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1. Introduction

A combination of recent economic and computational trends, such as the negligible cost of
duplicating digital goods and, most importantly, the emergence of the Internet as one of the
most important arenas for resource sharing between parties with diverse and selfish interests,
has created a number of new and interesting dynamic pricing problems. It has also cast new
light on more traditional problems such as the problem of profit optimization for the seller in an
auction. We focus the design and analysis of truthful, a.k.a., incentive compatible or strategy-
proof, auctions that perform well in worst case in the presence of unknown market conditions.

The traditional economics approach to the study of profit-maximizing auctions is to construct
the optimal Bayesian auction given the prior distribution from which the bidders’ valuations, the
maximum values that they are willing to pay, are drawn. This has led to a number of interesting
results including the use of the Vickrey auction (Vickrey, 1961) parameterized by a reserva-
tion price that is adjusted to reflect the seller’s knowledge of the prior distributions (Bulow and
Roberts, 1989; Myerson, 1981). When the bidders’ valuations are indeed drawn from a known
distribution this technique gives the optimal auction.

In contrast, we focus on the design of unparameterized auctions for profit maximization in
unknown markets, i.e., when information about prior distributions is not available.6 There are a
number of compelling reasons for considering profit maximization from this perspective. In order
to use a Bayesian optimal auction the prior distribution, or at least a reasonable approximation
thereof, must be ascertained in advance. In some cases, determining the prior distribution in
advance may not be convenient or possible. Moreover, even if prior distributions are known,
when many auctions are to be run, computing and setting a new reservation price for each one
may be inconvenient or infeasible.

The study of profit maximizing auctions for unknown markets provides understanding for auc-
tion problems where the seller has incomplete knowledge of the distribution of bidder valuations.
We can determine how well an uninformed mechanism can perform. We can get a quantitative
understanding of the relative value of being informed. A partially informed auctioneer choosing
an auction mechanism has to consider the trade-off between using an auction tailored to assump-
tions about bidder valuations that may or may not be correct versus using an auction designed to
work as well as possible under unknown market conditions.

Worst case analysis is the only way to give provable performance guarantees in the presence
of total uncertainty. As such, we will use worst case analysis to measure the performance of
uninformed auctions. We will show that it is possible to obtain optimal performance, to within a
multiplicative constant factor, even under arbitrary, unknown, and worst-case market conditions.

In the case where the auctioneer has partial information on possible inputs, it is possible to
tailor the analysis and prove better bounds than are possible in the worst case over all possible
inputs. As an example, we consider the performance of our auctions in the mass market case,
where the auctioneer expects to sell many units. In this case, we give an analysis of our auctions
for the worst input over a practical restriction of bidders’ valuations that is relevant to mass
market sales. Similarly, though we do not provide the analysis in this paper, a Bayesian analysis
of our auctions could be performed to obtain tighter bounds for the Bayesian setting (see Baliga
and Vohra, 2003; Segal, 2003 for such an analysis). An ideal auction has good performance in
worst case and a better performance when the inputs come from specific prior distributions.

6 In the literature, such auctions are sometimes called detail-free auctions.



244 A.V. Goldberg et al. / Games and Economic Behavior 55 (2006) 242–269
To analyze auction performance without making assumptions about the prior input distribu-
tion, a criterion is needed for gauging auction revenues. Our approach is motivated by competitive
analysis of on-line algorithms (Borodin and El-Yaniv, 1998; Sleator and Tarjan, 1985), where the
performance of an on-line algorithm, one that must make decisions without knowledge of the fu-
ture, is compared to the performance of an optimal off-line algorithm that knows the future. The
assumption that an on-line algorithm does not know the future in advance is analogous to the
assumption that an auction does not know the bidders’ valuations in advance. We gauge a truth-
ful auction’s performance on a particular bid set by comparing it with the profit that would be
achieved by an “optimal” omniscient auction, one that knows the bids in advance, on the same
set of bids. An auction is competitive if it achieves a profit that is a constant fraction of optimal
on every input.

In this paper, we focus on the case where the auctioneer has an unlimited number of indivis-
ible units of an item available to sell, each consumer wants at most one unit, and the auctioneer
has no value for the units. We use the term unlimited supply to describe this supply curve. This
unlimited supply case is natural for the sale of digital goods where there is negligible cost for
duplicating and distributing the good. Pay-per-view television and downloadable audio files are
examples of such goods. All of our results generalize naturally to the limited supply case where
the auctioneer has a limited number of units to sell (fewer than the number of bidders). Adher-
ing to the revelation principle (Myerson, 1981), we will restrict our attention to single-round,
sealed-bid, truthful auction mechanisms. In truthful auctions, truth-telling, i.e., revealing their
true valuation as their bid, is a dominant strategy for each bidder.

The rest of the paper is organized as follows. In Section 2 we formally define auction mecha-
nisms and the bidder model. We also review an algorithmic characterization of deterministic and
randomized truthful mechanisms.

In Section 3 we describe the basics of competitive analysis and motivate its use for auction
problems by contrasting it to Bayesian analysis. We also discuss in detail the competitive frame-
work that we will be using in this paper for both the worst case and the mass market case.

