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Abstract. The “generic viewpoint” assumption states that an observer is not in a special position relative to the
scene. It is commonly used to disqualify scene interpretations that assume special viewpoints, following a binary
decision that the viewpoint was either generic or accidental. In this paper, we apply Bayesian statistics toquantify
the probability of a view, and so derive a useful tool to estimate scene parameters.

Generic variables can include viewpoint, object orientation, and lighting position. By considering the image
as a (differentiable) function of these variables, we derive the probability that a set of scene parameters created a
given image. Thisscene probability equationhas three terms: thefidelity of the scene interpretation to the image
data; theprior probability of the scene interpretation; and a newgenericityterm, which favors scenes likely to
produce the observed image. The genericity term favors image interpretations for which the image is stable with
respect to changes in the generic variables. It results from integration over the generic variables, using a low-noise
approximation common in Bayesian statistics.

This approach may increase the scope and accuracy of scene estimates. It applies to a range of vision problems.
We show shape from shading examples, where we rank shapes or reflectance functions in cases where these are
otherwise unknown. The rankings agree with the perceived values.

1. Introduction

A major task of visual perception is to find the scene
which best explains visual observations. Bayesian
statistics are a powerful tool for this (Witkin, 1981;
Geman and Geman, 1984; Szeliski, 1989; Bulthoff,
1991; Kersten, 1991; Jepson and Richards, 1992;
Heeger and Simoncelli, 1992; Knill et al., 1996;
Belhumeur, 1996). Assumptions are expressed in
terms ofprior probabilities. Using a model for how
a scene relates to the observation, one forms thepos-
terior probability for the scene, given the observed vi-
sual data. After choosing a criterion of optimality, one
can calculate a best interpretation. Other computa-
tional techniques, such as regularization (Tikhonov and
Arsenin, 1977; Poggio et al., 1985; Terzopoulos, 1986)
and minimum description length analysis (Darrell
et al., 1990; Pentland, 1990b), can be posed in a
Bayesian framework (Szeliski, 1989; Leclerc, 1989).
In this paper, we show how the commonly encoun-
tered conditions of “generic viewpoint” influence the

posterior probabilities to give additional information
about the scene.

The generic view assumption (Binford, 1981; Bie-
derman, 1985; Lowe and Binford, 1985; Malik, 1987;
Richards et al., 1987; Nakayama and Shimojo, 1992;
Albert and Hoffman, 1995) postulates that the scene
is not viewed from a special position. Figure 1 shows
an example. The square in (a) could be an image of a
wire-frame cube (b) viewed from a position where the
line segments of the front face hid those behind them.
However, that would require an unlikely viewpoint, and
given the image in (a), one should infer a square, not a
cube. The generic view assumption has been invoked to
explain perceptions involving stereo and transparency
(Nakayama and Shimojo, 1992), linear shape from
shading (Pentland, 1990c), object parts and illusory
contours (Albert and Hoffman, 1995), and feature or
object identification (Koenderink and van Doorn, 1979;
Lowe and Binford, 1985; Biederman, 1985; Richards
et al., 1987; Malik, 1987; Jepson and Richards, 1992;
Dickinson et al., 1992). Often, researchers assume a
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Figure 1. An example of use of the generic view assumption for
binary decisions. The image (a) could be of a square, or it could be
an “accidental view” of the cube in (b). Since a cube would require
a special viewing position to be seen as the image in (a), we reject
that possible interpretation for (a).

view is either generic, and therefore admissible, or ac-
cidental, and therefore rejected. Some have pointed out
that it should be possible to quantify the degree of acci-
dentalness or have done so in special cases (Lowe and
Binford, 1985; Malik, 1987; Leclerc and Bobick, 1991;
Nakayama and Shimojo, 1992; Jepson and Richards,
1992; Dickinson et al., 1992).

In this paper we quantify generic view probabili-
ties in a general case; we find the probability of a given
scene hypothesis under the assumption of generic view-
point. We do not restrict ourselves to viewpoint; the
generic variable can be, for example, object orienta-
tion or lighting position. Scene parameters can be re-
flectance function, shape, and velocity. We show that
the generic view assumption can strongly influence the
scene interpretation.

The key to quantifying the generic view probabilities
is to find how the visual data would change were the
generic variables (e.g., the viewpoint) to change. We
will show that large image changes correspond to un-
likely scenes. Our approach employs an established
approximation in Bayesian statistics (approximating
the log likelihood function as a gaussian (Laplace,
1812; Fisher, 1959; Jeffreys, 1961; Johnson, 1970;
Lindley, 1972; Box and Tiao, 1973; Berger, 1985;
Gull, 1989; Skilling, 1989; MacKay, 1992)), allowing
convenient marginalization over the generic variables.
Szeliski (1989) used related ideas to set regularization
parameters by maximum likelihood estimation. See
Weinshall et al. (1994) for a related non-Bayesian ap-
proach. Marginalization over the generic variables can
also be interpreted using the loss functions of Bayesian
decision theory (Berger, 1985), discussed in Section 4.2
and in Freeman and Brainard (1995), Freeman (1996),
Yuille and Bulthoff (1996).

Our Bayesian framework also takes into account the
fidelity of a rendered scene to the image data and the

prior probability of the scene. The conditional proba-
bility we will derive gives a new objective function for
a vision algorithm to optimize. Including the generic
view probabilities may lead to more powerful vision
algorithms, or better models of human perception.

We show applications to the shape from shading
problem, yielding new results. Using a two-parameter
family of reflectance functions, we show how to find
the probability of a reflectance function from a single
image. We find shape and lighting direction estimates
under conditions where many estimates would account
for the image data equally well. We show how a scene
hypothesis which accounts less well for image data can
be more likely. This method also applies to other vision
problems, such as motion (Freeman, 1994) and stereo
(Yuille and Bulthoff, 1996).

We motivate our approach in the remainder of the
introduction. In Section 2 we derive thescene proba-
bility equation, the conditional probability for a scene
interpretation given the observed visual data. Then we
show the applications to shape from shading. Shorter
reports of this work include (Freeman, 1993, 1994).

1.1. Example

Different shapes and reflectance functions can explain
a given image. Figure 2 shows an example. The im-
age (a) may look like a cylinder (c) painted with a
Lambertian reflectance function (b) (shown on a hemi-
sphere). However, it could also have been created by
the flatter shape of (f), painted with a shiny reflectance
function (e). If both interpretations account for the
data, how can we choose between them? We should use
whatever information we have about their prior prob-
abilities, but we may not know those well (Nakayama
and Shimojo, 1992).

