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Summary 

To extract the optimum coherent infrasound signal from a wind turbine whose 

rotation is not precisely periodic, we use an optical telescope fitted with a 

photodetector to obtain reference blade passage periods, recording these together 

with the microphone infrasound signal.  Signal processing of the quasi-periodic 

microphone signal is then used to obtain periodic data, which are analyzed by an 

appropriate length DFT to extract optimum values for the fundamental and 

harmonics of the coherent signal.  The general procedure is similar to angle- or 

order-domain analysis for rotating machines and is thoroughly explained and 

illustrated with measurements and analysis from 6 different wind farms.  If several 

turbines are measured by a single microphone with blade passage periods obtained 

from several separate reference tracks, it may be possible to retrieve separate useful 

coherent signals from multiple turbines by appropriate processing. 

Introduction 

The original impetus for this paper was the infrasound measurement of some 

Siemens model SWT−2.3−101 2.3 MW wind turbines (WT) which have a rather wide 

speed range.  Manufacturer’s specifications give a speed range of 6−16 rpm.  We 

measured some units that varied in speed by over 50% during a 30-minute 

measurement.  Such WTs apparently produce DC and electronically convert this to 

AC to feed the power grid, thus their rotational speed is not related to the grid 

frequency.  Other WT machines have a much steadier pace, since they have geared 

AC generators directly attached to the grid, but the gear ratio or rotor field may 

change.  These generators typically have some slip, so their speed is not precisely 

that of the grid either, and is affected by the strength of the wind.  For that matter, the 

electrical power grid itself is also not quite periodic.  All of these factors make our 

analysis more pertinent. 

There is much literature dealing with WT infrasound.  The original pioneering work 

on spinning fan modes was by Tyler and Sofrin [1], and Hubbard and Shepherd [2] 



focused on wind turbines.  The latter also showed aeroacoustic effects of the blade-

pylon interaction.  Recent work on this interaction by Dooley and Metelka [3] 

considers it to be related to other aspects of wind turbine sound.  We do not consider 

any comparison with theories in this paper, but single out only the measurement of 

the coherent part of the WT noise, that is, the component related to its rotation.  The 

wind itself makes wideband acoustic noise, especially in the infrasound region, and it 

is not known if the WT influences this background noise to any significant extent.  

We may study that issue in future work.  Our infrasound measurements indicate that 

the random noise component is often similar whether one is near or far from a WT, 

and we therefore attribute this to wind noise.  Thus we regard the meaningful part of 

the infrasonic noise from the WT as being mainly the coherent component. 

Many repetitive processes have relatively stable but not exactly equal periods.  

Signals obtained from such quasi-periodic processes may show narrow lines when a 

DFT is applied to a long dataset, but inevitably the lines will contain at least a few 

frequency bins, often many more, even though the relative width of the line is very 

small.  If the periodic signal is accompanied by some other spuriae or random noise, 

it will be difficult to obtain the coherent part of the waveform by using the spectral 

peaks of the fundamental and harmonics and applying an inverse DFT.  In a typical 

acoustic situation, the microphones may be responding to a number of sources.  The 

methods in this paper offer considerable hope of sorting out such sources. 

Analysis Method 

It is only when perfect periodicity obtains in a dataset, that a DFT can be used to 

best display its repetitive nature.  In addition, if we want the fundamental and each 

harmonic to lie precisely on single frequency bins, then the length of the data must 

be exactly an integral number of periods.  This may be difficult, since the data 

acquisition sampling control is usually independent of the incoming data.  In our case 

this was not a limitation, since we sampled the data at 12.8 kHz, in order to record 

the audible output of the WT as well.  The blade passage frequency of the WT is 

usually below 1 Hz, so that each period of the data will have many samples.  The 

problem remains that the data contain many periods of varied lengths. The analysis 

that we use will surmount this difficulty. 