In Section 4 we show that no deterministic auction has good worst case performance. This
motivates the use of randomized auction mechanisms. In Section 5 we give a bound on how
well any auction can perform in worst case. We give two randomized competitive auctions in
Section 6 and prove that they perform well in worst case. The first auction uses the optimal
price for a random sample of the bids as the sale price for the remaining bids, i.e., does market
analysis on the sample. We show that for mass markets, this auction obtains a near optimal profit,
and moreover, it performs within a constant factor of optimal in our worst case competitive
framework. The second auction we introduce is based on a standard cost sharing mechanism.
Analysis of this auction is much simpler than the first and the bound we obtain on its worst case
performance is much better.

In Section 7 we discuss the extension of the results for unlimited supply to the limited supply
case where there are fewer units for sale than bidders. In Section 8 we give additional motivation
for our competitive framework by showing that no reasonable auction can outperform the optimal
omniscient auction that serves as the benchmark in our analysis. We conclude in Section 9 and
discuss recent results related to this line of research.

2. Preliminaries and notation

We consider single-round, sealed-bid auctions for identical units of an item available in un-
limited supply.
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Definition 2.1. A single-round sealed-bid auction, A, is one where:

(1) Each bidder submits a bid, representing the maximum amount they are willing to pay for the
item. We denote by b the vector of all submitted bids, i.e., the input. The ith component of
b is bi , the bid submitted by bidder i. We denote by n the number of bidders.

(2) Given the bid vector b, the auctioneer computes an output consisting of an allocation, x =
(x1, . . . , xn), and prices, p = (p1, . . . , pn). The allocation xi is an indicator for bidder i’s
receipt of the item (1 if bidder i receives the item and 0 otherwise). If xi = 1, we say that
bidder i wins. Otherwise, bidder i loses, or is rejected. The price, pi , is what bidder i pays
the auctioneer. We assume that 0 � pi � bi for all winning bidders and that pi = 0 for all
losing bidders (these are the standard assumptions of no positive transfers and voluntary
participation. See, e.g., Moulin and Shenker, 2001).

(3) The profit of the auction (or auctioneer) is A(b) = ∑
i pi .

We say that an auction is deterministic if the allocation and prices are completely determined
as a function of the bid vector. We say that the auction is randomized if the procedure by which
the auctioneer computes the allocation and prices is randomized. Note that if the auction is ran-
domized, the profit of the auction, the output prices, and the allocation are random variables.

We make the following assumptions about bidders:

• Each bidder has a private valuation, representing the true maximum they are willing to pay
for the item. We denote by vi bidder i’s valuation.

• Each bidder bids so as to maximize their utility, ui = vixi − pi .
• Bidders bid with full knowledge of the auctioneer’s mechanism.
• Bidders do not collude.
• The bidders in the auction are indistinguishable from the perspective of the auctioneer. Thus,

the auctioneer cannot perform any knowledgeable market segmentation.

Finally, we formally define the notion of truthfulness.

Definition 2.2. We say that a deterministic auction is truthful if, for each bidder i and any choice
of bid values for all other bidders, bidder i’s utility is maximized by bidding their valuation, i.e.,
by setting bi = vi .

Thus, we consider an ex post notion of truthfulness with respect to bidders strategies. Truthful
auctions encourage rational bidders to bid their valuation if the bid value that maximizes their
profit is unique. If the bid value is not unique, truthfulness at least does not discourage bidders
from bidding their valuation.

For randomized auctions, one natural approach is to say that an auction is truthful if a bidder’s
expected profit is maximized by bidding their valuation. We use another natural, but stronger
notion of truthfulness; we require randomized auctions to be truthful ex post with respect to the
randomness in the mechanism.

Definition 2.3. A randomized auction is truthful if it can be described as a probability distribution
over deterministic truthful auctions.
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Clearly, with this notion of truthfulness, the probability that a bidder’s utility exceeds z is
simultaneously maximized for every z by bidding truthfully.

Henceforth we will consider only truthful auctions. As bidding vi is a dominant strategy for
bidder i in a truthful auction, in the remainder of this paper, we assume that bi = vi .

2.1. Bid-independent auctions

Intuitively, if a price a bidder is offered in an auction is independent of the bidder’s bid value,
the auction is truthful. This is a simple consequence of the well known observation (e.g., Myer-
son, 1981) that a mechanism is truthful if and only if the allocation rule of the auction is monotone
(i.e., if a winning bidder increases their bid then they still win). Given such a monotone alloca-
tion rule, the payment rule that induces truthtelling is fixed. In particular, a winning bidder pays
their minimum winning bid. Therefore, we can view a truthful mechanism as the function that
computes this minimum winning bid (which we view as an offer price).

The following statement of this well known characterization is useful because it emphasizes
that while the offer price to a bidder should be independent of the bidder’s bid, it can and should
depend on the bids of all the other bidders. Bid-independent auctions formalize this observation.
Let b−i denote the vector of bids b with bi removed, i.e., b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn).
We call such a vector masked. Let f be a function from masked vectors to prices (non-negative
real numbers). The deterministic bid-independent auction defined by f is Af (Definition 2.4).