We can distinguish between the two scene hypothe-
ses if we imagine rotating them. The Lambertian
shaded image would change little for small rotations,
Fig. 2(d), while the shiny image would change consid-
erably, (g). Thus, for the Lambertian solution, for a
large range of object poses we would see the image of
(a). For the shiny solution, we would see that image
over a smaller range of poses.

This also holds if we reverse the roles of the shiney
and Lambertian objects, as shown in Figs. 3. The im-
age data, Fig. 3(a), may look like a shiny cylinder,
but, again, it can be explained by either a Lamber-
tian reflectance function, shape (c) painted with the re-
flectance function shown in (b), or a shiny one, the
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Figure 2. The image (a) appears to be a cylinder (c) painted with a Lambertian reflectance function (b) (shown on a hemisphere). However the
flatter shape of (f) and a shiny reflectance function (e) also explain the data equally well. We can distinguish between the competing accounts for
(a) by imagining rotating each shape. Images of each shape at three nearby orientations are shown in (d) and (g). We see that the image made
assuming a Lambertian reflectance function (b) is more stable than that made assuming a shiny reflectance function (e). The reflectance function
of (b) provides more angles over which the image looks nearly the same. If all viewpoints are equally likely, and the shapes and reflectances of
(b)-(c) and (e)-(f) are equally likely to occur in the world, then (b)-(c) is a more probable interpretation than (e)-(f).

shape (f) painted with (e). Note that the shape for the
Lambertian function is taller than that of the shiny re-
flectance function. When we rotate both shapes, in (d)
and (g), it is the Lambertian image, (d), which changes
more than the shiny one (g), because of the parallax
induced as the tall shape moves back and forth.

Thus in each case the shape and reflectance func-
tions which correspond to our perception of the image
create a more stable image under imagined rotations
of the rendered scene. A small image derivative with
respect to object orientation means that the image will
look nearly the same over a relatively large range of
object poses. If all object orientations are equally prob-
able, then the probability of an object is proportional
to the range of angles over which it looks nearly the
same as the image data. We will use a measurement
noise model to specify what it means for two images
to “look nearly the same”. In our analysis, the image
derivatives will arise from expanding the image in a
Taylor series in the generic view variable.

2. The Scene Probability Equation

In this section we derive the probability densities for
scene parameters given observed data. Lety be a vector
of observations (boldface symbols will indicate vec-
tors). This can be image intensities, or measures de-
rived from them, such as spatial or temporal derivatives
or normal velocities. For simplicity, we will call this
“the image”.

Let the vectorβ be the scene parameters we want
to estimate. This vector can describe, for example, the
object shape and reflectance function or the image ve-
locities.

Let x be anM dimensional vector of the generic
variables. These are the variables over which we will
marginalize. For the example of Section 1.1 this was
the object pose angle. Generic variables can be, for ex-
ample, viewpoint position, object orientation, or light-
ing position. The probability density ofx, Px(x), will
typically be uniform,Px(x) = k, but it need not be.
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Figure 3. The image, (a), can be accounted for in two different ways. The shape (c) and the Lambertian reflectance function shown in (b) will
create the image (a), as will the shape (f) and a shiny reflectance function (e). We can distinguish between the shiny and Lambertian explanations
for (a) if we imagine rotating each shape. The greyscale images show each shape at three different orientations. The image made from the shiny
reflectance function, (e), changes only a little, while the parallax caused by the rotation of the tall shape of the Lambertian solution causes a
larger image change. The reflectance function of (e) provides more angles over which the image looks nearly the same. If all viewpoints are
equally likely, and the shapes and reflectances of (b)-(c) and (e)-(f) are equally likely to occur in the world, then (e)-(f) is more probable than
(b)-(c). In Section 2 we make this precise.

(The notationPa(a) denotes the probability density
function on the variablea as a function ofa. For
brevity, we omit the subscript for conditional proba-
bility functions.)

The scene parametersβ and generic variablesx de-
termine the ideal observation (image),ỹ, through the
“rendering function”,f:

ỹ = f(x, β) (1)

For the cylinders of Section 1.1 the rendering function
was the computer graphics calculation which gave the
image as a function of surface shape,β, and incident
light angle,x.

We postulate some measurement noise, although we
will often examine the limit where its variance goes to
zero. The observation,y, is the rendered ideal imageỹ

plus the measurement noise,n:

y = ỹ + n. (2)

Let Pn(n) be the probability density function of the
noise. We will assume that the measurement noise is
a set of Gaussian random variables with mean zero
and standard deviationσ . Here we assume the noise
is identically distributed, but we extend the results to
non-identical distributions in Section 4.1. Thus

Pn(n) = 1

(
√

2πσ 2)N
exp

−‖n‖2

2σ 2
, (3)

where N is the dimension of the observation and
noise vectors and‖n‖2 = n · n. For limσ → 0, the
noise term allows us to examine the local behavior of
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the rendering function. For finiteσ , it allows us to
handle noisy or uncalibrated images.

The posterior distribution,P(β, x | y), gives the
probability that scene parameterβ (e.g., shape) and
generic variablex (e.g., light direction) created the vi-
sual datay (the image). FromP(β, x | y), we will find
the marginal probabilityP(β | y).

We use Bayes’ theorem to evaluateP(β, x | y):

P(β, x | y) = P(y | β, x)Pβ(β)Px(x)

Py(y)
, (4)

where we have assumed thatx andβ are independent.
The denominator is constant for all modelsβ to be
compared.

To find P(β, x | y), independent of the value of the
generic variablex, we integrate the joint probability of
Eq. (4) over the possiblex values:

P(β | y) = Pβ(β)

Py(y)

∫
P(y | β, x) Px(x) dx. (5)

P(y | β, x) is large where the sceneβ and the value
x give an image similiar to the observationy. Equa-
tion (5) integrates the area ofx for which β roughly
yields the observationy.