There is a tacit assumption in our approach; we assume that the underlying coherent 

or repetitive waveform has the same relative shape with respect to each blade 

passage period of the system being measured.  This assumption is common sense 

for most processes such as rotating machines, but may become weaker as the 

period shows more relative variation.  Later we show some measurements that bear 

on this assumption.  We are forced to accept it for any process that is obfuscated by 

significant noise, since only then can we mitigate the effects of noise.  We can think 

of the recovered final coherent signal as having been constrained to represent a 

fixed average frequency.  From the point of view of rotational machine 

measurements, we might describe the data now as being in the angular or revolution 

domain, rather than the time domain.  The approach is similar to order tracking [4], 



which normally employs a sensor to detect the angular position of the machine, but 

there are differences.  Order tracking typically has a tach track with many pulses per 

revolution.  We only have a single pulse in each period, so we must resample the 

many samples in each period to conform to the angle domain. 

The analysis to follow allows even rather irregular WTs to be analyzed so that they 

display the characteristics of perfect periodicity.  In order to optimize recovery of the 

coherent output, we used a small telescope with a CdSe photoresistor mounted at 

the eyepiece to obtain a signal locked to the blade passage occurrences.  The 

photocell was in series with a resistor and biased by a 1.5V battery.  The telescope 

was actually a 20X−60X Bushnell spotting scope.  Each time a blade passes the 

telescopic field of view, the CdSe detector would produce either a pulse of positive or 

negative polarity, depending on whether the blade was brighter than the sky, or the 

inverse.  This signal was recorded along with the infrasound and other data, and was 

used to regularize the blade passage and other signals.  This greatly increases the 

contrast of spectral lines in the presence of other random noise signals, which are 

mostly wind noise for the measurement of WTs.  We outline our signal analysis 

procedure in the sequel to demonstrate its effectiveness. 

Our telescope was designed for daytime use, and may suffer signal confusion 

depending on the background sky condition.  A clear blue sky gives very clean 

signals, since it is darker than the blades.  To minimize environmental factors, the 

assembly could be fitted with an infrared or visible laser to produce a narrow 

outgoing interrogation beam and a receiving telescope with appropriate optical filters, 

and used under almost any conditions,.  Our procedure simply needs a reliable 

fiducial signal that paces the quasi-periodic process.  Clearly the concepts of this 

paper could be gainfully applied in any analogous situation, to a variety of devices. 

Our acoustic measurements were taken using GRAS 40AZ microphones with 

constant current preamps.  These microphones are polarity inverting, and we have 

corrected all measurements to be noninverting.  We used a DC coupled National 

Instruments 9234 data acquisition interface, using Labview® software.  We verified 

the microphone response by measuring the microphone in a well-sealed box with a 

driver having a sealed plastic cone and rubber surround.  The combination was 

down 3 dB at 0.27 Hz.  Since our WT data has harmonics that go from about 0.7 Hz 

upwards, we have simply used the microphone data without correction.  We could 

have used the measured response to equalize the actual measurements, but there 

would have been little difference for the coherent infrasound. 

A Turbine Measurement and Its Analysis 

In the details of the example to follow, we will use typical numbers from 

measurements of the Amaranth Wind Farm, also known as the Melancthon 

EcoPower Centre.  This wind farm has 133 GE 1.5MW turbines located in 

Melancthon township near Shelburne, Ontario, Canada.  A location about 420m 

downwind from a nearest turbine was chosen, and data were captured over about 

4500 seconds, at a sampling frequency of 12.8 kHz, exactly 58,307,840 samples.  



The blade passage period normally was about 1.08 seconds.  We decimated the 

acoustic and the optical blade passage data to 800 samples/second using proper 

anti-aliasing filters with MATLAB®, leaving 3,644,240 samples in the acoustic data, 

d[n], and the same number in the blade passage reference array, r[n].  Fig.1 shows 

the raw microphone data d[n].  There were a few places where the system 

overloaded, and we simply zeroed these very short-duration overloads in further 

analysis.  The thick lines in the plot make it seem that the spikes have a significant 

energy, but in fact they are very negligible and sparse relative to the millions of 

samples. 

Figure 1.  The acoustic microphone data, 

downsampled from an original 12800 

samples/sec to 800 samples/sec. 

The corresponding reference blade 

passage signal from the telescope, r[n], is 

shown in Fig.2, showing some variation in 

amplitude over the measurement period.  

