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Abstract. The “generic viewpoint” assumption states that an observer is not in a special position relative to the
scene. Itis commonly used to disqualify scene interpretations that assume special viewpoints, following a binary
decision that the viewpoint was either generic or accidental. In this paper, we apply Bayesian statisticHifyp

the probability of a view, and so derive a useful tool to estimate scene parameters.

Generic variables can include viewpoint, object orientation, and lighting position. By considering the image
as a (differentiable) function of these variables, we derive the probability that a set of scene parameters created ¢
given image. Thiscene probability equatiohas three terms: thielity of the scene interpretation to the image
data; theprior probability of the scene interpretation; and a ngenericityterm, which favors scenes likely to
produce the observed image. The genericity term favors image interpretations for which the image is stable with
respect to changes in the generic variables. It results from integration over the generic variables, using a low-noise
approximation common in Bayesian statistics.

This approach may increase the scope and accuracy of scene estimates. It applies to a range of vision problem:
We show shape from shading examples, where we rank shapes or reflectance functions in cases where these a
otherwise unknown. The rankings agree with the perceived values.

1. Introduction posterior probabilities to give additional information
about the scene.

A major task of visual perception is to find the scene  The generic view assumption (Binford, 1981; Bie-
which best explains visual observations. Bayesian derman, 1985; Lowe and Binford, 1985; Malik, 1987;
statistics are a powerful tool for this (Witkin, 1981; Richards et al., 1987; Nakayama and Shimojo, 1992;
Geman and Geman, 1984; Szeliski, 1989; Bulthoff, Albert and Hoffman, 1995) postulates that the scene
1991; Kersten, 1991; Jepson and Richards, 1992;is not viewed from a special position. Figure 1 shows
Heeger and Simoncelli, 1992; Knill et al., 1996; an example. The square in (a) could be an image of a
Belhumeur, 1996). Assumptions are expressed in wire-frame cube (b) viewed from a position where the
terms ofprior probabilities Using a model for how  line segments of the front face hid those behind them.
a scene relates to the observation, one formptse However, that would require an unlikely viewpoint, and
terior probability for the scene, given the observed vi- given the image in (a), one should infer a square, not a
sual data. After choosing a criterion of optimality, one cube. The generic view assumption has been invoked to
can calculate a best interpretation. Other computa- explain perceptions involving stereo and transparency
tional techniques, such as regularization (Tikhonov and (Nakayama and Shimojo, 1992), linear shape from
Arsenin, 1977; Poggio et al., 1985; Terzopoulos, 1986) shading (Pentland, 1990c), object parts and illusory
and minimum description length analysis (Darrell contours (Albert and Hoffman, 1995), and feature or
et al., 1990; Pentland, 1990b), can be posed in a objectidentification (Koenderink and van Doorn, 1979;
Bayesian framework (Szeliski, 1989; Leclerc, 1989). Lowe and Binford, 1985; Biederman, 1985; Richards
In this paper, we show how the commonly encoun- et al., 1987; Malik, 1987; Jepson and Richards, 1992;
tered conditions of “generic viewpoint” influence the Dickinson et al., 1992). Often, researchers assume a
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prior probability of the scene. The conditional proba-
bility we will derive gives a new objective function for
a vision algorithm to optimize. Including the generic
view probabilities may lead to more powerful vision
algorithms, or better models of human perception.

We show applications to the shape from shading
problem, yielding new results. Using a two-parameter
family of reflectance functions, we show how to find
Figure 1 An example of use of the generic view assumption for the probability of a reflectance function from a single
binary decisions. The image (a) could be of a square, or it could be ijmage. We find shape and lighting direction estimates
an “acgider_nal_view” o_f_the cube in (b). Since_a cube_ would requjre under conditions where many estimates would account
2 special viewing posilon o be seen as the image n (&), we 1eect for the image data equally well. We show how a scene

hypothesis which accounts less well forimage data can
be more likely. This method also applies to other vision
problems, such as motion (Freeman, 1994) and stereo

(e llu

view is either generic, and therefore admissible, or ac-
mdeptal, and therefor_e rejected. Spme have pointed O.Ut(YuiIIe and Bulthoff, 1996).
that it should be possible to quantify the degree of acci- . . .

: . We motivate our approach in the remainder of the
dentalness or have done so in special cases (Lowe anqntroduction In Section 2 we derive tiseene proba-
Binford, 1985; Malik, 1987; Leclerc and Bobick, 1991; - L . i P

bility equation the conditional probability for a scene

Nakayama and Shimojo, 1992; Jepson and Richards,. . . .
1992; Dickinson et al., 1992). interpretation given the observed visual data. Then we

In this paper we quantify generic view probabili- show the applications to shape from shading. Shorter

oo i ) o . reports of this work include (Freeman, 1993, 1994).
ties in a general case; we find the probability of a given
scene hypothesis under the assumption of generic view-
point. We do not restrict ourselves to viewpoint; the 1.1. Example
generic variable can be, for example, object orienta-
tion or lighting position. Scene parameters can be re- Different shapes and reflectance functions can explain
flectance function, shape, and velocity. We show that a given image. Figure 2 shows an example. The im-
the generic view assumption can strongly influence the age (a) may look like a cylinder (c) painted with a
scene interpretation. Lambertian reflectance function (b) (shown on a hemi-
The key to quantifying the generic view probabilities sphere). However, it could also have been created by
is to find how the visual data would change were the the flatter shape of (f), painted with a shiny reflectance
generic variables (e.g., the viewpoint) to change. We function (e). If both interpretations account for the
will show that large image changes correspond to un- data, how can we choose between them? We should use
likely scenes. Our approach employs an established whatever information we have about their prior prob-
approximation in Bayesian statistics (approximating abilities, but we may not know those well (Nakayama
the log likelihood function as a gaussian (Laplace, and Shimojo, 1992).
1812; Fisher, 1959; Jeffreys, 1961; Johnson, 1970; We can distinguish between the two scene hypothe-
Lindley, 1972; Box and Tiao, 1973; Berger, 1985; ses if we imagine rotating them. The Lambertian
Gull, 1989; Skilling, 1989; MacKay, 1992)), allowing shaded image would change little for small rotations,
convenient marginalization over the generic variables. Fig. 2(d), while the shiny image would change consid-
Szeliski (1989) used related ideas to set regularization erably, (g). Thus, for the Lambertian solution, for a
parameters by maximum likelihood estimation. See large range of object poses we would see the image of
Weinshall et al. (1994) for a related non-Bayesian ap- (a). For the shiny solution, we would see that image
proach. Marginalization over the generic variables can over a smaller range of poses.
also be interpreted using the loss functions of Bayesian  This also holds if we reverse the roles of the shiney
decisiontheory (Berger, 1985), discussed in Section 4.2 and Lambertian objects, as shown in Figs. 3. The im-
and in Freeman and Brainard (1995), Freeman (1996), age data, Fig. 3(a), may look like a shiny cylinder,
Yuille and Bulthoff (1996). but, again, it can be explained by either a Lamber-
Our Bayesian framework also takes into account the tian reflectance function, shape (c) painted with the re-
fidelity of a rendered scene to the image data and the flectance function shown in (b), or a shiny one, the
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(e)