For our noise model,

P(y | β, x) = 1

(
√

2πσ 2)N
e

−‖y−f(x,β)‖2

2σ2 . (6)

For the low noise limit, we can find an analytic ap-
proximation to the integral of Eq. (6) in Eq. (5). We
expandf(x, β) in Eq. (6) in a second order Taylor series,

f(x, β) ≈ f(x0, β) +
∑

i

f ′
i [x − x0] i

+ 1

2

∑
i, j

[x − x0] i f ′′
i j [x − x0] j , (7)

where [·] i indicates thei th component of the vector in
brackets, and

f ′
i = ∂f(x, β)

∂xi

∣∣∣∣
x=x0

, (8)

and

f ′′
i j = ∂2f(x, β)

∂xi ∂xj

∣∣∣∣
x=x0

. (9)

We takex0 to be the value ofx which can best account
for the image data for a givenβ; i.e., thex for which
‖y − f(x, β)‖2 is minimized. The derivativesf ′

i and
f ′′

i j must exist, so this approximation does not apply to
non-differentiable image representations.

Using Eqs. (6)–(9) to second order inx − x0 in the
integral of Eq. (5) yields the posterior probability for
the scene parametersβ given the visual datay (see
Appendix A):

P(β | y)

= k exp

(−‖y − f(x0, β)‖2

2σ 2

)
[ Pβ(β)Px(x0)]

1√
det(A)

= k (fidelity) (prior probability) (genericity),

(10)

where thei and j th elements of the matrixA are

Ai j = f ′
i · f ′

j − (y − f(x0, β)) · f ′′
i j . (11)

We call Eq. (10) thescene probability equation. It
has two familiar terms and a new term. The term
exp(−‖y−f(x0,β)‖2

2σ 2 ) penalizes scene hypotheses which do
not account well for the original data (hypothesesβ for
which the squared difference off(x0, β) from the im-
age datay is large). We call this theimage fidelity
term. (This may also be called the “likelihood ofx0

andβ with respect toy”). The prior probability term
Pβ(β) came from Bayes’ law and incorporates prior
assumptions. These two terms (the prior and a squared
error term) are familiar. 1√

det(A)
, is the new term, aris-

ing from the generic view assumption. If the rendered
image changes quickly with the generic view variables,
the image derivatives of Eq. (11) will be large. Then
the generic view term 1√

det(A)
will be small, causing the

scene hypothesisβ to be unlikely. This 1√
det(A)

term
quantifies our intuitive notion of generic view, and we
call it thegenericityterm. The scene probability equa-
tion gives the probability that a scene interpretation
β generated the visual data,y, based on fidelity to the
data, prior probability, and the probability that the scene
would have presented us with the observed visual data.

We have combined the constants which do not
depend onβ into the normalization constantk. We
usually examine relative probabilities; thenk doesn’t
matter. If the model accounts exactly for the image,
theny− f(x0, β) = 0 and the second derivative term of
Eq. (11) can be ignored. Even ify 6= f(x0, β), f(x0, β)

may differ fromy through random noise in a way which
is uncorrelated with the image. Then the dot product of
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the second derivatives are likely to be zero (Press et al.,
1992). In many cases it is straightforward to calculate
the valuex0 in f(x0, β).

The approach of Section 4.2 handles cases where the
matrix A in the denominator of the genericity term is
not of full rank. In general, there will be only one or
few generic variables, so the dimensionality (M × M)
of the matrixA is low. We derive the scene probability
equation for generic object pose in 3-d in Appendix B.

The quantification of the genericity of a view in
Eq. (10) follows established techniques in Bayesian
statistics. The matrixA is called the conditional Fisher
information matrix (Fisher, 1959; Berger, 1985). It
is used to approximate the likelihood locally as a
Gaussian (Fisher, 1959; Jeffreys, 1961; Box and Tiao,
1973) and can be used in integration over a loss function
or in marginalization (Lindley, 1972; Berger, 1985).
For example, Box and Tiao (1964) employ this ap-
proximation when they integrate out nuisance parame-
ters from a joint posterior, as we have done here. Gull
(1988) calls 1√

det(A)
the Occam factor and he, Skilling

(1989), and MacKay (1992) use it as we have here and
in other ways.

The case of only one generic variable and‖y −
f(x0, β)‖ = 0 shows the role of the image derivatives
more clearly. Then the scene probability equation be-
comes:

P(β | y) = c exp

(−‖y − f(x0, β)‖2

2σ 2

)
Pβ(β)

× 1√∑
i

(
∂ fi (x,β)

∂x

∣∣
x=x0

)2
, (12)

The probability of a parameter vectorβ varies inversely
with the sum of the squares of the image derivatives
with respect to the generic variable.

The scene probability densities in Eqs. (10) and (12)
are the crux of a Bayesian analysis. OnceP(β | y) is
known, the best estimate forβ can be found using a
number of standard criteria of merit (Papoulis, 1984).
The parameter vector which minimizes the expected
squared error,βMMSE, is the conditional mean ofβ:

βMMSE =
∫

P(β | y) β dβ. (13)

Themaximum a posteriori(MAP) estimate is theβ
which maximizes the conditional probability,

βMAP = argmax
β

P(β | y). (14)

Alternatively, one can pass a representation of the
entire probability density functionP(β | y) on to a
higher level of processing.

Including the generic view term provides a better
statistical model of the world. Using it should increase
the accuracy of scene estimates. Starting from this
framework, the next research direction is to develop al-
gorithms which find the bestβ. Since the generic view
term models a regularity that exists in the world, in-
cluding it may give more powerful and accurate vision
algorithms.

3. Shape from Shading Examples

We apply the scene probability equation to some prob-
lems in shape from shading. Given a shaded image,
lighting conditions and the reflectance function, there
are many algorithms which can compute a shape to ac-
count for the shaded image; see (Horn, 1989; Horn and
Brooks, 1989) for reviews.

Most shape from shading algorithms require spec-
ification of the lighting and object surface charac-
teristics. There are a number of methods that can
infer these given more than one view of the object
(Horn et al., 1978; Woodham, 1980; Grimson, 1984;
Pentland, 1990a). Finding the object shape from a
single view without these parameters is not a solved
problem. Methods have been proposed to estimate
light source direction or overall albedo, assuming Lam-
bertian surfaces (Pentland, 1984; Lee and Rosenfield,
1989; Zheng and Chellapa, 1991). Brooks and Horn
(1989) proposed a more general scheme that iterated
to find a shape and reflectance map that could account
for the image data.

However, accounting for image data is not enough.
For some classes of images, many shapes and re-
flectance functions can account equally well for an
image (although some images which are impossible
to explain by Lambertian shading have been found,
(Horn et al., 1993; Brooks et al., 1992)). An infinite
number of surface and light source combinations can
explain regions of 1-dimensional intensity variations,
since the solution just involves a 1-dimensional inte-
gration. The rendering conditions of “linear shading”
(Pentland, 1990c) can be invoked to explainanyimage,
as we discuss later. Thus, to explain a given image,
one must choose between a variety of feasible surface
shapes, reflectance functions and lighting conditions.