Intensity variations of the sky caused by 

clouds or time changes often cause a 

varying low-frequency offset.  This can be 

removed by highpass filtering these data at 

about 0.1 Hz. 

Figure 2.  Photocell signal from the 

telescope trained on a WT to record 

blade passage times.  This signal has 

already been highpass filtered at about 

0.1 Hz to remove any slow trends. 

Fig.3 shows an expanded portion of 

the blade passage signal where the 

signal was weakest, illustrating that 

even for this portion the reference 

pulses are very clear.  The period in 

this region is about 1.1 seconds, but it 

varies throughout the record, as we 

shall show later. 

 

Figure 3.  An expanded view of a 

portion of the telescope photocell 

signal shown in Fig.2, showing very 

clear blade passage pulses. 



We usually rely on a sufficiently-high sampling rate of the reference signal r[n] (and 

also of the data d[n]) that the period markings can be deemed to occur at the 

samples nearest the fiducial points of the blade passage signal, although this is not 

necessary in principle.  If the reference array is of high quality, it could be 

interpolated to obtain a fractional sample value for each blade passage period 

marker.  We proceed with the full fractional sample mathematical approach, and 

comment on the approximations that we have used. 

An important detail of the operation of the WT is its irregularity or variation of blade 

passage periods.  To determine this, we analyze the r[n] array, and detect the value 

of n at each peak of the blade passage signal.  We could compute the fractional 

value of n by interpolation, but with a sampling rate much greater (often 800 

samples/sec or more) than the period (~1.1 sec) we would normally simply use the 

integer value.  We call the array of index values at the peaks R[k], where k is the 

peak index (here ranging from 1 to 4116).  There are R[p]−R[p-1] samples in the p-th 

period.  The array R[k] can have fractional index values, and we maintain this 

generality in what follows, although in practice integer values are often sufficient.  

Fig.4 shows the time spacing between the peaks for the whole reference array r[n].  

Although the dominant period is about 1.08 seconds, there are excursions up to 1.38 

seconds, which may represent partial stalling of the WT.  It is clear that this particular 

unit is fairly erratic, and if we simply did standard DFT studies of the data array d[n], 

the results would be far from optimal. 

Figure 4.  Period irregularity of the 

turbine observed by the telescope.  

The normal period is about 1.08 

seconds, but the machine slows down 

significantly on a number of occasions. 

What can now be determined is the 

average period, or here perhaps the 

dominant period, in the signal r[n].  

This could be done by counting the P 

pulses, here 4116, that represent P−1 

periods, noting the total number N of 

samples involved, representing N−1 sample steps.  This gives about 885 samples in 

this example, which we round to an integer, Tn.  This represents 1.1 seconds for the 

period.  From Fig.4, though, we see that 1.08 seconds, or Tn=864 samples, might be 

a better choice.  The actual integer that we pick is not really that important, but 

sticking to sensible values will keep our final analysis numbers close to the actual 

ones.  For each measurement, a plot such as Fig.4 will give us a good idea of the 

average or dominant period, or we could use the calculated one. 

We now define a regularized output data array, D[m], in which m represents an 

integer sample index that is meant to be like n, but with exactly Tn samples between 

reference events.  D[m] will also have size close to 3,644,240 samples.  The 



regularity of D[m] is essential to make the output data perfectly harmonic.  Because 

we are forcing the output array to be processed in strictly periodic portions, the 

number of samples in D[m] will not be quite the same as in d[n], but it will be similar. 

The algorithm’s basic approach is to associate the samples in each period of the 

irregular data, d[n], with the corresponding period in the regularized output array, 

D[m].  The heart of the algorithm is that R[p]−R[p−1] interpolated samples in real 

time (about 885 on average), in the real-time p-th period of d[n], will be resampled 

into exactly Tn warped-time samples (here 885), which constitute the p-th period of 

D[m].  Fig.5 illustrates how the p-th period of the array d[n] shown on the upper line 

is resampled to produce the p-th period of D[m] in the lower line.  The upper green 

line is the bandlimited interpolation of the actual time samples, d[n], and the green 

interpolated samples d{n} at prescribed fractional indices given by R[p] are 

transferred to the output array, D[m], at integer sample positions. 