(f)

Figure 2 The image (a) appears to be a cylinder (c) painted with a Lambertian reflectance function (b) (shown on a hemisphere). However the
flatter shape of (f) and a shiny reflectance function (e) also explain the data equally well. We can distinguish between the competing accounts for
(a) by imagining rotating each shape. Images of each shape at three nearby orientations are shown in (d) and (g). We see that the image mac
assuming a Lambertian reflectance function (b) is more stable than that made assuming a shiny reflectance function (e). The reflectance functiol
of (b) provides more angles over which the image looks nearly the same. If all viewpoints are equally likely, and the shapes and reflectances of
(b)-(c) and (e)-(f) are equally likely to occur in the world, then (b)-(c) is a more probable interpretation than (e)-(f).

shape (f) painted with (e). Note that the shape for the 2. The Scene Probability Equation
Lambertian function is taller than that of the shiny re-
flectance function. When we rotate both shapes, in (d) In this section we derive the probability densities for
and (g), itis the Lambertian image, (d), which changes scene parameters given observed datay beta vector
more than the shiny one (g), because of the parallax of observations (boldface symbols will indicate vec-
induced as the tall shape moves back and forth. tors). This can be image intensities, or measures de-
Thus in each case the shape and reflectance func-rived from them, such as spatial or temporal derivatives
tions which correspond to our perception of the image or normal velocities. For simplicity, we will call this
create a more stable image under imagined rotations “the image”.
of the rendered scene. A small image derivative with  Let the vectorg be the scene parameters we want
respect to object orientation means that the image will to estimate. This vector can describe, for example, the
look nearly the same over a relatively large range of object shape and reflectance function or the image ve-
object poses. If all object orientations are equally prob- locities.
able, then the probability of an object is proportional Let x be anM dimensional vector of the generic
to the range of angles over which it looks nearly the variables. These are the variables over which we will
same as the image data. We will use a measurementmarginalize. For the example of Section 1.1 this was
noise model to specify what it means for two images the object pose angle. Generic variables can be, for ex-
to “look nearly the same”. In our analysis, the image ample, viewpoint position, object orientation, or light-
derivatives will arise from expanding the image in a ing position. The probability density of, P (x), will
Taylor series in the generic view variable. typically be uniform,P(x) = k, but it need not be.
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(e}

(f)

Figure 3 The image, (a), can be accounted for in two different ways. The shape (c) and the Lambertian reflectance function shown in (b) will
create the image (a), as will the shape (f) and a shiny reflectance function (e). We can distinguish between the shiny and Lambertian explanation:
for (a) if we imagine rotating each shape. The greyscale images show each shape at three different orientations. The image made from the shin:
reflectance function, (e), changes only a little, while the parallax caused by the rotation of the tall shape of the Lambertian solution causes a
larger image change. The reflectance function of (e) provides more angles over which the image looks nearly the same. If all viewpoints are
equally likely, and the shapes and reflectances of (b)-(c) and (e)-(f) are equally likely to occur in the world, then (e)-(f) is more probable than
(b)-(c). In Section 2 we make this precise.

(The notationP,(a) denotes the probability density plus the measurement noise,
function on the variable as a function ofa. For

brevity, we omit the subscript for conditional proba- y=9+n. (2)
bility functions.)

The scene parametefisand generic variablesde- Let P,(n) be the probability density function of the
termine the ideal observation (imag§),through the  5ise. \We will assume that the measurement noise is
‘rendering function”f: a set of Gaussian random variables with mean zero

and standard deviatiom. Here we assume the noise
y=1fxB) (1) is identically distributed, but we extend the results to

non-identical distributions in Section 4.1. Thus
For the cylinders of Section 1.1 the rendering function

was the computer graphics calculation which gave the P.(N) = 1 exp —In|? 3)
image as a function of surface shape,and incident " (V2w o2)N 202 °
light angle x.

We postulate some measurement noise, although wewhere N is the dimension of the observation and
will often examine the limit where its variance goes to noise vectors angin||> = n - n. For limo — 0, the
zero. The observation, is the rendered ideal image noise term allows us to examine the local behavior of



the rendering function. For finite, it allows us to
handle noisy or uncalibrated images.

The posterior distribution,P(B, x|y), gives the
probability that scene parametgr(e.g., shape) and
generic variable (e.g., light direction) created the vi-
sual datay (the image). FronP (8, x|y), we will find
the marginal probability? (8 | y).

We use Bayes’ theorem to evalu®é€s, x | y):

Py | B, X)Ps(B)Px(X)

y

G

where we have assumed thetind 8 are independent.
The denominator is constant for all modelsto be
compared.

To find P(B, x | y), independent of the value of the
generic variable, we integrate the joint probability of
Eq. (4) over the possibbevalues:

Ps(B)

PB 1Y) = P (y)
y

Py | B,x) Px)dx. (5)

P(y | B, x) is large where the scerfeand the value
X give an image similiar to the observatign Equa-
tion (5) integrates the area &ffor which g roughly
yields the observation.