To make such choices, one could invoke preferences
for shapes or reflectance functions. Some shape from
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shading algorithms do this implicitly by using regular-
izing functionals. However, these preferences may not
be known well. The scene probability equation enables
one to use the additional information provided by the
generic view assumption to choose between shapes and
reflectance functions, lessening the reliance on the prior
assumptions about shapes or reflectance functions.

We have not developed a shape from shading
algorithm which uses the scene probability equation
directly. Rather, we will use existing shape from shad-
ing algorithms (Bichsel and Pentland, 1992; Pentland,
1990c) to generate hypothesis shapes and use the scene
probability equation to evaluate their probability. Fu-
ture research can incorporate the scene probability
equation, or an approximation to it, directly into a shape
from shading algorithm.

3.1. Reflectance Function

We apply the scene probability equation, Eq. (10),
to the 1-dimensional examples of Section 1.1, shown
again in Figs. 5(a) and (c). This will allow us a princi-
paled way to distinguish between reflectance functions
that account equally well for the image data.

Figure 4. Key to reflectance function parameters of Fig. 5. Reflectance functions are displayed as they would appear on a hemisphere, lit in
the same way as Fig. 5(a) and (c). The ratio of diffuse to specular reflectance increases in the vertical direction. The surface roughness (which
only affects the specular component) increases horizontally. The sampling increments are linear for specularity and logarithmic for roughness.

Our observationy is the image data. The parame-
ter vectorβ we wish to estimate is the shape and re-
flectance function of the object. We use a two variable
parameterization of reflectance functions, a subset of
the Cook and Torrance model (1981). The parame-
ters are surface roughness, which governs the width
of the specular highlight, and specularity, which deter-
mines the ratio of the diffuse and specular reflections.
Figure 4 gives a visual key.

We want to evaluate the probabilityP(β | y) for
each reflectance function in our parameterized space.
A shape exists for each reflectance function which
could have created the 1-d images of Figs. 5(a) and
(c). For this example, we will assume a uniform prior
for the reflectance functions and shapes,Pβ(β) = k.
We used a shape from shading algorithm (Bichsel and
Pentland, 1992) to find the shape corresponding to each
reflectance function. The boundary condition for the
shape from shading algorithm was uniform height at
the top edge of the image. For this image with one-
dimensional intensity variations, the rendered shape
accounts for the image data exactly, and the fidelity
term of Eq. (10) forP(β | y) is 1.

Now we consider the genericity term of the scene
probability equation, the denominator of Eq. (10).
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Figure 5. (a) Input image. (b) Probability that image (a) was created by each reflectance function and corresponding inferred shape. The
probabilities are highest for the reflectance functions which look like the dull cylinder. See Fig. 4 for a visual guide to the reflectance function
parameters of plots (b) and (d). (c) Input image. (d) Probability that (c) was created by each reflectance function and corresponding shape. The
probabilities are highest for the reflectance functions which look like the shiny cylinder. All reflectance functions can account for the image
data equally well and were assumed to be equally probable. The probability distinctions between reflectance functions came from the genericity
term of the scene probability equation.

We will use both the vertical rotation of the object and
the light position as the generic variables (the result for
the case of generic vertical rotation alone is similar).
We need the derivative of the image intensityI (X, Y),
at each positionX, Y with respect to the rotation angle,
φ and light position. We assume orthographic projec-
tion. Theφ derivative is a special case of Eq. (27) of
Appendix C,

d I

dφ
= ∂ I

∂Y
Z + ∂m

∂q
(1 + q2), (15)

whereq = ∂ Z
∂Y , Z is the surface height, andm is the

reflectance map. We have suppressed theX andY de-
pendence in Eq. (15); by∂m

∂q we mean∂m(p,q)

∂q |q=q(X,Y).

We calculated numerically the image derivative with
respect to light position. For thez value of the cen-
ter of rotation we used the value which minimized the

squared derivative of the image with respect to object
rotation angle, see Appendix B.

Using the above in the scene probability equation,
we plot in Figs. 5(b) and (d) the probability that each
reflectance function generated the images of (a) and
(c). Note that for each image, the high probabilities
correspond to reflectance functions which look (see
Fig. 4) more like the material of the image patches
in Figs. 5(a) and (c). We have evaluated the relative
probability that different reflectance functions created a
given image. Note this was done from a single view and
for a case where the reflectance function is otherwise
completely unknown.

3.2. Generic Light Direction

The case of linear shading (Pentland, 1990c) is good for
illustrating the benefits of this generic view approach.
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Under linear shading, we assume that the image inten-
sities I are linearly proportional to the surface slopes
p andq:

I = k1 p + k2q. (16)

This equation approximates natural reflectance func-
tions under conditions of shallow surface slopes and
shallow illumination, or of a broad, linearly distributed
light source. Arctan(k1, k2) tells the direction of the

light, θl , and
√

k2
1 + k2

2 is proportional to the product of
lighting strength and surface reflectance. The inferred

surface slopes scale inversely with
√

k2
1 + k2

2. Without
calibration information,k1 andk2 are unknown.

Pentland (1990c) has shown that a linear transfor-
mation relates the imageI to a surface for which the
slopes satisfy Eq. (16) above. Thus for any choice of
k1 andk2, not both zero, we can find a surface which
accounts for the observed image,I , by applying the ap-
propriate linear transformation to it. Thus, assuming
linear shading conditions,anyassumed lighting direc-
tion and strength can explain an image by Eq. (16),
each using a different inferred shape. How can we
choose which shape and lighting parameters are best?
The assumption of generic light direction provides a
criterion.

Suppose the visual data is the image of Fig. 6(a).
Perceptually, there are two possible interpretations: it
could be a bump, lit from the left, or a dimple, lit from
the right. Yet mathematically, using the linear shad-
ing equation, there are many interpretations to choose
from. The image could arise from any of the shapes
shown in (b), under the proper lighting conditions,
which are indicated by the lighting direction arrow
shown next to each shape. How should one choose
between these competing explanations?

Without considering the generic variables, there are
two criteria to evaluate an interpretation from the terms
of Bayes rule for the posterior probability, Eq. (4): how
well it accounts for the observed data, and the prior
probability that the interpretation would exist in the
world. If each shape accounts equally well for the
image data, we are left with choosing based on prior
probabilities. We could arbitrarily decide that we like
bump shapes more than tube shapes but we may have
no grounds for that. Such a decision could lead to an
incorrect interpretation for some other image. What is
missing?