Figure 5.  Illustrating how interpolated 

variable-length periods of data, d{n}, at 

fractional indices, are mapped to equal-

period integer index values constituting 

the warped-time output, D[m]. 

R[p−1] is the sample index of d[n] at the 

start of the p-th period (which is fractional 

in general), and mP is the integer starting 

index of the p-th period in D[m].  The sampling rate ratio between the data array d[n] 

and the output array D[m] will normally be very close to unity.  For this particular 

period, the ratio is (R[p]−R[p−1])/Tn, and the j-th local integer sample of D[m] in the 

p-th period will be associated with the local fractional sample j (R[p]−R[p−1])/Tn in 

d[n].  R[p] is the real-time end index of the p-th period (which again is fractional in 

general) of d[n], and mP+Tn is the end index of the p-th period of the warped-time 

array D[m].  We will use {} brackets for fractional indices, so for fractional index, x, 

the interpolated data values are denoted d{x}.  The care we take for the interpolation 

can be decided by the nature of the reference data.  If there are many samples per 

period, an interpolated sample might just be the nearest actual sample.  The upper 

part of Fig.5 shows a very short segment of 6 actual real-time samples of d[n] on a 

smoothed curve representing the original time data.  This curve is sampled at 4 

equally-spaced interpolated fractional-index real-time samples of d{x}, which 

represent the values needed in each regularized period.  These samples are then 

used as 4 warped-time integer index samples of D[m], shown in the lower part of the 

figure.  If there are many samples in each period, then we might just use nearest 

index samples, and in Fig.5 this would mean that 2 or 3 samples in real time might 

be ignored.  Ignoring or repeating a few samples makes little difference to the final 

outcome. 



If we start our analysis at a reference point representing the start of a period, we can 

call this the 0-th sample in both d{n} and D[m].  Then the first period will go from 

sample R[0] to R[1] for the data array, d{n}, and from sample 0 to Tn for the output 

array, D[m].  The reference samples are at fractional time indices, in the general 

case of an interpolated version of r[n].  The index values of the array R[p] are then 

fractional, as already indicated.  If j represents the local index in the p-th period of 

the regularized output data D[m] (convenient for the coding), then the j-th sample of 

D[m] in the p-th period of the data is calculated from d[n] by interpolation as: 

D[(p−1)Tn+j]=d{R[p−1]+j(R[p]−R[p−1])/Tn}.     (1) 

The index j goes from 0 to Tn.  Index 0 belongs to the starting sample or the last 

sample of the previous period.  Our use of the {} brackets implies interpolation of d[n] 

for fractional sample numbers.  R[p−1] is the starting index in d{n} of the p-th period, 

starting the count at p=0, and the fractional local index is j (R[p]−R[p−1])/Tn. 

The sophistication of the interpolation that we use can be set by accuracy 

requirements, oversampling factor, and computing time.  To repeat, we might simply 

use integer values for the array R[p], together with the nearest sample in d[n], given 

by rounding the index calculation: 

D[(p−1)Tn+j]=d[round(R[p−1]+j(R[p]−R[p−1])/Tn)].    (2) 

If the data are highly oversampled relative to the repetition period, then this nearest 

sample interpolation is justifiable.  The RESAMPLE command in Matlab calls this 

nearest neighbor interpolation.  It amounts typically to a very slight time 

requantization error of the samples.  In this approximation, either some samples of 

d[n] will be omitted in D[m] if there are more samples in the d[n] period than Tn, or 

some samples of d[n] will be used twice in the output array D[m] if Tn is larger than 

the number of samples in the period of d[n]. 

To show the effectiveness of the resampling procedure, Fig.6 shows the power 

spectrum of the original acoustic data array, d[n].  This plot contains over 450,000 

frequencies, since it covers ¼ of the range of the Nyquist frequency of 400 Hz, 

representing the DFT (discrete Fourier transform) of just over 3.6 million samples.  

There are a few lines on the high-frequency side of the main peak that may 

represent harmonics of the blade 

passage period, but they are not clear. 

 

Figure 6.  Power spectrum of the 

recorded microphone data as 

measured with its original time 

samples. 