For our noise model,

1 —ly=fx B2
p X)) = ———e 22, 6
Y180 = (6)

For the low noise limit, we can find an analytic ap-
proximation to the integral of Eq. (6) in Eq. (5). We
expand(x, 8) inEq. (6) inasecond order Taylor series,

fx. B) ~ f(x0. ) + D _f{ [x = xal|
1 "
~|—§;[X—Xo]i fii X =xo]j,  (7)

where []; indicates théth component of the vector in
brackets, and

o AxB) ®)
i lx=x
and
fr = ALY 9)
Y 9% 0X; X=Xo
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We takexg to be the value of which can bestaccount
for the image data for a gives i.e., thex for which
ly — f(x, #)II? is minimized. The derivativet, and
f{] must exist, so this approximation does not apply to
non-differentiable image representations.

Using Egs. (6)—(9) to second ordenin- Xg in the
integral of Eq. (5) yields the posterior probability for
the scene parametefs given the visual daty (see
Appendix A):

PB 1Y)

_ —lly — f(xo, B)II? 1

=k eXD(T> [Ps(B) Px(x0)] Jaeim

=k (fidelity) (prior probability) (genericity)
(10)

where the and jth elements of the matri& are
Aj =1 =y —fxo. ) - 1. (11)

We call Eq. (10) thescene probability equationlt
has two familiar terms and a new term. The term
exp(%ﬁ‘”’"”z) penalizes scene hypotheses which do
not account well for the original data (hypothegdsr
which the squared difference o, 8) from the im-
age datay is large). We call this thémage fidelity
term. (This may also be called the “likelihood xf
andg with respect toy”). The prior probability term
Ps(B) came from Bayes’ law and incorporates prior
assumptions. These two terms (the prior and a squared
_error term) are familia_r.ﬁ, is thg new term, aris-
ing from the generic view assumption. If the rendered
image changes quickly with the generic view variables,
the image derivatives of Eq. (11) will be large. Then
the generic view term\/ﬁ will be small, causing the
scene hypothesig to be unlikely. Th|§ﬁ term
guantifies our intuitive notion of generic view, and we
call it thegenericityterm. The scene probability equa-
tion gives the probability that a scene interpretation
B generated the visual data, based on fidelity to the
data, prior probability, and the probability that the scene
would have presented us with the observed visual data.

We have combined the constants which do not
depend org into the normalization constakt We
usually examine relative probabilities; thkrdoesn’t
matter. If the model accounts exactly for the image,
theny —f(xo, 8) = 0 and the second derivative term of
Eq. (11) can be ignored. Evenyif£ f(Xq, 8), f(Xo, B)
may differ fromy through random noise in away which
is uncorrelated with the image. Then the dot product of
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the second derivatives are likely to be zero (Press etal., Alternatively, one can pass a representation of the
1992). In many cases it is straightforward to calculate entire probability density functiof?(8 | y) on to a
the valuexg in f(xo, B). higher level of processing.

The approach of Section 4.2 handles cases where the Including the generic view term provides a better
matrix A in the denominator of the genericity term is  statistical model of the world. Using it should increase
not of full rank. In general, there will be only one or the accuracy of scene estimates. Starting from this
few generic variables, so the dimensionaliy & M) framework, the next research direction is to develop al-
of the matrixA is low. We derive the scene probability gorithms which find the be@. Since the generic view
equation for generic object pose in 3-d in Appendix B. term models a regularity that exists in the world, in-

The quantification of the genericity of a view in  cluding it may give more powerful and accurate vision
Eqg. (10) follows established techniques in Bayesian algorithms.
statistics. The matriA is called the conditional Fisher
information matrix (Fisher, 1959; Berger, 1985). It )
is used to approximate the likelihood locally as a 3- Shape from Shading Examples
Gaussian (Fisher, 1959; Jeffreys, 1961; Box and Tiao, N .

1973) and can be used in integration over aloss function Ve apply the scene probability equation to some prob-
or in marginalization (Lindley, 1972; Berger, 1985). |ems in shape from shading. Given a shaded image,
For example, Box and Tiao (1964) employ this ap- lighting conquns and t_he reflectance function, there

proximation when they integrate out nuisance parame- &€ many algorithms which can compute a shape to ac-
ters from a joint posterior, as we have done here. Gull countfor the shaded image; see (Horn, 1989; Hornand

(1988) callsﬁ the Occam factor and he, Skilling
(1989), and MacKay (1992) use it as we have here and
in other ways.

The case of only one generic variable ahd —
f(xo, B)|| = 0 shows the role of the image derivatives
more clearly. Then the scene probability equation be-
comes:

—lly — f(xo. B)II?
202
1

VR LT

The probability of a parameter vectpraries inversely
with the sum of the squares of the image derivatives
with respect to the generic variable.

The scene probability densities in Egs. (10) and (12)
are the crux of a Bayesian analysis. Oi@ | y) is
known, the best estimate f@g can be found using a
number of standard criteria of merit (Papoulis, 1984).
The parameter vector which minimizes the expected
squared erroByvse, IS the conditional mean &:

PBly) =c exp( ) Ps(B)

(12)

ByMSE = / P@B1y) B dB. (13)

Themaximum a posterio(MAP) estimate is thes
which maximizes the conditional probability,

Brap = arg;nax PBI1Y). (14)

Brooks, 1989) for reviews.

Most shape from shading algorithms require spec-
ification of the lighting and object surface charac-
teristics. There are a number of methods that can
infer these given more than one view of the object
(Horn et al., 1978; Woodham, 1980; Grimson, 1984;
Pentland, 1990a). Finding the object shape from a
single view without these parameters is not a solved
problem. Methods have been proposed to estimate
light source direction or overall albedo, assuming Lam-
bertian surfaces (Pentland, 1984; Lee and Rosenfield,
1989; Zheng and Chellapa, 1991). Brooks and Horn
(1989) proposed a more general scheme that iterated
to find a shape and reflectance map that could account
for the image data.

However, accounting for image data is not enough.
For some classes of images, many shapes and re-
flectance functions can account equally well for an
image (although some images which are impossible
to explain by Lambertian shading have been found,
(Horn et al., 1993; Brooks et al., 1992)). An infinite
number of surface and light source combinations can
explain regions of 1-dimensional intensity variations,
since the solution just involves a 1-dimensional inte-
gration. The rendering conditions of “linear shading”
(Pentland, 1990c) can be invoked to explaityimage,
as we discuss later. Thus, to explain a given image,
one must choose between a variety of feasible surface
shapes, reflectance functions and lighting conditions.