For the three tube-like shapes shown, there is a suspi-
cious alignment between the inferred surface structure

and the assumed light direction. We would like to in-
clude this coincidence in our probability calculation.
Figures 6(c) and (d) give an intuition for how the
image derivatives of the scene probability equation,
Eq. (10), measure the accidentalness of the surface and
light direction alignments. If we imagine wiggling the
assumed azimuthal light direction slightly, we see that
for the shape of (c), the image changes quite a bit. For
the shape of (d), we can observe the image of (a) over a
much broader range of assumed light directions. There
are more opportunities for the shape of (d) to have pre-
sented us with the image (a) than there are for the shape
of (c).

For each assumed lighting direction (at constant
lighting strength), we find the shapeβ which would
create the observed image,y, Fig. 6(a), using the linear
shape from shading algorithm of Pentland (1990c) and
the boundary conditions described therein.

To evaluateP(β | y) in the scene probability equa-
tion, we need to find∂ fi (x,β)

∂x |x=x0= ∂ I
∂θl

. From Eq. (16)
and the definition ofθl , we have

∂ I

∂θl
= −k2 p + k1q. (17)

Using the above Eq. (17) in the scene probability
equation, Eq. (10) gives the probability for each can-
didate shape, plotted in Fig. 6(e). The bump and dim-
ple shapes, which assume light coming from the left or
right, are most likely, in agreement with the appearance
of (a). We model variable contrast sensitivity effects
for this example in Section 4.1.

Figure 7 shows the probabilities of shapes recon-
structed assuming different light directions for an
image of a nickel, assuming linear shading and the
boundary conditions of Pentland (1990c). The most
probable of those shapes assumes a light direction
that is consistant with apparent light direction in the
image.

3.3. Vertical Scale

We can use the assumption of generic object orientation
to estimate the vertical scale in linearly shaded images
where the scale is otherwise indeterminate. The in-
tuition is as follows. If the object were very flat, it
would require a very bright light at just the right angle
to create the observed image. Any small change in the
object pose would cause a large change in the image
intensities, and that flat object would be unlikely, given
the observed image. On the other hand, if the object
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Figure 6. (a) Perceptually, this image has two possible interpretations. It could be a bump, lit from the left, or a dimple, lit from the right.
(b) Mathematically, there are many possible interpretations. For a sufficiently shallow incident light angle, if we assume different light directions,
we find different shapes, each of which could account for the observed image. Some of the shapes would require a coincidental alignment
between the light direction and the inferred structure. (c) For the tube shape shown here, only a small range of light angles yields the observed
image. (d) For the bump shape, a much larger range gives the observed image. (e) The scene probability equation allows us to quantify the
degree of coincidence in the alignment of surface structure and light direction, by differentiating the observed image with respect to the assumed
light direction. The resulting probabilities are shown here for the 5 different shapes. The results favor shapes which assume that the light comes
from the left or right, in agreement with the perceptual appearance of (a). Reprinted with permission fromNature(Freeman, 1994). Copyright
1994 Macmillan Magazines Limited.
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were very tall and lit by a weak light, then, if the ob-
ject were rotated, the image would change significantly
because of parallax. In between those extremes, there
should be a most probable lighting strength and corre-
sponding shape.

The scene probability equation quantifies that intu-
ition. We first need the derivatives of the observed
image with respect to the generic variables. For the
case of object pose in 3-dimensions, the generic vari-
able is the rotation angle about all possible axes of
rotation. We integrate over all possible rotation axes,
as described in Appendix B. The resulting scene proba-
bility equation involves the image, the surface estimate
and its spatial derivatives, and the reflectance map and
its derivatives. The rotation origin is chosen to mini-
mize the squared image derivative with respect to the
rotation, see Appendix B.

Figure 7(c) shows the resulting probability tuning
for vertical scale. In agreement with our intuition, very
large and very small vertical scales are both unlikely.
The distribution agrees well with the actual height (rel-
ative to picture widths) of the nickel. Note, however,
that the tuning for vertical scale is very broad; the width
at half maximum represents a factor of 64 in vertical
scale. Nonetheless that is more information than we
had before.

3.4. Why the Prior Probability Is Not Enough

Figure 8 shows an example where both the fidelity and
prior probability terms favor a perceptually implausi-
ble explanation. The genericity term alone favors the
perceptually plausible explanation and overwhelms the
other two. Figure 8(a) shows an image, and (b1) and
(c) are two possible explanations for it. (b1), lit at a
grazing angle from the light direction shown above it,
yields the image (d). (c), lit from a different direction,
yields (e). (b2) shows the shape (b1) with the vertical
scale exaggerated by a factor of 7. (We made this ex-
ample by construction. Gaussian random noise at a 7
dB signal to noise ratio was added to (e) to make (a).
(b1) was found from (a) using a shape from shading
algorithm, assuming constant surface height at the left
picture edge (Bichsel and Pentland, 1992). We eval-
uated the probabilities of (f) assuming both generic
object orientation and generic azimuthal lighting di-
rection. The actual noise variance was used forσ 2 in
the fidelity term of Eq. (10), although a wide range of
assumed variances would give the results we describe.
The reflectance function was Lambertian.)

Perceptually, the shape Fig. 8(c) seems like a better
explanation of (a) than the shape (b1), even though it
doesn’t account for all the noise. However, the fidelity

Figure 7. (a) Plaster mold from a nickel. We found a shape which
yields the image (a) for various assumed azimuthal light directions.
We assumed linear shading of constant lighting strength, with the
boundary conditions of (Pentland, 1990). (b) Shows the probability
for each shape and lighting combination from the genericity term
of the scene probability equation, Eq. (10), under the assumption of
generic azimuthal light direction. Each shape was assumed to be a
priori equally probable. The probabilities are plotted as a function of
the assumed light direction, showing that the shapes reconstructed
assuming the correct light direction are more probable than those
that were reconstructed assuming other light directions. (c) Under
the linear shading approximation, many different vertical scalings
can account for a given image, each assuming a different lighting
strength. We inferred shapes which account for (a), using the same
boundary conditions as before. (c) Shows the probability as a func-
tion of vertical scale for each of the shapes considered, obtained
from the genericity term of the scene probability equation. While
broadly tuned, this distribution agrees well with the actual height of
the nickel (in terms of the picture width).



