Introduction to Mechanism Design

Kate Larson

Computer Science University of Waterloo

October 2, 2006

Clarke Tax Revisted

Implementation in Bayes-Nash Equilibrium

8 Review: Impossibility and Possibility Results

Example: Building a Pool

- Cost of building the pool is \$300
- If together all agents value the pool more than \$300 then it will be built
- Clarke Mechanism
 - Each agent announces v_i and if $\sum_i v_i \ge 300$ then it is built

• Payments
$$t_i = \sum_{j \neq i} v_j(x^{-i}, v_j) - \overline{\sum}_{j \neq i} v_j(x^*, v_j)$$

Assume $v_1 = 50$, $v_2 = 50$, $v_3 = 250$. Clearly, the pool should be built.

Transfers: $t_1 = (250 + 50) - (250 + 50) = 0 = t_2$ and $t_3 = (0) - (100) = -100$.

- Social welfare maximizing outcome
- Truth-telling is a dominant strategy
- Feasible in that it does not need a benefactor $(\sum_i t_i \le 0)$

Cons

- Budget balance not maintained (in pool example, generally $\sum_{i} t_i < 0$)
 - Have to burn the excess money that is collected

Theorem

Let the agents have quasilinear preferences $v_i(x, \theta_i) - t_i$ where $v_i(x, \theta_i)$ are arbitrary functions. No social choice function that is (ex post) welfare maximizing (taking into account money burning as a loss) is implementable in dominant strategies. [Laffont&Green 79]

• Vulnerable to collusion (even with coalitions of just 2 agents).

Bayes-Nash Implementation

- Goal is to design mechanisms so that in Bayes-Nash equilibrium s^{*}, the outcome is f(θ).
- Weaker requirement than dominant-strategy implementation
 - An agent's best response strategy may depend on others' strategies
 - Agents may benefit from counterspeculating
- Can accomplish more under with Bayes-Nash implementation than dominant strategy implementation
 - Budget balance and efficiency under quasi-linear preferences

Expected Externality Mechanism

d'Aspremont&Gerard-Varet 79, Arrow 79

- Similar to Groves mechanism but the transfers are computed based on agent's revelation v_i, averaging over possible true types of the others v^{*}_{-i}
- Outcome: $x(v_1, \ldots, v_n) = \arg \max_x \sum_i v_i(x)$
- Others' expected welfare when agent *i* announces *v_i*

$$\xi(v_i) = \int_{v_{-i}} p(v_{-i}) \sum_{j \neq i} v_j(x(v_i, v_{-i}))$$

This measures the change in expected externality as agent *i* changes its revelation

d'AGVA Mechanism

Theorem

Assume that agents have quasi-linear preferences and statistically independent valuation functions v_i . Then the efficient SCF f can be implemented in Bayes-Nash equilibrium if

$$t_i(\mathbf{v}_i) = \xi(\mathbf{v}_i) + h_i(\mathbf{v}_{-i})$$

for arbitrary function $h_i(v_{-i})$.

Unlike in dominant-strategy implementation budget balance is achievable

• Set
$$h_i(v_{-i}) = -\frac{1}{n-1} \sum_{j \neq i} \xi(v_j)$$

d'AGVA does not satisfy participation contraints

 An agent might get higher expected utility by not participating

Participation Constraints

We can not force agents to participate in the mechanism. Let $\hat{u}_i(\theta_i)$ denote the (expected) utility to agent *i* with type θ_i of its outside option.

• ex ante individual-rationality: agents choose to participate before they know their own type

 $E_{\theta \in \Theta}[u_i(f(\theta), \theta_i)] \geq E_{\theta_i \in \Theta_i}\hat{u}_i(\theta_i)$

• interim individual-rationality: agents can withdraw once they know their own type

$$\mathsf{E}_{\theta_{-i}\in\Theta_{-i}}[u_i(f(\theta_i,\theta_{-i}),\theta_i)] \geq \hat{u}_i(\theta_i)$$

• ex-post individual-rationality: agents can withdraw from the mechanism at the end

$$u_i(f(\theta), \theta_i) \geq \hat{u}_i(\theta_i)$$

Kate Larson

Mechanism Design

Summary Impossibility and Possibility Results

Gibbard-Satterthwaite

 Impossible to get non-dictatorial mechanisms if using dominant-strategy implementation and general preferences

Groves

 Possible to get dominant strategy implementation with quasi-linear utilities (Efficient)

Clarke (or VCG)

- Possible to get dominant strategy implementation with quasi-linear utilities (Efficient and interim IR)
- d'AGVA
 - Possible to get Bayes-Nash implementation with quasi-linear utilities (Efficient, budget-balanced, ex ante IR)

Other Mechanisms

- We know what to do with
 - Voting
 - Auctions
 - Public Projects
- Are there any other "markets" that are interesting?