To make such choices, one could invoke preferences
for shapes or reflectance functions. Some shape from
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shading algorithms do this implicitly by using regular- Our observatiory is the image data. The parame-
izing functionals. However, these preferences may not ter vectorg we wish to estimate is the shape and re-
be known well. The scene probability equation enables flectance function of the object. We use a two variable
one to use the additional information provided by the parameterization of reflectance functions, a subset of
generic view assumption to choose between shapes andhe Cook and Torrance model (1981). The parame-
reflectance functions, lessening the reliance onthe prior ters are surface roughness, which governs the width
assumptions about shapes or reflectance functions.  of the specular highlight, and specularity, which deter-
We have not developed a shape from shading mines the ratio of the diffuse and specular reflections.
algorithm which uses the scene probability equation Figure 4 gives a visual key.
directly. Rather, we will use existing shape from shad-  We want to evaluate the probabiliti? (8 |y) for
ing algorithms (Bichsel and Pentland, 1992; Pentland, each reflectance function in our parameterized space.
1990c) to generate hypothesis shapes and use the scen& shape exists for each reflectance function which
probability equation to evaluate their probability. Fu- could have created the 1-d images of Figs. 5(a) and
ture research can incorporate the scene probability (c). For this example, we will assume a uniform prior
equation, or an approximation toiit, directly into a shape for the reflectance functions and shapBg(8) = k.
from shading algorithm. We used a shape from shading algorithm (Bichsel and
Pentland, 1992) to find the shape corresponding to each
reflectance function. The boundary condition for the
3.1. Reflectance Function shape from shading algorithm was uniform height at
the top edge of the image. For this image with one-
We apply the scene probability equation, Eqg. (10), dimensional intensity variations, the rendered shape
to the 1-dimensional examples of Section 1.1, shown accounts for the image data exactly, and the fidelity
again in Figs. 5(a) and (c). This will allow us a princi- term of Eq. (10) forP(8 |y) is 1.
paled way to distinguish between reflectance functions  Now we consider the genericity term of the scene
that account equally well for the image data. probability equation, the denominator of Eq. (10).

00

Alie|noads
0L G20 S0 S¢O0

0.07 0.11 0.19 0.3 05
roughness

Figure 4 Key to reflectance function parameters of Fig. 5. Reflectance functions are displayed as they would appear on a hemisphere, lit in
the same way as Fig. 5(a) and (c). The ratio of diffuse to specular reflectance increases in the vertical direction. The surface roughness (whict
only affects the specular component) increases horizontally. The sampling increments are linear for specularity and logarithmic for roughness.
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relative

relative

probability

probabilit

(d)

Figure 5 (a) Input image. (b) Probability that image (a) was created by each reflectance function and corresponding inferred shape. The
probabilities are highest for the reflectance functions which look like the dull cylinder. See Fig. 4 for a visual guide to the reflectance function
parameters of plots (b) and (d). (c) Inputimage. (d) Probability that (c) was created by each reflectance function and corresponding shape. The
probabilities are highest for the reflectance functions which look like the shiny cylinder. All reflectance functions can account for the image
data equally well and were assumed to be equally probable. The probability distinctions between reflectance functions came from the genericity

term of the scene probability equation.

We will use both the vertical rotation of the object and

squared derivative of the image with respect to object

the light position as the generic variables (the result for rotation angle, see Appendix B.

the case of generic vertical rotation alone is similar).
We need the derivative of the image intengify, Y),

at each positiorX, Y with respect to the rotation angle,
¢ and light position. We assume orthographic projec-
tion. Theg derivative is a special case of Eq. (27) of
Appendix C,

dl ol om

— = —Z+—@A+0d. 15

do oy +aq(+q) (15)
whereq = % Z is the surface height, armd is the

reflectance map. We have suppresseddtandY de-
pendence in Eq. (15); b we mean‘q”“;(,%q) lg=q(x.v)-
We calculated numerically the image derivative with
respect to light position. For thevalue of the cen-
ter of rotation we used the value which minimized the

Using the above in the scene probability equation,
we plot in Figs. 5(b) and (d) the probability that each
reflectance function generated the images of (a) and
(c). Note that for each image, the high probabilities
correspond to reflectance functions which look (see
Fig. 4) more like the material of the image patches
in Figs. 5(a) and (c). We have evaluated the relative
probability that different reflectance functions created a
givenimage. Note this was done from a single view and
for a case where the reflectance function is otherwise
completely unknown.

3.2. Generic Light Direction

The case of linear shading (Pentland, 1990c) is good for
illustrating the benefits of this generic view approach.
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Under linear shading, we assume that the image inten-and the assumed light direction. We would like to in-
sities| are linearly proportional to the surface slopes clude this coincidence in our probability calculation.
p andq: Figures 6(c) and (d) give an intuition for how the
image derivatives of the scene probability equation,
| =kip+koQ. (16) Eqg. (10), measure the accidentalness of the surface and
light direction alignments. If we imagine wiggling the
This equation approximates natural reflectance func- assumed azimuthal light direction slightly, we see that
tions under conditions of shallow surface slopes and for the shape of (c), the image changes quite a bit. For
shallow illumination, or of a broad, linearly distributed ~the shape of (d), we can observe the image of (a) over a
light source. Arctatky, ko) tells the direction of the =~ much broader range of assumed light directions. There

light, 6, and /kf + K2is proportional to the product of are more op_portun_ities for the shape of (d) to have pre-
lighting strength and surface reflectance. The inferred sented us with the image () than there are for the shape

surface slopes scale inversely wittk? + k2. Without ot (€). iahti irecti
p y {’Ziil 2 For each assumed lighting direction (at constant

calibration informationk; andk; are unknpwn. lighting strength), we find the shag&which would
Pgntland (19900) has shown that a I|near. transfor- -reate the observed image Fig. 6(a), using the linear

mation relates the imageto a surface for which the  spape from shading algorithm of Pentland (1990c) and

slopes satisfy Eq. (16) above. Thus for any choice of e poundary conditions described therein.

ki andkp, not both zero, we can find a surface which 14 evaluateP (8 | y) in the scene probability equa-

accognts fprthe observed imageby applying the ap-  tion, we need to ﬁndf&,ﬂ) e = g_g From Eq. (16)

propnate I|r_1ear tran;formanon to it. Thu;, assuming and the definition of;, we have !

linear shading conditiongnyassumed lighting direc-

tion and strength can explain an image by Eq. (16), ol K K 17

each using a different inferred shape. How can we F 2P +Kag. a7

choose which shape and lighting parameters are best?