Definition 2.4 (Bid-independent Auction, Af (b)). For each bidder i:

(1) ti ← f (b−i ).
(2) If ti � bi , set xi ← 1 and pi ← ti . (Bidder i wins.)
(3) Otherwise, set xi = pi = 0. (In this case, we say that bidder i is rejected.)

In step (2), bid-independence allows the inequality, ti � bi , to be strict or non-strict at the discre-
tion of f (b−i ). Thus f can specify whether to accept bi at price ti if bi is in (ti ,∞) or [ti ,∞).

For example, by setting f = max for all i and breaking ties arbitrarily, we obtain the 1-unit
Vickrey auction, in which the highest bidder wins at the second highest price. Similarly, if f is
the function that returns the kth highest bid, we get the k-item Vickrey auction.

Theorem 2.5. A deterministic auction is truthful if and only if it is equivalent to a deterministic
bid-independent auction.

Definition 2.6. A randomized bid-independent auction is a probability distribution over bid-
independent auctions. For these auctions, f (b−i ) is a non-negative real-valued random variable.7

It follows immediately from this definition, Definition 2.3, and Theorem 2.5 that:

Corollary 2.7. A randomized auction is truthful if and only if it is equivalent to a randomized
bid-independent auction.

7 Note that the random variables f (b−i ) and f (b−j ) need not be independent.
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2.2. Optimal omniscient auctions

In our discussions to follow, it will be useful to compare the performance of truthful auctions
to that of the optimal single priced and optimal multi-priced omniscient auctions.

Definition 2.8. The optimal single price omniscient auction, F , is defined as follows: Let b be
a bid vector, and let zi be the ith largest bid in b. Auction F on input b determines the value k

such that kzk is maximized. All bidders with bi � zk win at price zk ; all remaining bidders lose.
The profit of F on input b is thus

F(b) = max
1�i�n

izi .

Definition 2.9. The optimal multiple price omniscient auction, T , is the auction that sells to each
bidder at his bid value. Thus, the profit of T on input b is

T (b) =
∑

1�i�n

bi .

3. Competitive analysis

The goal of this section is to motivate and explain the application of worst-case competitive
analysis to auctions. We begin with an example of an auction that performs well under a Bayesian
analysis. Then we show that under worst-case analysis, the same auction does poorly. Finally, we
describe how competitive analysis can be used to give stronger results.

We begin by considering a natural truthful auction, the Deterministic Optimal Price (DOP)
auction. To define DOP, we introduce the notion of the optimal sale price for a set of bids.

Definition 3.1. Let b be a vector of bids. Denote by opt(b) the sale price for b that gives the
optimal profit, i.e.,

opt(b) = argmax
zi

izi ,

where zi is the ith largest bid in b.

DOP is the truthful auction defined as follows:

Definition 3.2. The Deterministic Optimal Price (DOP) auction is defined by the bid independent
function f :

f (b−i ) = opt(b−i ).

In other words, DOP uses for each bid bi the optimal sale price for the remaining bids b−i .

Note that the optimal price for b could be the same as the optimal price for b−i but in general
this is not the case. The following lemma is not difficult to prove.

Lemma 3.3. Assume that the bids in b are i.i.d. from any bounded support probability distribu-
tion. Then, as the number of bidders tends to infinity, the profit of the DOP auction converges to
the optimal profit.
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Thus, DOP is a profit maximizing auction for a large class of distributions over bid vectors.
However, it is also easy to exhibit classes of bid vectors where DOP’s profit is very far from
optimal.

For example, consider n bidders where n/b of them bid b � 1 and the remaining bidders
bid 1. Running DOP on this bid vector will result in the following: For a bid at value b, we
remove it and compute opt of the remaining bids. Of the n − 1 bids remaining n/b − 1 of them
are at b. Thus, opt outputs 1 as n − 1 bids at price 1 gives a higher revenue than n/b − 1 bids at
price b. Similarly for a bid at value 1, we remove it and compute opt of the remaining bids. Of
the n− 1 of them, there are n/b of them at b, the rest at 1. Thus, opt chooses to output b because
n/b bids at price b gives a higher revenue than n − 1 bids at price 1. Thus, all bids at value 1
are rejected and all bids at value b win the auction and only have to pay 1. DOP’s profit is thus
n/b (the number of bids at b) whereas the optimal single price profit is n. Thus, for b very large,
DOP performs arbitrarily worse than the optimal single price profit.

We note that any input on which the single price omniscient auction finds two different bid
values that give approximately the same revenue will have a similar worst case. Indeed, we
extend this result in Section 4 by showing that all deterministic auctions suffer from this type of
problem.

In the Bayesian analysis of Lemma 3.3, these bad inputs are very unlikely to occur; analysis
of the expected profit hides the possibility of messing up on specific inputs. While this is not
a problem if the bids are from a random source, it is not necessarily reasonable to expect the
bidders’ valuations to be truly random.