     P1: ICA/SRK P2: ICA/SFI QC: ICA/BSA T1: ICAP1: ICA/SRK P2: ICA/SFI QC: ICA/BSA T1: ICA

International Journal of Computer Vision KJ003-05-Freeman October 7, 1996 14:27

254 Freeman

Figure 8. An example showing the need for the genericity term in Eq. (10). We compare the probability densities of two explanations for the
image in (a). The surface (b2), lit from the left, yields the image (d). ((b2) Shows the same shape at 7× vertical exaggeration.) Shape (c)
is another possible interpretation. When lit from above, it yields (e), a less faithful version of the original image. The image fidelity term of
Eq. (10) favors the shape (b1). The commonly used prior probability of surface smoothness (Poggio et al., 1985; Terzopoulos, 1986) also favors
the shape (b1). However, the shape (b1) must be precisely positioned with respect to the light source to create the image (d). The genericity
term of Eq. (10) penalizes this. Image (e) is stable with respect to lighting and object movements, giving a higher overall probability to shape
(c), plotted in (f) without a surface smoothness prior.

term of Eq. (10) favors the flat interpretation, (b2),
since it accounts better for the noisy details of (c). In a
Bayesian or regularization approach, without consid-
ering the genericity, the only term left to evaluate the
probability of an interpretation is the prior probability.
A typical prior is to favor smooth surfaces, which would

again favor the shape (b1), since it is much smoother
than (e), as measured by the squared second derivatives
of the surfaces.

We need some way to penalize the precise alignment
between the light source and the object that is required
to get the image (d) from the shape (b1). The genericity
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term of the scene probability equation provides this.
Because the image (e) is more stable with respect to
object or lighting rotations, (c) has a higher overall
probability than the shape (b1).

Whether or not the smooth shape (b1) would be more
likely to exist in the world than the shape (c), it would be
very unlikely to present the viewer with the image (d).
Our approach takes both the prior probabilities and the
probabilities of the viewing conditions into account to
better model the conditional probability of each shape,
given the image data.

4. Discussion

4.1. Other Image Error Metrics

The assumed observation noise model sets the penalty
for differences between the rendered scene model and
the observed data. The identically distributed Gaus-
sian noise model of Eq. (3) corresponds to a squared
error penalty for differences between images. While
this may be adequate for many applications, it is not
a good model of the human visual system’s response
(Schreiber, 1986). Our Bayesian framework can acco-
modate a different image error metric.

Viewers are more sensitive to intensity changes
in regions of low image contrast. We will assume
that the sensitivity for contrast detection is propor-
tional to the local contrast, a model based on Weber’s
Law (Cornsweet, 1970). (Other local contrast response
models (Albrecht and Geisler, 1991; Carandini and
Heeger, 1994) could be used.) This fractionally scaled
approach is consistent with the multiplicative impact
on image intensities of changes in lighting intensity or
small changes in surface slope.

It is convenient to model the contrast sensitivity dif-
ferences as variations in the strength of the observation
noise. We generalize our observation noise model to

Pn(n) = 1

(
√

2πσ 2)N |Λ| 1
2

× exp
−(y − f(x, β))T Λ−1 (y − f(x, β))

2σ 2
,

(18)

whereσ 2 is now a scale factor for a noise covariance
matrixΛ. We calculate the contrast as the square root
of the local image variance¯(I 2) − ( Ī )2, where overbar
denotes a local spatial average andI are the image
intensities. We then use3 = diag[ ¯(I 2)− ( Ī )2], where

diag places the elements of anN dimensional vector
along the diagonal of anN by N matrix.

Following the steps of Eqs. (5)–(9) with the noise
model of Eq. (18) yields a modified scene probability
equation,

P(β | y)

= k exp

(−(y − f(x0, β))TΛ−1(y − f(x0, β))

2σ 2

)
× [ Pβ(β)Px(x0)]

1√
det(A)

(19)

where thei and j th elements of the matrixA are

Ai j = f ′
i Λ

−1 f ′
j − (y − f(x0, β))Λ−1 f ′′

i j . (20)

In both the fidelity and genericity terms, squared
image differences and derivatives are now scaled by
the reciprocal of the local contrast variance.

We use the example of Fig. 6 to illustrate the useful-
ness of these modifications. On perturbing the light
source direction, the tube-like shapes cause image
changes where they are very detectable, in low-contrast
regions of the image. Equations (19) and (20) will pro-
vide extra penalty for such image changes.

Figure 9(a) shows the input image. (b) is the local
image variance. It is brightest near the center of the
blob, as expected. The spatial averaging used was a
2.5 pixel standard deviation Gaussian blur (the image
is 128× 128 pixels). The dynamic range of the lo-
cal noise variance image was restricted to be 100 to 1.
(g) Shows the calculated probabilities for each shape,
based on the contrast sensitivity model of Eq. (19).
Note that the tube-like shapes are penalized much more
with this varying contrast sensitivity model than they
were in the calculation of Fig. 6, which assumed uni-
form contrast sensitivity.

4.2. Relationship to Loss Functions

The loss functions of Bayesian decision theory (Berger,
1985) provide an alternate interpretation of the generic-
ity term in the scene probability equation. This analysis
has been described by Freeman and Brainard (1995),
Freeman (1996), Yuille and Bulthoff (1996).

We include the generic variablesx as well as the
scene parametersβ into an augmented scene parameter
variable,z. A loss functionL(z, z̃) specifies the penalty
for estimating̃z when the true value isz. Knowing the
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Figure 9. The effect of modeling contrast dependent noise sensitivity. (a) Input image. (b) Assumed observation noise variance, calculated
from local image variance. This noise distribution will allow us to model contrast dependent sensitivity to image changes. (c) Resulting posterior
probabilites. Note that the tube-like shapes are now penalized further than they were with the contrast independent noise sensitivity model of
Fig. 6(e). Perturbing the light source position with shapes 2–4 causes the image to change in regions of low-contrast, which the sensitivity to
changes is assumed to be high.

posterior probability, one can select the parameter val-
ues which minimize the expected loss for a particular
loss function:

[expected loss]=
∫

[posterior] [loss function]

d [parameters]

R(z̃ | y) = −C
∫ [

exp

[
− τ

2σ 2
‖y − f(z)‖2

]
× Pz(z)

]
L(z, z̃) dz, (21)

where we have substituted from Bayes’ rule, Eq. (4),
and the noise model, Eq. (3). The optimal estimate is
the parameter̃z of minimum risk.