The assumption of generic light direction provides a ~ Using the above Eq. (17) in the scene probability

criterion. equation, Eqg. (10) gives the probability for each can-
Suppose the visual data is the image of Fig. 6(a). didate shape, plotted in Fig. 6(e). The bump and dim-

Perceptually, there are two possible interpretations: it Ple shapes, which assume light coming from the left or

could be a bump, lit from the left, or a dimple, litfrom ~ right, are mostlikely, in agreement with the appearance

the right. Yet mathematically, using the linear shad- ©Of (&). We model variable contrast sensitivity effects

ing equation, there are many interpretations to choose for this example in Section 4.1.

from. The image could arise from any of the shapes ~ Figure 7 shows the probabilities of shapes recon-

shown in (b), under the proper ||ght|ng ConditionS, structed assuming different ||ght directions for an

which are indicated by the lighting direction arrow image of a nickel, assuming linear shading and the

shown next to each shape. How should one chooseboundary conditions of Pentland (1990c). The most

between these competing explanations? probable of those shapes assumes a light direction
Without considering the generic variables, there are that is consistant with apparent light direction in the

two criteria to evaluate an interpretation from the terms 'mage.

of Bayes rule for the posterior probability, Eq. (4): how

well it accounts for the observed data, and the prior 3.3. Vertical Scale

probability that the interpretation would exist in the

world. If each shape accounts equally well for the We can use the assumption of generic object orientation

image data, we are left with choosing based on prior to estimate the vertical scale in linearly shaded images

probabilities. We could arbitrarily decide that we like where the scale is otherwise indeterminate. The in-

bump shapes more than tube shapes but we may haveuition is as follows. If the object were very flat, it

no grounds for that. Such a decision could lead to an would require a very bright light at just the right angle

incorrect interpretation for some other image. What is to create the observed image. Any small change in the

missing? object pose would cause a large change in the image
For the three tube-like shapes shown, there is a suspi-intensities, and that flat object would be unlikely, given

cious alignment between the inferred surface structure the observed image. On the other hand, if the object



shapes for different assumed light directions

(b)

shape 3 image

assumed
light direction

shape 5 image

assumed

light direction

(d)

0.30 0.30
0.23

1 2 3 4 5
(e)

Figure 6. (a) Perceptually, this image has two possible interpretations. It could be a bump, lit from the left, or a dimple, lit from the right.

(b) Mathematically, there are many possible interpretations. For a sufficiently shallow incident light angle, if we assume different light directions,
we find different shapes, each of which could account for the observed image. Some of the shapes would require a coincidental alignment
between the light direction and the inferred structure. (c) For the tube shape shown here, only a small range of light angles yields the observed
image. (d) For the bump shape, a much larger range gives the observed image. (e) The scene probability equation allows us to quantify the
degree of coincidence in the alignment of surface structure and light direction, by differentiating the observed image with respect to the assumed
light direction. The resulting probabilities are shown here for the 5 different shapes. The results favor shapes which assume that the light comes
from the left or right, in agreement with the perceptual appearance of (a). Reprinted with permissidtaftos(Freeman, 1994). Copyright

1994 Macmillan Magazines Limited.
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were very tall and lit by a weak light, then, if the ob-
jectwere rotated, the image would change significantly
because of parallax. In between those extremes, there
should be a most probable lighting strength and corre-
sponding shape.

The scene probability equation quantifies that intu-
ition. We first need the derivatives of the observed
image with respect to the generic variables. For the
case of object pose in 3-dimensions, the generic vari-
able is the rotation angle about all possible axes of
rotation. We integrate over all possible rotation axes,
as described in Appendix B. The resulting scene proba-
bility equation involves the image, the surface estimate
and its spatial derivatives, and the reflectance map and
its derivatives. The rotation origin is chosen to mini- \

mize the squared image derivative with respect to the

rotation, see Appendix B.
Figure 7(c) shows the resulting probability tuning \

for vertical scale. In agreement with our intuition, very
large and very small vertical scales are both unlikely.
The distribution agrees well with the actual height (rel-
ative to picture widths) of the nickel. Note, however,
that thetuni_ng for vertical scale is very broad;_ the Wi_dth Polar plot of shape probability
at half maximum represents a factor of 64 in vertical as function of

scale. Nonetheless that is more information than we assumed light direction
had before. (b)

3.4. Why the Prior Probability Is Not Enough

actual

Figure 8 shows an example where both the fidelity and aotua

prior probability terms favor a perceptually implausi-
ble explanation. The genericity term alone favors the
perceptually plausible explanation and overwhelms the

relative probability

other two. Figure 8(a) shows an image, and (b1) and i * _ ” *
(c) are two possible explanations for it. (bl), lit at a log2 (vertical scale)
grazing angle from the light direction shown above it, (c)

yields the image (d). (c), lit from a different direction,

yields (e). (b2) shows the shape (b1) with the vertical Figure 7. (a) Plaster mold from a nickel. We found a shape which

scale exaggerated by a factor of 7. (We made this ex- Yields the image (a) for various assumed azimuthal light directions.
ample by construction. Gaussian random noise at a 7 We assumed linear shading of constant lighting strength, with the

. . . boundary conditions of (Pentland, 1990). (b) Shows the probability
dB Slgnal to noise ratio was added to (e) to make (a) for each shape and lighting combination from the genericity term