To expose auctions, like the one above, that have inputs on which they perform poorly, we turn
to worst-case analysis. The goal of the worst-case analysis we employ here is to get a bound on
how badly the auction could mess up if an adversary generated the worst possible input. While
this adversarial view is clearly not a realistic model of how bidders bid either, an auction that
performs well in the worst case will certainly perform well on the more benign reality. As we
shall see in this paper, there are auctions that perform well even under worst-case analysis.

The notion of competitive analysis is a natural one. In the worst case, all input bids could be
zero (or negligible) and no auction will be able to extract a high profit. Thus, instead of absolute
profit, we look at auction profit relative to an “optimal” auction on the same input. The correct
notion of an optimal auction is not obvious. In general, our goal is to get the strongest results we
can, and thus we will try to compare our truthful auctions against the best possible auction that we
can feasibly compete with. Once the optimal auction is defined, the best competitive auction is the
one that minimizes the competitive ratio, the worst case ratio between the optimal auction profit
and its profit. A fundamental goal of this research is to determine the best metric for comparison,
the corresponding best competitive ratio, and the auction mechanism that achieves it.

3.1. Competitive auction framework

A key part of setting up a competitive framework for analyzing solutions to any problem
is coming up with the right metric for comparison. As a starting point, we would like to take
the strongest possible benchmark for comparison that we can: the profit of an auctioneer that is
perfectly informed about the bidder’s values. This leads us to consider as the two most natural
metrics for comparison the optimal omniscient multi-priced and single priced auctions, T and F ,
defined in Section 2.2.

We first compare the performance of F relative to T . Specifically, we observe that in the worst
case, the maximum ratio of T to F is logarithmic in the number n of bidders.
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Lemma 3.4. There exist bid vectors b for which

F(b) = Θ
(
T (b)/ lnn

)
.

Moreover, for all bid vectors b

F(b) � T (b)/ lnn.

Proof. For the first part, let b be the bid vector such that bi = n/i. Then F(b) = n and T (b) =
n(ln(n) + Θ(1)).

For the second part, let zi be the ith largest bid in bid vector b. Suppose that F(b) =
maxi izi = kzk . Then for all i,

izi � kzk.

Thus,

T (b) =
n∑

i=1

zi �
n∑

i=1

kzk

i
� F(b)

n∑
j=1

1

j
= F(b)

(
lnn + O(1)

)
. �

Now we show that no truthful auction can be competitive against F (and hence it cannot be
competitive against T ).

Lemma 3.5. For any truthful auction Af and any β � 1, there is a bid vector b such that the
expected profit of Af on b is less than F(b)/β .

Proof. Consider a bid-independent randomized auction on two bids, 1 and x � 1. Let h be the
smallest value greater or equal to 1 such that Pr[f (1) � h] � 1/(2β). Then the profit on input
vector b = (1,H) with H = 4βh is at most

H

2β
+ h

(
1 − 1

2β

)
+ 1 < 4h = H

β
= F(b)

β
. �

Lemma 3.5 shows that we cannot expect to come close to matching the performance of the
optimal single price omniscient auction in the case where the optimal profit is generated from
the single highest bid. Thus, we must set our sights slightly lower. Later in the paper we will
present auctions that are competitive with F (2), the optimal single price omniscient auction that
sells at least two units. Such auctions perform comparably to F (2) in that they achieve a constant
fraction of the revenue of F (2) on all inputs.

Definition 3.6. The optimal single price omniscient auction that sells at least two units, F (2), is
defined as follows: Let b be a bid vector, and let zi be the ith largest bid in the vector b. Auction
F (2) on input b determines the value k such that k � 2 and kzk is maximized. All bidders with
bi � zk win at price zk ; all remaining bidders lose. The profit of F (2) on input b is thus

F (2)(b) = max
2�k�n

kzk.

Note that for b where F elects to sell at least two units, F (2)(b) = F(b). Thus, excluding
bid vectors where only the highest bidder wins in the optimal auction, comparing auction perfor-
mance to F (2) is identical to comparing it to F .
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Next we generalize the definition of F (2) to define F (m), as the optimal single price omniscient
auction that sells at least m units, and formalize our definition of competitiveness.

Definition 3.7. The m-optimal single price omniscient auction F (m) is defined as follows: Let
b be a bid vector, and let zi be the ith largest bid in the vector b. Auction F (m) on input b
determines the value k such that k � m and kzk is maximized. All bidders with bi � zk win at
price zk ; all remaining bidders lose. The profit of F (m) on input b is thus

F (m)(b) = max
m�k�n

kzk.

Definition 3.8. We say that auction A is β-competitive against F (m) if for all bid vectors b, the
expected profit of A on b satisfies

E
[
A(b)

]
� F (m)(b)

β
.

We say that an auction is competitive against F (m) if the auction is β-competitive against F (m)

for a constant β . We refer to β as the competitive ratio of A.

The statement that an auction is competitive against F (m) implies that, restricted to inputs b
such that there are at least m units sold by the optimal auction, i.e., F (m)(b) = F(b), our auctions
are competitive against F . For m = 2, this restriction precisely excludes the case where it is not
possible to be competitive – when there is one bidder with a very large valuation.