We have not specified what loss function to use
with the posterior probability of the scene probabil-
ity equation, Eq. (10). For this comparison, we will
assume MAP estimation, Eq. (14), where we choose
the scene parametersβ which maximize the posterior
probability. The comparison for other estimators is
analogous.

The integral to be minimized for the expected loss
in Eq. (21) can be made equivalent to the integral to
be maximized for the marginal posterior in Eq. (5).
We must choose the proper loss function:L(z, z̃) =
−δ(β − β̃). This means we don’t care at all about
the generic variablesx, but we care about the scene
parameter components,β, to infinite precision. This
loss function is plotted in Fig. 10(b). Figure 10(a)
explains the loss function plot format. MAP estimation
using the marginal posterior after integrating out the
generic variables is equivalent to finding the parameter
of minimum risk using the loss function of Fig. 10(b).

Figure 10(c) shows another possible form for the loss
function, allowing different parameters to be estimated
with different requirements for precision. Generic vari-
ables could be estimated with coarse precision, and
scene parameters with high precision. See (Brainard
and Freeman, 1994; Freeman and Brainard, 1995;
Freeman, 1996; Yuille and Bulthoff, 1996) for exam-
ples of this approach. An advantage is that it avoids
dividing the world parameters into two groups, generic
variables and scene parameters. A disadvantage is that
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Figure 10. Loss function interpretation of generic viewpoint assumption. (a) Shows the general form for a shift invariant loss function. The
function L(z, z̃) describes the penalty for guessing the parameterz̃ when the acutal value wasz. The marginalization over generic variables
of Eq. (5) followed by MAP estimation is equivalent to using the loss function of (b). (c) Shows another possible form for the loss function,
discussed in (Brainard and Freeman, 1994; Freeman and Brainard, 1995; Freeman, 1996; Yuille and Bluthoff, 1996).

integration over scene parameters, as prescribed by the
loss function of (c), might be difficult for scene param-
eters of high dimensionality.

5. Summary

The generic view assumption is commonly used to label
scene interpretations as either “generic” or “accidental”
in a world of geometrical objects. Here, we extend this
to a complementary, continuous domain by assigning
relative probabilities to different scene interpretations.

The visual input can be greyscale images or other
visual data. We divide the parameters into two groups:
scene parameters, and generic variables. Scene param-
eters are the parameters such as shape or velocity that
we want to estimate. We marginalize over the generic
variables, which can include lighting direction, object
orientation, or viewpoint.

We apply this in a Bayesian framework. The prior
probabilities for generic variables are typically well-
known and simple. We integrate the joint posterior
distribution over the generic variables to gain extra in-
formation about the scene parameters. We use a com-
monly employed low-noise approximation to obtain an
analytic result. The resultingscene probability equa-
tion gives the probability of a set of scene parameters,
given an observed image. It has three terms:

afidelity term, which requires that the scene param-
eters explain the observed visual data;

the prior probability, which accounts for prior ex-
pectations of the scene parameters;

thegenericity term, which quantifies how accidental
our view of a particular scene is. It reflects the proba-
bility that a given scene would have presented us with
the observed image. This term occurs in Bayesian
analysis applied to other domains. Including its ef-
fects may lessen the reliance on the prior probabili-
ties, for example, in choosing between explanations
which account for the image data equally well.

We show various applications to shape from shading.
The scene probability equation gives the probability of
different shape and reflectance function combinations
to explain a given image. The scene probability equa-
tion, Eq. (10), gives a principled way to select shape
and light direction or reflectance function calibration
in cases where these are otherwise ambiguous. The
genericity term in the scene probability is important;
one can have a shape from shading solution which is
faithful to the data, but unlikely, and one which is less
faithful but more likely. We draw connections between
the scene probability equation and the loss functions of
Bayesian decision theory.

This approach may have many applications in vision.
The scene probability equation derived in this paper
could be incorporated into algorithms of, for example,
shape from shading, motion analysis, and stereo. This
may result in vision algorithms of greater power and
accuracy.
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Appendix

A. Asymptotic Expansion
of Marginalization Integral

We want to examine the asymptotic behavior of the
integral of Eq. (6) in Eq. (5) when the observation noise
covariance becomes small, or1

σ
becomes large. For an

integral of the form

B(τ ) =
∫

exp [−τφ(x)] g(x) dx, (22)

one can show (Bleistein and Handelsman, 1986) that
the leading order term in an asymptotic expansion for
largeτ is:

B(τ ) ≈ e−τφ(x0)√| det(φxi x j (x0))|
(

2π

τ

) n
2

g(x0), (23)

wherex0 minimizesφ(x) andn is the dimensionality
of x.

We can put our integral into the form of Eq. (22) if
we identifyg(x) = Px(x), τ = 1

σ
, and

φ(x) = 1

2σ 2
‖(y − f(x, β))‖2. (24)

Substituting these into Eq. (23) gives Eq. (10). Twice
differentiatingφ(x) in Eq. (24) gives Eq. (11).

B. Scene Probability Equation
under General Object Pose

We want to find the scene probabilityP(β | y) for a
shaded image under the condition of general object
pose. Here the reflectance mapm(p, q) and the shape
Z(X, Y) make up the scene parameterβ. (We use cap-
ital X, Y, and Z for the Cartesian coordinates of the
object surface). The reflectance map tells the image
brightness as a function of object slopesp= ∂ Z(X,Y)

∂ X
andq = ∂ Z(X,Y)

∂Y .
The generic variable is the rotation angleφ about

the unit vector rotation axiŝω. We assume the prior
probability density for rotation angleφ is uniform and
we integrate over all possible axes,ω̂. Equations (5)
and (6) give

P(β | y) = k1Pβ(β)

∫
all unit ω̂

×
∫

all φ

e
−‖y−f(ω̂,φ,β)‖2

2σ2 dω̂dφ. (25)

The expansion of Appendix A gives

P(β | y) = k2Pβ(β) exp
−‖y − f(β)‖2

2σ 2

∫
all unit ω̂

×
∫

all φ

1√
f′ · f′ − (y − f(β)) · f ′′ dω̂dφ.

(26)

where we have writtenf(φ0 = 0, β) = f(β). For this
treatment, we set(y − f(β)) · f ′′ = 0, for the reasons
cited below Eq. (11).