(b1) was found from (a) using a shape from shading of the scene probability equation, Eq. (10), under the assumption of
algorithm, assuming constant surface height at the left generic azimuthal light direction. Each shape was assumed to be a
picture edge (Bichsel and Pentland, 1992). We eval- priori equally probable. The probabilities are plotted as a function of
uated the probabilities of (f) assuming both generic the ass_umed light diregtion, _shov_ving that the shapes reconstructed
biect orientation and aeneric azimuthal lightina di- assuming the correct light direction are more probable than those
0 JQC ,g . 9 _g that were reconstructed assuming other light directions. (c) Under
rection. The actual noise variance was usedfomn the linear shading approximation, many different vertical scalings
the fidelity term of Eq. (10), although a wide range of can account for a given image, each assuming a different lighting
assumed variances would give the results we describe.strength. We inferred shapes which account for (a), using the same
The reflectance function was Lambertian.) boundary conditions as before. (c) Shows the probability as a func-

. . tion of vertical scale for each of the shapes considered, obtained
Perceptually, the shape Fig. 8(0) seems like a betterfrom the genericity term of the scene probability equation. While

explanation of (a) than the shape (b1), even thQUg_h it broadly tuned, this distribution agrees well with the actual height of
doesn’t account for all the noise. However, the fidelity the nickel (in terms of the picture width).
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light direm light direction \

(b1) (h2)

41
098
25
0.81
0.02 0.02
3 b ¢ b ¢

fidelty genericity fira.
probability

S9|RIS BALBID)

(1)

Figure 8 An example showing the need for the genericity term in Eq. (10). We compare the probability densities of two explanations for the
image in (a). The surface (b2), lit from the left, yields the image (d). ((b2) Shows the same shapevattital exaggeration.) Shape (c)

is another possible interpretation. When lit from above, it yields (e), a less faithful version of the original image. The image fidelity term of
Eq. (10) favors the shape (b1). The commonly used prior probability of surface smoothness (Poggio et al., 1985; Terzopoulos, 1986) also favors
the shape (b1). However, the shape (b1) must be precisely positioned with respect to the light source to create the image (d). The genericity
term of Eq. (10) penalizes this. Image (e) is stable with respect to lighting and object movements, giving a higher overall probability to shape
(c), plotted in (f) without a surface smoothness prior.

term of Eq. (10) favors the flat interpretation, (b2), again favor the shape (bl), since it is much smoother
since it accounts better for the noisy details of (c). In a than (e), as measured by the squared second derivatives
Bayesian or regularization approach, without consid- of the surfaces.

ering the genericity, the only term left to evaluate the ~ We need some way to penalize the precise alignment
probability of an interpretation is the prior probability. between the light source and the object that is required
Atypical prioris to favor smooth surfaces, whichwould to getthe image (d) from the shape (b1). The genericity
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term of the scene probability equation provides this. diag places the elements of &hdimensional vector

Because the image (e) is more stable with respect to along the diagonal of aN by N matrix.

object or lighting rotations, (¢) has a higher overall Following the steps of Egs. (5)—(9) with the noise

probability than the shape (b1l). model of Eq. (18) yields a modified scene probability
Whether or notthe smooth shape (b1) would be more equation,

likely to existin the world than the shape (c), itwould be

very unlikely to present the viewer with the image (d). p(g |y)

Our approach takes both the prior probabilities and the

—(V — TA v —
probabilities of the viewing conditions into account to =k exp( = o ﬁ))zAz = o ﬂ)))
better model the conditional probability of each shape, 1 g
given the image data. P.(8)P. (X 19
x [Pg(B) Px(Xo)] Y (19)

4. Discussion where thd and jth elements of the matri& are

4.1. Other Image Error Metrics A :fi,A_lf,j — (v —fx, ﬁ))A_lff}' (20)

The assumed observation noise model sets the penalty L .

for differences between the rendered scene model and, In bOt_h the fidelity and gen?f'c'ty terms, squared

the observed data. The identically distributed Gaus- IMage differences and derivatives are now scaled by

sian noise model of Eq. (3) corresponds to a squared 1€ reciprocal of the local contrast variance.

error penalty for differences between images. While Ve use the example of Fig. 6 toillustrate the useful-

this may be adequate for many applications, it is not ness of t_hese_ modlflcauons: On perturbing the_llght

a good model of the human visual system’s response source direction, the tube-like shapes_cause image

(Schreiber, 1986). Our Bayesian framework can acco- cha_nges Wherg they are very detectable, in Iow-(?ontrast

modate a different image error metric. regions of the image. Equa’gons (19) and (20) will pro-
Viewers are more sensitive to intensity changes Vide extra penalty for such image changes.

in regions of low image contrast. We will assume _ F19ureé 9(a) shows the inputimage. (b) is the local

that the sensitivity for contrast detection is propor- Mag€ variance. Itis brightest near the center of the

tional to the local contrast, a model based on Weber’s blob,.as expected. The _spatlal averaging used_ was a
Law (Cornsweet, 1970). (Other local contrast response 2-> Pixel standard deviation Gaussian blur (the image
models (Albrecht and Geisler, 1991; Carandini and 'S 128> 128 pixels). The dynamic range of the lo-
Heeger, 1994) could be used.) This fractionally scaled €& NOise variance image was restricted to be 100 to 1.
approach is consistent with the multiplicative impact (9) Shows the calculated probabilities for each shape,

on image intensities of changes in lighting intensity or based on the cont_rast sensitivity mOd?' of Eq. (19).
small changes in surface slope. Note that the tube-like shapes are penalized much more

Itis convenient to model the contrast sensitivity dif- With this varying contrast sensitivity model than they

ferences as variations in the strength of the observation:c"’ere in the calculation of Fig. 6, which assumed uni-
noise. We generalize our observation noise model to 10'™M contrast sensitivity.