Observe that since the profit of F (m) decreases as m increases, as we compete against F (m)

for larger values of m, we are demanding less and less of the truthful auction. We will thus single
out the case of competition against m = 2, as F (2) is the strongest omniscient auction that we
will be able to feasibly compete with.

Definition 3.9. We say an auction is β-competitive if it is β-competitive against F (2). In cases
where we do not wish to specify the constant β , we simply say that the auction is competitive.

By considering competitiveness against F (m) for different values of m, we obtain results that
are relevant to a wider range of applications. For example, in situations in which the auctioneer
does not have prior distributions on bidders’ bid values, but nonetheless has a limited amount
of prior knowledge about the bidders, i.e., that his profit will be maximized by selling at least
m units, he can use an auction that is tailored to such a situation, and obtain much stronger
guarantees on the competitive ratio. One such natural example is when there are a large number
of bidders, and the auctioneer is safe in assuming that all bid values come from a bounded range.

4. Deterministic auctions are not competitive

In this section, we show that no symmetric deterministic auction can be competitive. An auc-
tion is symmetric if the outcome is independent of the order of the bids. More precisely, we say
that A is symmetric if for all bid vectors b and permutations π of the bidders, the output of A on
input π(b) is price vector π(p) and allocation π(x) (given that the output of A on b is p and x).

We now show that no symmetric deterministic auction is competitive. In contrast, in Section 6,
we will show that there are competitive symmetric randomized auctions.



A.V. Goldberg et al. / Games and Economic Behavior 55 (2006) 242–269 251
Theorem 4.1. Let Af be any symmetric deterministic auction defined by bid-independent func-
tion f . Then Af is not competitive: for any 1 � m � n there exists a bid vector b of length n

such that the profit of Af on b is at most F (m)(b)m
n

.

Proof. Fix n and m and the symmetric bid-independent auction Af . Consider the set of bid
vectors whose bids are all n or 1. For 0 � j � n − 1, write f (j) for the price the auction assigns
to a masked vector with exactly j bids at n and n − 1 − j bids at 1. Note that if f (0) > 1 then if
all bids are 1, the auction has profit 0 and the conclusion of the theorem holds trivially. So assume
f (0) � 1 and let k be the largest integer in {0, . . . , n − 1} such that f (k) � 1. Let b be the bid
vector with k + 1 bids at n and n − k − 1 bids at 1. The profit of Af on b is (k + 1)f (k) � k + 1
since the only winners are those who bid n. If k � m − 1 then F (m) has profit n. If k � m then
F (m) has profit at least (k + 1)n. In either case the profit is at most F (m)(b)m

n
. �

This result motivates the consideration of randomized mechanisms. As a randomized auction
is just a randomization over deterministic auctions, it is still the case that a randomized auction
can perform poorly on unlucky outcomes of our random coin flips. However, the auction can
be designed such that these unlucky outcomes are very improbable. We note that this use of
randomness in the mechanism is very different from assuming the bids come from a random
distribution. The latter is making an external assumption on our inputs, while internal randomness
in the mechanism is guaranteed and completely under the control of the mechanism. As we will
show with our development of randomized auctions that are competitive in worst case, there is
no need to make the assumption that the bids are randomly generated when we can randomize
the mechanism instead. Of course, the use of randomization in mechanisms and algorithms is a
standard technique in game theory and computer science.

5. A lower bound on the competitive ratio

We have seen that in order to construct competitive truthful auctions, we will need to incor-
porate randomization into the mechanism. Before showing how this is done, we prove a lower
bound on the performance of any truthful auction, even a randomized one, compared to F (2): We
show that for any randomized truthful auction A, there exists an input bid vector b on which

E
[
A(b)

]
� F (2)(b)

2.42
.

To prove the lower bound, we analyze the behavior of A on a bid vector chosen from a
probability distribution over bid vectors. The outcome of the auction is then a random variable
depending on both the randomness in A and the randomness in b. We show that Eb[EA[A(b)]] �
Eb[F (2)(b)]/2.42. It follows immediately (from the definition of Eb[·]) that there must exist a
fixed choice of b (depending on A) for which E[A(b)] � F (2)(b)/2.42. This implies that the
competitive ratio of A is at most 2.42.

Consider n i.i.d. bids b(n) generated from the distribution with each bid bi satisfying
Pr[bi > y] = 1/y for all y � 1. Consider a truthful auction A. Let Vi be the price offered to
bi in the bid-independent implementation of A. Vi is a random variable depending on A and all
of the bj other than bi . Let Pi be the profit from bidder i which is 0 if bi < Vi and Vi otherwise.
For v � 0, E[Pi |Vi = v] = v · Pr[bi > v|Vi = v] = v · Pr[bi > v] � 1, since bi is independent
of Vi . Therefore E[Pi] � 1. Thus we have:



252 A.V. Goldberg et al. / Games and Economic Behavior 55 (2006) 242–269
Lemma 5.1. For b(n) defined above, the expected revenue of any truthful auction, A, is at most n.