The spectrum peak at about 0.5 Hz is close to the frequency limitation of the GRAS 

40AZ microphone.  Correcting the falling microphone response shows the spectrum 

flat or rising down to well below 0.1 Hz.  Suffice it to say that the wind itself seems to 

be the cause of these very long-term fluctuations. 

In the resampling described in Eqs.(1) and (2), we indicate interpolation of each 

period of the real time data with samples of equal time duration.  In principle we 

could interpolate the plot of real time versus warped time with a spline or appropriate 

lowpass filter in order to define the sample positions of the real time data.  Since the 

blade passage periods change rather slowly, the difference would be negligible. 

Fig.7 shows the DFT spectrum of the regularized array, D[m].  Note that there is now 

a very clear harmonic series with fundamental frequency just below 1 Hz.  The lines 

are extremely sharp, and are each essentially in only one frequency bin.  This is 

shown in Fig. 8, which isolates a portion 

of the highest 2nd harmonic line. 

Figure 7.  Power spectrum of the 

microphone data, resampled to be 

exactly periodic by using the reference 

blade passage signal, which was 

recorded simultaneously with the original 

microphone signal. 

The fundamental frequency of 0.92 Hz 

does not show an amplitude distinct from 

other spectral lines near it, but it is there 

nonetheless.  Other measurements [2] 

and theory [3] also show weaker fundamental, but stronger harmonic lines. 

 

Figure 8.  An expanded view of the 2nd 

harmonic line of the resampled, 

regularized data, showing that it is only 

one frequency bin wide. 

The harmonic lines are so prominent 

that they can be used to determine the 

shape of the acoustic pulse, thereby 

removing the effect of all the other 

spectral lines, which represent noise.  

Fig.9 shows the result of extracting the 

harmonic lines, making sure that the resulting complex spectrum is properly 

conjugate even, inverse transforming the result, and displaying exactly one period of 

length Tn samples.  Also shown in the figure is the result of averaging all the periods 

of D[m] to reduce noise.  The plot follows the harmonic inverse very well.  It is 

surprising that the noise has averaged down so much.  This is due to the fact that 



much of the noise power resides below the fundamental of 0.9 Hz.  Such noise 

varies slowly over each period, so when we average them all, it simply creates a 

somewhat random background offset, but leaves the pulse shape unaltered. 

The total unweighted SPL of the microphone data is 89.4 dB, often denoted as 89.4 

dBZ.  When G-weighted [5] it reduces to 71.6 dBG.  This weighting is intended to 

express the threshold of infrasound perception, and is often well below the 

unweighted value.  The unweighted SPL of the coherent pulse signal is 66.7 dBZ.  

We have averaged about 4100 periods, which reduces the noise amplitude by 

sqrt(4100) or 36.1 dB.  Thus the noise level falls to about 89.4−36.1 or 53.3 dBZ, 

well below the coherent SPL of 66.7 dBZ. 

 

Figure 9.  Showing the coherent 

infrasonic pulse (blue) obtained by 

using 15 harmonics of the spectrum of 

Fig.7.  The red curve is the result of 

averaging all the periods of the 

resampled data.  Although the noise 

level is considerably larger than the 

signal shown in this figure, averaging 

over 4000 periods removes most of this 

noise. 

Each of the coherent pulse waveforms that we show in the sequel have unweighted 

total SPL, G-weighted total SPL, and unweighted SPL of the coherent pulse included 

in the title bar.  G-weighting enhances spectral components between 10 and 28 Hz, 

but diminishes those outside that range.  In each case G-weighting is lower than the 

unweighted SPL, since a significant part of the infrasonic energy comes from very 

low frequencies, which are suppressed by such weighting.  G-weighted signals are 

typically much higher than A-weighted ones, but A-weighting does not apply to 

infrasound at all.  It is also questionable to apply G-weighting to the coherent pulse 

signal.  That would reduce the amplitude of the pulse, but it is perhaps the peak 

acoustic amplitudes that matter. 

It is worth pointing out that the DFT of the period-averaged data will have exactly the 

same harmonic components of the periodic pulse as the DFT of the full array D[m].  