1
Pi(n) = — 4.2. Relationship to Loss Functions
T W2ne)N Al
—(y —fx, )T AT (y — f(x, B)) The loss functions of Bayesian decision theory (Berger,
X €xp 252 ’ 1985) provide an alternate interpretation of the generic-
(18) ity term in the scene probability equation. This analysis

has been described by Freeman and Brainard (1995),
wheres? is now a scale factor for a noise covariance Freeman (1996), Yuille and Bulthoff (1996).
matrix A. We calculate the contrast as the square root We include the generic variablesas well as the
of the local image varianag 2) — (1)?, where overbar ~ scene parametefsinto an augmented scene parameter
denotes a local spatial average andre the image  variablez. Alossfunctiorl (z, Z) specifies the penalty
intensities. We then use = diag[(12) — (1)?], where for estimatingZ when the true value & Knowing the
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0.08 0.10

Figure 9. The effect of modeling contrast dependent noise sensitivity. (a) Input image. (b) Assumed observation noise variance, calculated

from local image variance. This noise distribution will allow us to model contrast dependent sensitivity to image changes. (c) Resulting posterior

probabilites. Note that the tube-like shapes are now penalized further than they were with the contrast independent noise sensitivity model of
Fig. 6(e). Perturbing the light source position with shapes 2—4 causes the image to change in regions of low-contrast, which the sensitivity to
changes is assumed to be high.

posterior probability, one can select the parameter val- The integral to be minimized for the expected loss
ues which minimize the expected loss for a particular in Eq. (21) can be made equivalent to the integral to
loss function: be maximized for the marginal posterior in Eq. (5).
We must choose the proper loss functidn(z, 2) =
[expected lossE / [posterior] [loss function] —8(B — B). This means we don't care at all about
the generic variableg, but we care about the scene
d [parameters] parameter componentg, to infinite precision. This
s _ T 2 loss function is plotted in Fig. 10(b). Figure 10(a)
Rzly) = C/ [exp[ 202 Iy =f@I ] explains the loss function plot format. MAP estimation
using the marginal posterior after integrating out the
x Pz(Z):| L(z,2)dz, (21) generic variables is equivalent to finding the parameter
of minimum risk using the loss function of Fig. 10(b).
where we have substituted from Bayes’ rule, Eq. (4),  Figure 10(c) shows another possible form for the loss
and the noise model, Eg. (3). The optimal estimate is function, allowing different parameters to be estimated
the paramete of minimum risk. with different requirements for precision. Generic vari-
We have not specified what loss function to use ables could be estimated with coarse precision, and
with the posterior probability of the scene probabil- scene parameters with high precision. See (Brainard
ity equation, Eq. (10). For this comparison, we will and Freeman, 1994; Freeman and Brainard, 1995;
assume MAP estimation, Eq. (14), where we choose Freeman, 1996; Yuille and Bulthoff, 1996) for exam-
the scene parametefswhich maximize the posterior  ples of this approach. An advantage is that it avoids
probability. The comparison for other estimators is dividing the world parameters into two groups, generic
analogous. variables and scene parameters. A disadvantage is that
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estimate

true value
loss

Figure 10 Loss function interpretation of generic viewpoint assumption. (a) Shows the general form for a shift invariant loss function. The
function L (z, Z) describes the penalty for guessing the paranietenen the acutal value was The marginalization over generic variables

of Eq. (5) followed by MAP estimation is equivalent to using the loss function of (b). (c) Shows another possible form for the loss function,
discussed in (Brainard and Freeman, 1994; Freeman and Brainard, 1995; Freeman, 1996; Yuille and Bluthoff, 1996).

integration over scene parameters, as prescribed by the the prior probability, which accounts for prior ex-
loss function of (c), might be difficult for scene param- pectations of the scene parameters;
eters of high dimensionality.
thegenericity termwhich quantifies how accidental
our view of a particular sceneis. Itreflects the proba-
5. Summary bility that a given scene would have presented us with

o o the observed image. This term occurs in Bayesian
The generic view assumptionis commonly usedtolabel  ana1ysis applied to other domains. Including its ef-

sceneinterpretations as either “generic” or “accidental”  fgcts may lessen the reliance on the prior probabili-
inaworld of geometrical objects. Here, we extendthis tjes, for example, in choosing between explanations
to a complementary, continuous domain by assigning  which account for the image data equally well.
relative probabilities to different scene interpretations.

The visual input can be greyscale images or other e show various applications to shape from shading.
visual data. We divide the parameters into two groups: The scene probability equation gives the probability of
scene parameters, and generic variables. Scene paranyfferent shape and reflectance function combinations
eters are the parameters such as shape or velocity thajg explain a given image. The scene probability equa-
we want to es_timate. _We marginglize c_;ver_the ger_leric tion, Eq. (10), gives a principled way to select shape
variables, which can include lighting direction, object and Jight direction or reflectance function calibration
orientation, or viewpoint. in cases where these are otherwise ambiguous. The

We apply this in a Bayesian framework. The prior genericity term in the scene probability is important;
probabilities for generic variables are typically well-  gne can have a shape from shading solution which is
known and simple. We integrate the joint posterior fajthful to the data, but unlikely, and one which is less
distribution over the generic variables to gain extrain- ajthful but more likely. We draw connections between

formation about the scene parameters. We use a com+he scene probability equation and the loss functions of
monly employed low-noise approximation to obtain an Bayesian decision theory.

analytic result. The resultingcene probability equa- This approach may have many applications in vision.
tion gives the probability of a set of scene parameters, The scene probability equation derived in this paper
given an observed image. It has three terms: could be incorporated into algorithms of, for example,

shape from shading, motion analysis, and stereo. This
afidelity term which requires that the scene param- may result in vision algorithms of greater power and
eters explain the observed visual data; accuracy.
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Appendix The expansion of Appendix A gives

. . —V — 2
A. Asymptotic Expansion P8 |y) = kePs(8) exp||y4f2(,3)||/

of Marginalization Integral 20 all unit &
1
. . . X / dade.

