feasible because the high-dimensional joint his-
togram was too large to store in memory. Instead, we use a
Gaussian mixture model to perform density estimation of the
content in the joint intensity space. This GMM model naturally
leads to a cost function based on likelihood.

We formulate an optimization problem that has two aspects,
developing solutions for the density estimation and motion
parameters in synchrony. Within each iteration, we hold the
motion parameters fixed and update the density estimation
parameters, and then hold the density estimation parameters
fixed and update the motion parameters.

Our experiments show that ensemble registration is more
robust than pairwise registration. The content shared by one
pair of images might be quite different from the content shared
by another pair of images. The key is to leverage all these
correspondences simultaneously. Ensemble registration does
exactly that, implicitly coupling the content of all the images
into one optimization problem.

The experiments also show that ensemble registration is
more accurate than pairwise registration. Not only does en-
semble registration offer more image correspondences (as
described above), but it is also less susceptible to noise. This
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benefit stems from the fact that the estimate of an entity gets
more accurate as you include more observations. Adding more
images yields greater statistical confidence.

The density estimate generated by our clustering registration
method can be viewed as a rudimentary segmentation of the
ensemble. This idea offers promising future work in segmen-
tation, labeling pixels and adaptively adjusting the cluters as
the alignment is performed.

Our clustering registration method can be used for non-
rigid registration as long as the motion transformation can
be parameterized (in the variable θ). Examples of non-rigid
parametric transformation models include B-splines, Fourier
basis functions, and elastic deformation.
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