This is because the full array has precisely an integer number of pulse periods, and 

the Fourier sums over each period in the full array repeat the same multiplicative 

functions, adding to produce the same result as averaging all the periods first and 

then taking the smaller DFT.  We do not require a DFT of the complete sequence, 

unless we are interested in components that have a different periodicity. 

We have assumed that even those periods, which deviate from the dominant 1.08 

seconds, have the same pulse shape as the normal ones.  This may not be true, and 

to test this, we have separated out periods greater than 1.12 seconds from those 



that are regarded as normal, and given an average for each group.  Fig. 10 shows 

the average of 3099 selected normal periods, together with 697 abnormal outliers, 

and also the result when all periods are included.  Note that the largest signal occurs 

for the normal periods, while the longer abnormal periods have a pulse waveform 

that is both smaller and occurs earlier. 

This time advance should actually be expected!  The distance to the turbine was 

about 420m, and thus it takes about 420/343 seconds for the acoustic signal to travel 

to the microphone.  If a period is longer, then its acoustic response will occur 

relatively earlier since the travel time to the microphone is a smaller fraction of that 

period.  Rough estimates of the period lengthening show that the pulse advance is 

about right.  Note that because all the outlier periods are averaged together, that 

bipolar pulse is weakened due to the 

distribution of pulse timings. 

 

Figure 10.  The coherent output signal 

for normal periods (blue) is somewhat 

larger than the average of the normal 

ones plus outliers (red), while the 

outliers themselves (green) are 

somewhat wider and also time shifted. 

Now that we understand the effect of 

the acoustic delay, we can correct for 

it, now and in the sequel.  The flight 

time of the optical reference pulse is truly negligible.  Fig.11 shows the extracted 

infrasonic pulse with the acoustic correction.  Notice that the pulses now all line up, 

and the amplitude for all the pulses is closer to the selected ones.  The time delay 

caused by the 420m distance to the WT is almost one blade passage period, so the 

corrected pulse position in Fig.11 is in about the same position as the original data of 

Fig.10.  The outliers are still lower in amplitude than the selected ones, but that is 

reasonable, since we would expect the strength of the pulse to be related to the 

pressure difference across the blades, and this might be less at lower blade speeds.  

The position of the pulses relative to the reference pulses is not controlled in our 

plots, so it may not appear centred in 

later plots. 

Figure 11.  Coherent infrasonic pulse 

when the time of flight from turbine to 

microphone is taken into account.  All 

the periods including the outliers are 

time aligned and more alike in 

amplitude. 



One drawback to the above procedure is that the DFT required to analyze the data 

will have N=P×Tn points, and that number may be poorly conditioned for an efficient 

FFT algorithm.  Although N is already composite, it helps if P and Tn are each 

factorable into smaller factors.  Since our final repetition period is simply an average 

of the real, varying-length periods, we are at liberty to modify Tn somewhat so that 

the algorithms are efficient!  In fact if there are many periods, P, then we could throw 

away a few in order to optimize P as well!  Changing P or Tn by even a few counts 

may vastly improve the FFT execution time.  Such considerations are not trite, since 

we may be using many millions of sample points, and patience at the computer is not 

necessarily a virtue.  Although not necessary, in the example presented above, we 

chose Tn=863, and the DFT was chosen with N=217 52 =3276800, which covers 

most of the original data and represents 3796.98725 periods, very close to an 

integer.  Typically the exact DFT length has very long execution times.  When we do 

take the time to do an exact DFT of all the periods, the results look the same if the 

number of periods is within a few percent of an integer. 

Other Measurements and Analyses 

Each of the 6 wind farms that we have measured displayed quite different operating 

characteristics.  Fig.12 shows the WT irregularity over more than an hour of a unit in 

the Summerhaven Wind Energy Center of 56 Siemens 2.3MW turbines in Haldimand 

County near Fisherville, Ontario.  The most common period is 1.3 seconds, but 

interestingly the unit ‘jumps’ between 8 or 9 different periods, with some fluctuations 

in each one.  It seems that the turbine is altering its speed in steps.  On several 

occasions the turbine seems to slow down over many periods, perhaps due to lulls in 

wind speed.  

 

Figure 12.  Period irregularity for a 

turbine that exhibits “jumps” in its 

operation. 