We want to examine the asymptotic behavior of the allg /I - —(y—1(B))-f"
integral of Eq. (6) in Eq. (5) when the observation noise (26)
covariance becomes small,%albecomes large. Foran
integral of the form where we have writtef(¢o = 0, 8) = f(8). For this

B(r) = / expl-to(] gx) dx,  (22) Ef:érgz‘;\’,vwsq.sgﬂ f()) - f” = 0, for the reasons

o We seekf’ = %. Given the surface heighg and
one can show (Bleistein and Handelsman, 1986) thatslopesp, q at each pixel, we want to find the derivative

the leading order term in an asymptotic expansion for o tne image intensity with respect to rotation ig

larger is: about the unit vectod. By straightforward manipula-
n tions we show in Appendix C that
e T¢(Xo) 27\ 2
B(r) ~ d—(—) gx0).  (23) di
| e(‘pXi Xj (XO))| T @ = Q(l)x + RC()Y + &UZv (27)
wherexg minimizes¢ (x) andn is the dimensionality
of x. wherew, is thea component of the unit vectars and
We can put our integral into the form of Eq. (22) if 5] am am
we identifyg(x) = Px(x), 7 = %, and 27 L1+ gyl
X Q Y +anp+(+Q)aq
1
0 = == lI(y — f(x, A2 (24) Re o qdM gL M
2062 aX pqaq ( +p)3p
. SubstituFing thes_e into EQ. (23) gives Eq. (10). Twice Y Y am am
differentiatinge (x) in Eq. (24) gives Eq. (11). S=Yoy — Xyt Paq ~9%p (28)
B. Scene Probability Equation For brevity, we have suppressed tandY depen-
under General Object Pose dence of the symbols on both sides of Eq. (28).%%y
we mean®tBa |, oy v,
We want to find the scene probabili§(8 |y) for a One can parameterize the direction of the unit vector

shaded image under the condition of general object @ Py anglef in the X-Y plane, and anglg with the Z
pose. Here the reflectance mapp, ) and the shape ~ axis. The integral over alb of Eq. (26) is straightfor-
Z(X,Y) make up the scene parameﬁe(We use cap- ward to evaluate numerica”y in terms of dot prOdUCtS
ital X, Y, andZ for the Cartesian coordinates of the Of the imageLQ, R, andS which appear in the square
object surface). The reflectance map tells the image root:
brightness as a function of object slopes= 223X

The_genenc vana_ble is _tpe rotation angfleabou_t PB 1Y) = ks pﬁ(ﬁ)exp—uy;gﬂwz /de/
the unit vector rotation axié. We assume the prior

probability density for rotation angkg is uniform and ° °

we integrate over all possible axes, Equations (5) x dy sinty) )
and (6) give V2r52|Q cosh siny + Rsind siny + Scosy |2
(29)
P(B 1Y) = kiPs(B) . . .
’ all unit & If we add another generic variable, that of the light

direction azimuthal anglé’, we can follow an analo-

—ly=f@.6.0)12
(72 D
x fa” é € dodg.  (25) gous derivation of the scene probability equation. The



result is

_ —f 2 b4 21
P(ﬂly)=kzpﬁ(ﬂ)e><pw/ def
o 0 0

x dy Sin) .
ddldi_di
dp " dy d¢ dy

\J2n02det g d d_I.i‘
dg " dy  dy  dy

(30)

Only is a function of¢ or y and numerical inte-
gration over9 andy is straightforward.

Finally, we need to specify the origiXg, Yo, Zg of
the object’s rotation. We sefg = Yy = 0, the center
of the image. For th& origin, we want a value which

doesn’tintroduce spurious image change because of the

origin placement. We tak&, to be that value which
minimizes the average squared derivative over all ori-
entations fow; = 0. That is theZg which minimizes

Y (@ +R)

pixels

=

pixels

(—(z Zo) + pq— +1+q? )E

>2
(D iz 2yt pg™ s ImY
ax o) + Pq 3q p ap )
(31)
The dependence on the variabsandY has been

suppressed. Minimizing this quadratic equation with
respect taZ, gives

1
Zo= 2 2
Zpixels((%) + (%) )
al ( I am
X ~ Z+ pq— +(A+q ) )
4—§:EL N2 ——+%1+ 5——
—~ X 8X +Pa P
pixels
(32)
C. Image Derivatives for General Object Pose

Given the surface heighZ and slopesp, g at each
pixel, we want to find4, the change in the image
intensity with respect to rotation in the angleabout
an axis® under orthographic projection. We use this
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result in Appendix B and in Section 3.1. The change
in image intensity comes from two effects:

1. The changeinimage intensity because a new surface
element comes into view at the positidn Y.

2. The change in image intensity due to the change in
slopesp, q caused by the rotation.

The total derivative of the image intensity is the sum
of those two changes,
al d
|+ [5o5 + asa)
99 ¢

|
(33)

Consider the first term of Eq. (33). The desired im-
age intensity change is the dot product of the spatial
gradient of the image with the projected velocity due
to the rotation. The rotation velocity & x r (X, Y),
wherer (X, Y) is the position vector of the point seen
at X, Y. Its velocity relative to the stationary observed
image is—@ x r(X,Y). Thus

d|
dp

3l ax
IX ¢

3l ay
aY 9¢

1 op
ap 9

3l aXx
IX ¢

N al 3y
aY 39

al
a—x(a)zY - a)yZ)

+ %(wxz —wzX). (34)

Consider the second term of Eq. (33). To determine
2% and 51 we look at the change in the local surface
normal vectorfi, under rotation and then relate that to
the change irp andg. From the definitions op, q,
andf, we have

Nx

nz
Ny

nz’

(35)

wheref = nxi + ny| + nzk. For a rotation in angle
¢ about the unit vectad, we have

dn
do

If we differentiate Eq. (35) fop andq with respect
to¢ and use Eq. (36) for the componentﬁgf we find

3)

(36)

=0 X

ap _
ap

_ Nz(wyNz — Nywz) — Nx(@xNy — Nxwy)
n%

)

(37)
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and

9q _ _ Nz(wzNx — Nzwx) — Ny(wxNy — Nxwy)
9 n2 '

(38)

Using Eg. (35) in Egs. (37) and (38) above we
have

0
£ = pgowx — 1+ pP) wy — qoz, (39)
and
aq )
— = powz+(1+g)wx —qpwy. (40)

99
Combining Eqg. (34) for the first term of Eq. (33) with
Egs. (39) and (40) for the second we have,

dl

dp

ol
—~(@zY —wyZ) +

al
ax a—Y(a)xZ—a)z)()

am 5
+ %(qu)x —wy(1+4 p°) —qwz)

am )
+E(pwz+wx(1+q)—quv) (41)

- _ am(p.g)
where we have substltutéﬁJ = 50" lp=pex.y) for

% (and similarly forq) in Eqg. (33). Grouping these
terms by components df gives Eq. (28), as desired.
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