We seekf′ = dI
dφ

. Given the surface height,Z and
slopesp, q at each pixel, we want to find the derivative
of the image intensityI with respect to rotation inφ
about the unit vector̂ω. By straightforward manipula-
tions we show in Appendix C that

d I

dφ
= QωX + RωY + SωZ, (27)

whereωa is thea component of the unit vector̂ω and

Q = ∂ I

∂Y
Z + pq

∂m

∂p
+ (1 + q2)

∂m

∂q

R = − ∂ I

∂ X
Z − pq

∂m

∂q
− (1 + p2)

∂m

∂p

S = Y
∂ I

∂ X
− X

∂ I

∂Y
+ p

∂m

∂q
− q

∂m

∂p
. (28)

For brevity, we have suppressed theX andY depen-
dence of the symbols on both sides of Eq. (28). By∂m

∂p

we mean∂m(p,q)

∂p |p=p(X,Y).
One can parameterize the direction of the unit vector

ω̂ by angleθ in theX-Y plane, and angleγ with theZ
axis. The integral over all̂ω of Eq. (26) is straightfor-
ward to evaluate numerically in terms of dot products
of the imagesQ, R, andS which appear in the square
root:

P(β | y) = k2Pβ(β) exp −‖y−f(β)‖2

2σ2

π∫
0

dθ

2π∫
0

× dγ
sin(γ )√

2πσ2‖Q cosθ sinγ + R sinθ sinγ + Scosγ ‖2
.

(29)

If we add another generic variable, that of the light
direction azimuthal angleψ , we can follow an analo-
gous derivation of the scene probability equation. The
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result is

P(β | y) = k2Pβ(β) exp
−‖y − f(β)‖2

2σ 2

∫ π

0
dθ

∫ 2π

0

× dγ
sin(γ )√√√√2πσ 2 det

∣∣∣∣∣
dI
dφ

· dI
dφ

dI
dφ

· dI
dψ

dI
dφ

· dI
dψ

dI
dψ

· dI
dψ

∣∣∣∣∣
.

(30)

Only dI
dφ

is a function ofθ or γ and numerical inte-
gration overθ andγ is straightforward.

Finally, we need to specify the origin,X0, Y0, Z0 of
the object’s rotation. We setX0 = Y0 = 0, the center
of the image. For theZ origin, we want a value which
doesn’t introduce spurious image change because of the
origin placement. We takeZ0 to be that value which
minimizes the average squared derivative over all ori-
entations forωZ = 0. That is theZ0 which minimizes∑
pixels

(Q2 + R2)

=
∑
pixels

(
∂ I

∂Y
(Z − Z0) + pq

∂m

∂p
+ (1 + q2)

∂m

∂q

)2

+
(

∂ I

∂ X
(Z − Z0) + pq

∂m

∂q
+ (1 + p2)

∂m

∂p

)2

.

(31)

The dependence on the variablesX andY has been
suppressed. Minimizing this quadratic equation with
respect toZ0 gives

Z0 = 1∑
pixels

((
∂ I
∂ X

)2 + (
∂ I
∂Y

)2)
×

(∑
pixels

∂ I

∂Y

(
∂ I

∂Y
Z + pq

∂m

∂p
+ (1 + q2)

∂m

∂q

)

+
∑
pixels

∂ I

∂ X

(
∂ I

∂ X
Z + pq

∂m

∂q
+ (1 + p2)

∂m

∂p

)
.

(32)

C. Image Derivatives for General Object Pose

Given the surface height,Z and slopesp, q at each
pixel, we want to findd I

dφ
, the change in the image

intensity with respect to rotation in the angleφ about
an axisω̂ under orthographic projection. We use this

result in Appendix B and in Section 3.1. The change
in image intensity comes from two effects:

1. The change in image intensity because a new surface
element comes into view at the positionX, Y.

2. The change in image intensity due to the change in
slopesp, q caused by the rotation.

The total derivative of the image intensity is the sum
of those two changes,

dI

dφ
=

[
∂ I

∂ X

∂ X

∂φ
+ ∂ I

∂Y

∂Y

∂φ

]
+

[
∂ I

∂p

∂p

∂φ
+ ∂ I

∂q

∂q

∂φ

]
.

(33)

Consider the first term of Eq. (33). The desired im-
age intensity change is the dot product of the spatial
gradient of the image with the projected velocity due
to the rotation. The rotation velocity iŝω × r(X, Y),
wherer(X, Y) is the position vector of the point seen
at X, Y. Its velocity relative to the stationary observed
image is−ω̂ × r(X, Y). Thus

∂ I

∂ X

∂ X

∂φ
+ ∂ I

∂Y

∂Y

∂φ
= ∂ I

∂ X
(ωZY − ωY Z)

+ ∂ I

∂Y
(ωX Z − ωZ X). (34)

Consider the second term of Eq. (33). To determine
∂p
∂φ

and ∂q
∂φ

we look at the change in the local surface
normal vector,̂n, under rotation and then relate that to
the change inp andq. From the definitions ofp, q,
andn̂, we have

p = −nX

nZ

q = −nY

nZ
, (35)

wheren̂ = nXî + nY ĵ + nZk̂. For a rotation in angle
φ about the unit vector̂ω, we have

dn̂
dφ

= ω̂ × n̂. (36)

If we differentiate Eq. (35) forp andq with respect
toφ and use Eq. (36) for the components ofdn̂

dφ
, we find

∂p

∂φ
= −nZ(ωYnZ − nYωZ) − nX(ωXnY − nXωY)

n2
Z

,

(37)
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and

∂q

∂φ
= −nZ(ωZnX − nZωX) − nY(ωXnY − nXωY)

n2
Z

.

(38)

Using Eq. (35) in Eqs. (37) and (38) above we
have

∂p

∂φ
= pqωX − (1 + p2) ωY − q ωZ, (39)

and

∂q

∂φ
= pωZ + (1 + q2) ωX − qpωY. (40)

Combining Eq. (34) for the first term of Eq. (33) with
Eqs. (39) and (40) for the second we have,

d I

dφ
= ∂ I

∂ X
(ωZY − ωY Z) + ∂ I

∂Y
(ωX Z − ωZ X)

+ ∂m

∂p
(pqωX − ωY(1 + p2) − qωZ)

+ ∂m

∂q
(pωZ + ωX(1 + q2) − qpωY) (41)

where we have substituted∂m
∂p = ∂m(p,q)

∂p |p=p(X,Y) for
∂ I
∂p (and similarly forq) in Eq. (33). Grouping these
terms by components of̂ω gives Eq. (28), as desired.
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