The microphone was generally 

downwind from the nearest turbine 

whose blade passages were recorded, 

about 500-700m away.  Again a 

straightforward DFT of the raw data 

yielded rather poor spectral lines with 

significant width, while the warped 

revolution- or angle-domain data showed excellent lines.  It proved easy to extract 

the coherent infrasonic pulse from the data, shown in Fig.13.  There was somewhat 

more wind in this measurement, and the total infrasonic SPL was 31dB above the 

coherent SPL.  Although the time-of-flight was corrected, it did not improve things 

very much, because the relative period variation is already quite low. 



 

Figure 13.  Infrasonic pulse of the 

Summerhaven turbine.  The noise is 

again quite low due to averaging of the 

long data record. 

One of our earliest rather enigmatic 

measurements was from the 

Conestogo Wind Farm near Arthur, 

Ontario that has 9 Siemens 2.3MW 

turbines, and a single 2.1MW unit.  The 

period irregularity shown in Fig.14 is so 

weird that we did tests to make sure that our equipment was not malfunctioning.  

These turbines obviously are not geared to generators that are directly grid 

connected; we surmise that they 

generate DC power optimally and inject 

it into the grid electronically. 

 

Figure 14.  Period irregularity of a 

Siemens WT showing 50% change in 

period over a measurement interval of 

30 minutes.  Such characteristics make 

our time-warping analysis essential. 

The microphone signal seems normal, 

but these units give a somewhat 

weaker infrasonic pulse even though the distance to the turbine was only 200m.  

Fig.15 shows the recovered pulse.  Perhaps these units are changing blade pitch or 

speed under a control mechanism that minimizes infrasonic signals.  The 

microphone may not have been favourably located, and the pulse polarity and shape 

is different than most others. 

Figure 15.  Coherent infrasonic pulse 

from a very irregularly rotating 

Siemens turbine.  It would be 

impossible to obtain these data 

without the time-warping analysis of 

this paper.  The relative noise is 

somewhat larger for the averaged 

data, due to the shorter time record, 

and the low level of infrasound from 

these machines. 



Since these data were taken over only 30 minutes, it appears noisier than our other 

measurements.  However, without the time-warping order analysis, these data would 

not yield an infrasonic pulse at all. 

A measurement made on a moderately windy day at the Enbridge Ontario Wind 

Farm with 110 Vestas V82 1.65MW turbines, located near Underwood, Ontario, 

Canada showed yet another pattern, as demonstrated in the irregularity shown in 

Fig.16.  The data were downsampled to 

3200 Hz from the original 12.8 kHz file. 

Figure 16.  Period irregularity of a 

turbine that seems to be jumping 

between 2 rotational speeds. 

This turbine may be changing its speed 

to optimize the power gleaned from a 

fluctuating wind speed.  Again it gives a 

very clear infrasonic pulse as shown in 

Fig.17.  The total SPL from the farm 

was over 16dB greater than the 

coherent portion.  Note that the overall 

shape of this pulse differs somewhat 

from several of the others, although a 

judiciously placed wiggle in the 

background signal would make it look 

quite similar. 

Figure 17.  Coherent infrasonic pulse of 

the turbine whose period character is 

shown in Fig.16. 

The irregularity of a turbine in the 

Mohawk Point Wind Farm of six Vestas 

V82 1.65MW turbines, located near Lowbanks, Ontario, is shown in Fig.18.  These 

units have a very consistent period near 1.401 seconds.  The relative variation is so 

low that we used the full 12.8 kHz dataset to reduce quantization errors in 

determining the number of samples in 

each period. 

 

Figure 18.  Period variation of a 

Vestas turbine that is quite regular, 

with a speed variation of only 0.2%. 

The extracted infrasonic pulse is 

shown in Fig.19.  The reduction of 

signals from the other turbines was still 



very good, even though these units are nearly but not quite synchronous.  It is 

necessary to take at least an hour of data to achieve such separation, and the 

warping analysis is vital. 

 

Figure 19.  The infrasonic pulse 

extracted from the fairly regular 

turbine whose period character is 

shown in Figure 18.  Even here the 

order analysis is crucial to obtain such 

clear data. 