Note that for any bid-independent auction that offers prices of at least one, the expected rev-
enue is exactly n.

The proof of the following result is technical and can be found in Appendix C.

Lemma 5.2. For n bids from the above distribution, the expected value of F (2) is

E
[
F (2)

(
b(n)

)] = n − n

n∑
i=2

(−1

n

)i−1
i

i − 1

(
n − 1

i − 1

)
.

Combining this with the previous lemma we get:

Lemma 5.3. For bids as defined above, we have

E[F (2)(b(n))]
E[A(b(n))] = 1 −

n∑
i=2

(−1

n

)i−1
i

i − 1

(
n − 1

i − 1

)
.

Interesting special cases are n = 2 where this gives a lower bound of 2 which matches the best
competitive auction for two bids, the 1-unit Vickrey auction. For n = 3 this gives a lower bound
of 13/6. A lower bound for the ratio of the best competitive auction on general n is obtained by
taking the limit.

Lemma 5.4.

lim
n→∞

(
1 −

n∑
i=2

(−1

n

)i−1
i

i − 1

(
n − 1

i − 1

))
= 1 +

∞∑
i=2

(−1)i
i

(i − 1)(i − 1)! .

The proof of the lemma appears in Appendix C. Routine calculations then show that the limit
value is at least 2.42.

Theorem 5.5. The competitive ratio of any truthful randomized auction is at least 2.42.

6. Competitive auctions via random sampling

We now present two techniques for designing competitive auctions that are based on random
sampling. Both techniques start by randomly partitioning the input bids into two sets. This is
done by flipping a fair coin for each bid to decide which partition to assign it. We then use
one partition for market analysis and plug what we learn into a sub-auction to be run on the
other partition, and vice versa. In what follows, we explore two choices for the sub-auction.
Our first auction, the Random Sampling Optimal Price auction, uses a sub-auction that makes a
single take-it-or-leave-it offer to all bidders.8 Our second auction, the Random Sampling Profit
Extraction auction, uses a special case of the cost sharing mechanism9 of Moulin and Shenker
(2001) for the sub-auction.

8 It is instructive to view this take-it-or-leave-it offer sub-auction as the optimal Bayesian auction, i.e., Vickrey with
reservation price, simplified to apply to the unlimited supply case.

9 We will call this special case of the cost sharing mechanism a profit extractor.
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6.1. Random sampling optimal price auction

In this section, we present the Random Sampling Optimal Price (RSOP) auction. RSOP is a
randomized version of the DOP auction presented in Section 3. The RSOP auction is guaranteed,
on all inputs, to achieve a constant fraction of the profit of F (2), the optimal single-price omni-
scient auction which sells at least two units. More importantly, on a large class of interesting
and practical bid vectors, RSOP is guaranteed to get very close to the profit of F , the optimal
single-price omniscient auction.

The RSOP auction is defined as follows:

Definition 6.1 (RSOP). The Random Sampling Optimal Price auction (RSOP) is:

(1) Partition bids b uniformly at random into two sets: for each bid, with probability 1/2 put the
bid in b′ and otherwise b′′.

(2) Let p′ = opt(b′) and p′′ = opt(b′′), the optimal single sale prices for b′ and b′′, respectively.
(See Definition 3.1.)

(3) Use p′ as a take-it-or-leave-it offer for all bids in b′′ (i.e., all bids in b′′ of value below p′ are
rejected; all remaining bids win at price p′).

(4) Use p′′ as a take-it-or-leave-it offer for all bids in b′.

Note that RSOP is a dual-priced auction. If it is important to have a single-priced auction, one
can simply skip the 4th step and reject all the bids in b′, at the cost of half the expected profit.

It is readily apparent that RSOP can be implemented bid-independently and thus from Corol-
lary 2.7:

Observation 6.2. The RSOP auction is truthful.

We now discuss the performance of RSOP. Our first result is that on every input, RSOP
achieves a constant fraction of the profit of F (2).

Theorem 6.3. RSOP is constant competitive against F (2).

Proofs of this theorem and the rest of the theorems in this section are technical and thus are
deferred to Appendix A.

The constant bound we obtain in this theorem is quite weak. However, there are a number of
interesting special cases in which RSOP’s performance is significantly better. One such special
case is presented in the following theorem.

Theorem 6.4. Let b be any bounded-range bid vector, i.e., any bid vector of n bids with bi ∈ [1, h]
for all i. Then

lim
n→∞ max

b

F(b)

RSOP(b)
= 1.

To prove this theorem, and generalizations thereof, we consider the RSOPr auction, a para-
meterized version of the RSOP auction. To define RSOPr , we first generalize Definition 3.1.
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Definition 6.5. Let b be a vector of bids. Denote by optr (b) the sale price for b that gives the
optimal profit among those sale prices that result in the sale of at least r units, i.e.,

optr (b) = argmax
zi :i�r

izi ,

where zi is the ith largest bid in b. If r > n, we arbitrarily define optr (b) = 0.