Bilateral Trade

- 2 agents, one buyer and one seller, each with quasi-linear utilities
- Each agent knows its own value, but not the other's
- Probability distributions are common knowledge

We want a mechanism that is

- ex post budget balanced
- ex post efficient: exchange occurs is $v_b \ge v_s$
- (interim) IR: agents have higher expected utility from participating than by not participating

Myerson-Satterthwaite Theorem

Theorem

In the bilateral trading problem no mechanism can implement an ex post budget-balanced, ex post efficient, and interim IR social choice function (even in Bayes-Nash equillibrium).

Proof

- Seller's valuation is s_L w.p. α and s_H w.p. (1α)
- Buyer's valuation is b_L w.p. β and b_H w.p. (1β)
- Say $b_H > s_H > b_L > s_L$
- By the Revelation Principle we need only focus on truthful direct revelation mechanisms
- Let *p*(*b*, *s*) be the probability that trade occurs given revelations *b* and *s*
 - Ex post efficiency requires: p(b, s) = 0 if $b = b_L$ and $s = s_H$, otherwise p(b, s) = 1
 - Thus $E[p|b = b_H] = 1$ and $E[p|b = b_L] = \alpha$
 - $E[p|s = s_H] = 1 \beta$ and $E[p|s = s_L] = 1$

Proof continued

- Let m(b, s) be the expected price buyer pays to the seller given revelations b and s
 - Since buyer pays what seller gets paid, this maintains budget balance ex post

•
$$E[m|b] = (1 - \alpha)m(b, s_H) + \alpha m(b, s_L)$$

- $E[m|s] = (1 \beta)m(b_H, s) + \beta m(b_L, s)$
- Individual rationality (IR) requires
 - $bE[p|b] E[m|b] \ge 0$ for $b = b_L, b_H$
 - $E[m|s] sE[p|s] \ge 0$ for $s = s_L, s_H$
- Bash-Nash incentive compatibility (IC) requires
 - $bE[p|b] E[m|b] \ge bE[p|b'] E[m|b']$ for all b, b'
 - $E[m|s] sE[p|s] \ge E[m|s'] sE[p|s']$ for all s, s'

Proof Continued

Suppose alpha = β = 1/2, s_L = 0, s_H = y, b_L = x, b_H = x + y where 0 < 3x < y

- $IR(b_L)$: $1/2x = [1/2m(b_L, s_H) + 1/2m(b_L, s_L)] \ge 0$
- $IR(s_H)$: $[1/2m(b_H, s_H) + 1/2m)b_L, s_H)] 1/2y \ge 0$
- Summing gives $m(b_H, s_H) m(b_L, s_L) \ge y x$
- $IC(s_L)$: $[1/2m(b_H, s_L) + 1/2m(b_L, s_L)] \ge$ $[1/2m(b_H, s_L) + 1/2m(b_L, s_L)]$ • i.e. $m(b_H, s_L) - m(b_L, s_H) \ge m(b_H, s_H) - m(b_L, s_L)$ • $IC(b_H)$: $(x + y) - [1/2m(b_H, s_H) + 1/2m(b_H, s_L)] \ge$ $1/2(x + y) - [1/2m(b_L, s_H) + 1/2m(b_L, s_L)]$ • i.e $x + y \ge m(b_H, s_H) - m(b_L, s_L) + m(b_H, s_L) - m(b_L, s_H)$
- So $x + y \ge 2[m(b_H, s_H) m(b_L, s_L)] \ge 2(y x)$ which implies $3x \ge y$. Contradiction.

Market Design Matters

- Myerson-Satterthwaite shows that under reasonable assumptions, the market will NOT take care of efficient allocation
- Market design does matter
 - By introducing a disinterested 3rd party (auctineer) we could get an efficient allocation