Our final measurement example was 

of a standalone Enercon E-48 turbine 

in Port Elgin, Ontario, Canada.  Its hub 

height was about 75m.  Access to this 

unit was very easy and it was measured from several upwind positions.  The present 

data was taken 197m away from the tower, with the hub 211m distant.  Fig.20 shows 

the period irregularity.  Again the wide variation makes it necessary to do an angle-

domain analysis.  We have noticed in several measurements that the period seems 

to become longer and more irregular as time passes during the day.  This is probably 

due to the falling windspeed often 

occurring in late afternoon. 

Figure 20.  Period irregularity of the 

standalone turbine, showing more than 

100% change in the blade passage 

period over about 1 hour. 

Fig. 21 shows the extracted infrasonic 

signature of the Port Elgin turbine.  

Again it was necessary to account for 

the acoustic delay to achieve this 

almost noisefree response. 

 

Figure 21.  The recovered infrasonic 

pulse from the standalone turbine.  We 

are located upwind from the unit, and 

although the pulse has the usual 

shape, its polarity has been reversed. 



The upwind acoustic pulse radiated from this machine is opposite in polarity from the 

others, which were taken downwind of the units.  The acoustic pressure rises first, 

rather than falls as for the downwind units.  This makes sense because the positive 

pressure in the front of the blades is now exposed to the measuring microphone. 

The data from our 6 chosen wind farms display a wide range of behaviour.  Yet each 

instance benefits greatly from time-warping order analysis.  It is absolutely necessary 

to have a period reference signal for each WT that is chosen for detailed analysis. 

Multiple Simultaneous Measurements 

If there are several sources to be measured, each having an optical or other 

reference track, but only a single microphone or a common data track, can we 

separate out each of the quasi-periodic processes?  The answer is that it may be 

possible, but only if certain conditions exist.  We will not go into an exhaustive 

analysis, but indicate some avenues to explore. 

The first thing that comes to mind is that using each reference track, we can analyze 

the common data to retrieve mainly the data component related to each reference.  

We can resample the data using each reference, and consider what crosstalk might 

not be avoidable.  If the several processes are quite irregular and their irregularity is 

unrelated, we would expect a large DFT to isolate each process to a good degree, 

treating the others as noise, much as our earlier examples.  However, if the 

irregularity is similar for each component, then it will be difficult to separate them out. 

If the processes are only slightly different in average period, we may be able to 

choose a data length that captures a different integer number of periods of each.  In 

principle then, each process should be virtually orthogonal to the others.  A DFT will 

then show different lines for the fundamental and harmonics for each process.  For 

more than 2 processes of close to the same frequency, it will be very difficult to find a 

data size that will treat all of them as close to an integer number of periods. 

A method that we are currently assessing is to record multiple turbines in a wind 

farm with a video camera.  With appropriate software, we can post-process the video 

stream to produce a number of blade passage records.  The clock oscillators in 

modern video and data acquisition equipment are sufficiently accurate that there will 

be negligible drift during an hour or so of measurement. 

Other Work 

We note that other authors have shown similar infrasound pulses.  Hubbard and 

Shepherd [2] show an infrasonic pulse and its changing shape as the orientation 

varies with respect to the turbine.  More recently, Bruce Walker [6] showed pulses 

averaged over 150 revolutions (450 blade passages). The reference signal was 

supplied by the turbine operator. His data (his Figures 8 and 9) show an infrasonic 

pulse similar to ours, including the polarity reversal depending on whether the 

microphone is in front of or behind the turbine. 



Conclusion 

Our paper shows how the coherent part of the infrasound from a single WT in a 

group can be extracted from a microphone signal by using a blade passage 

reference track from the turbine under study.  The analysis reveals a characteristic 

infrasonic pulse. These pulses from wind turbines are caused by the radiation of the 

Tyler-Sofrin spinning modes.  The polarity of the pulse will be different upwind and 

downwind from the turbine. 

The random component of the infrasonic signal substantially exceeds the coherent 

part, and this random component is largely related to wind noise, which appears to 

be similar whether one is near or far from a wind farm. 

Our paper avoids the issue of health effects from WT infrasound.  Information on 

both sides of the controversy abounds in the literature. 
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