Definition 6.6 (RSOPr ). The Parameterized Random Sampling Optimal Price (RSOPr ) auction
works as follows:

(1) Partition bids b uniformly at random into two sets: for each bid, with probability 1/2 put the
bid in b′ and otherwise b′′.

(2) Let p′ = optr (b
′) and p′′ = optr (b

′′), the optimal single sale prices that sell at least r units
for b′ and b′′, respectively.

(3) Use p′ as a take-it-or-leave-it offer for all bids in b′′ (i.e., all bids in b′′ of value below p′ are
rejected; all remaining bids win at price p′).

(4) Use p′′ as a take-it-or-leave-it offer for all bids in b′.

Theorem 6.7. There is an absolute constant C, such that for any ε > 0, RSOPm/2−εm is (1 + ε)-

competitive against F (m), with probability at least 1 − e−Cε2m.

Thus, a parameterized version of RSOP asymptotically (as m gets large) matches the profit
of F (m). Recall that F (m), the optimal single-price auction that is required to have at least m

winners, is the same as F when F chooses to sell at least m units. Thus F (m) is the best auction
when the auctioneer is required to use a single price and sell at least m units. An immediate
corollary of the above theorem is that on any bid vector b such that (a) F(b) = F (m)(b) and
(b) with high probability RSOP and RSOPm/2−εm exhibit the same behavior on b (i.e., for b
partitioned into b′ and b′′, optr (b

′) = opt(b′) and optr (b
′′) = opt(b′′), where r = m/2 − εm), we

can conclude that with high probability RSOP(b) �F(b)/(1 + ε).
It is easy to check that conditions (a) and (b) hold for the case of bids of bounded support,

as the number of bidders gets large, yielding Theorem 6.4 as an immediate corollary of Theo-
rem 6.7.

Thus, for a large class of inputs, RSOP achieves essentially optimal performance. For worst-
case inputs, however, the constant in the bound on the competitive ratio of RSOP is weak. It
is quite clear from studying the proof of Theorem 6.3 (in Appendix A) that the constant upper
bound we obtain on RSOP’s competitive ratio is far from being tight. The best lower bound for
the competitive ratio of RSOP is from the following simple example. When b consist of two very
high bids h and h + ε, and all other bids are negligible, the expected profit of RSOP = F (2)/4.
In the next section, we present an auction which achieves this bound: the RSPE auction that is
4-competitive.

6.2. Random sampling profit extraction auction

Now we present another competitive truthful auction based on random sampling that is simple,
easy to analyze, and achieves a competitive ratio of four.

We first review a special case of a cost-sharing technique due to Moulin and Shenker (2001).
The goal of this technique is, given bids b and cost R, to find a subset of the bidders to share the
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cost R. As our goal is to maximize profit, we view this mechanism as “extracting a profit of R”
instead of sharing a cost.

Definition 6.8 (ProfitExtractR). The Profit Extraction auction (ProfitExtractR), given target
profit R, is defined as follows:

(1) Find the largest k such that the highest k bidders’ bids are at lease R/k.
(2) Charge these k bidders R/k and reject all others.

The two important properties of this mechanism are that

• ProfitExtractR is truthful.
• If R �F(b), ProfitExtractR has revenue R; otherwise it has none.

Definition 6.9 (RSPE). The Random Sampling Profit Extraction auction (RSPE) is works as
follows:

(1) Partition bids b uniformly at random into two sets: for each bid, with probability 1/2 put the
bid in b′ and otherwise b′′.

(2) Compute F ′ = F(b′) and F ′′ = F(b′′), the optimal single price profits for b′ and b′′, respec-
tively.

(3) Compute the auction results by running ProfitExtractF ′′ on b′ and ProfitExtractF ′ on b′′.

Because ProfitExtractF ′ and ProfitExtractF ′′ are truthful on their respective partitions, we have

Observation 6.10. RSPE is truthful.

Next we show that RSPE is competitive.

Theorem 6.11. RSPE is 4-competitive, and this bound is tight.

Proof. In the special case that F ′ = F ′′ the auction profit is F ′ + F ′′ � F(b) and we are done.
Otherwise, the auction profit is R = min(F ′,F ′′). Suppose, without loss of generality, that F ′ <
F ′′. Then ProfitExtractF ′′ on b′ will reject all bids in b′. However, ProfitExtractF ′ on b′′ will be
able to achieve profit F ′.

By definition, F (2) on b sells to k � 2 bidders at price p for a profit of F (2) = kp. These k

bidders, all with bid value at least p, are divided uniformly at random between b′ and b′′. Let k′
be the number of them in b′ and k′′ the number in b′′. As such, F(b′) � pk′ and F(b′′) � pk′′.
Therefore,

min(F(b′),F(b′′))
F (2)(b)

� min(pk′,pk′′)
pk

= min(k′, k′′)
k

.

Thus, the competitive ratio

E[R]
F (2)

= 1

k

k−1∑
min(i, k − i)

(
k

i

)
2−k = 1

2
−

(
k − 1

� k
2	

)
2−k.
i=1
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This ratio achieves its minimum of 1/4 for k = 2 and k = 3. As k increases, the ratio approach-
es 1/2.

To see that the bound presented on the competitive ratio is tight, consider the case
where b consists of two very high bids h and h + ε, and all other bids are negligibly
small. In this case F = F (2) = 2h, whereas the expected profit of the RSPE auction is
h · Pr[two high bids are split between b′ and b′′] = h/2 = F/4. �

The RSPE auction, as described, gets no profit from one of the partitions, and therefore it is
likely to lose at least half of the potential profit. An alternative is to pick a parameter γ < 1 and
run ProfitExtract(γF ′) and ProfitExtract(γF ′′). The competitive ratio of the resulting auction is
4/γ > 4. However, in a setting in which there is some prior knowledge of bidder distributions, a
proper choice of γ may lead to better performance.

7. Limited supply

Up to this point, we have studied the unlimited supply case which is motivated by digital
good markets. In this section, we consider the case where the number of units available for sale
is bounded. This case is typical for physical goods markets. We denote the number of units
available by k. As before, the seller wishes to maximize profit and is not required to sell all the
units. The definitions of truthful and competitive auctions, stated for the unlimited supply case,
also apply to the limited supply case. We denote by F (m,k) the profit for the optimal single price
auction that sells at least m and at most k units. It is this quantity that we wish to be competitive
with.

To reduce the limited supply case to the unlimited supply case, we can simply ignore (reject)
all but the highest k bidders and run the unlimited supply auction on the remaining bids. We
note that in order for this to be truthful we need to make sure that none of the bidders win at a
price lower than the highest ignored bid. More formally the bounded supply auction Ak works as
follows. Let xV and pV be the outcome of simulating k-Vickrey auction on b. Let xA and pA be
the outcome of simulating A on bA given by bAi = xVi bi (i.e., b with losers of k-Vickrey treated
as zero). Compute the outcome of Ak as p with pi = max(pV

i , pA
i ) and x with xi = xVi xAi .

This technique allows us to trivially extend all results in this paper to the bounded supply case.
Thus, for example, for RSOP we obtain:

Theorem 7.1. The limited supply version of RSOP is constant competitive against F (2,k).

For RSPE we obtain:

Theorem 7.2. The limited supply version of RSPE is 4-competitive against F (2,k).

It is interesting to point out that by using auctions like RSOP and RSPE in a k-unit auction it
is possible on many bid vectors to obtain profit significantly higher than that of the k-unit Vickrey
auction.

8. Better than F?

Thus far we have demonstrated several auction mechanisms that perform comparably to F (2).
In that F (2) is comparable to F , these auctions perform comparably to F . As F is the optimal
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single-price auction it is clear that no auction that always uses a single price can achieve a higher
revenue than F . This gives good justification for comparing the revenue of single-price auctions
to F (or F (2)).

The question remains of whether or not we have chosen the “best” metric possible for com-
parison for auctions that could be multi-priced. There are two primary goals in choosing the
metric. First, we wish to achieve the best possible performance and thus we would like to com-
pare ourselves against the strongest possible benchmark. On the other hand, we would like to
find a natural metric that comes as close as possible to capturing the performance of the best
truthful auction across a wide range of inputs.

Let us reconsider for a moment the strongest possible benchmark, the optimal omniscient
multi-price auction, T , that achieves as revenue the sum of the bids. Lemma 3.4 showed that the
profit of T can be a factor of Θ(logn) more than F . There remains the question: Does there
exist an alternative metric on bids b that captures the benefit of using multiple prices (and hence
is sometimes larger than the F(b)) that we could compare our truthful multi-priced auctions
against?

As evidence to the contrary, we will show that no monotone auction can achieve an expected
profit higher than F on any input. Monotone auctions are a large class of natural multi-priced
truthful auctions; all the competitive auctions presented in this paper are monotone. This result
supports the conjecture that there is no systematic way for an auction to achieve a higher expected
profit than F .

8.1. Hard-coded auctions

We begin with some motivation for the notion of monotonicity by presenting some examples
of non-monotone auctions. These auctions are not natural in the context of worst-case analysis
in that while they can achieve significantly higher profit than that of F on certain bid sets (in fact
they can achieve T (b)), they do so at the cost of having horrendously low profit (and hence very
bad competitive ratio) on other bid sets.

We observe that for every b∗ there is a symmetric truthful auction that achieves a profit of
T (b∗). Consider the bid-independent auction Afb∗ parameterized by b∗ and defined as follows:

fb∗(b−i ) =
{

bj if π(b−i ) = b∗−j for some permutation π,

∞ otherwise.

The “otherwise” case is arbitrarily chosen. In fact any number of bid vectors that have a pairwise
difference of at least two bid values can be hard-coded into an auction in this manner. The auction
will perform very poorly on any input that differs on only one bid value from one of the hard-
coded bid vectors.

For worst case profit maximization, this auction is counterintuitive. Consider Afb∗ with b∗
in which half the bidders bid one and half bid h. When the bid-independent function, fb∗ , sees
more h values, it outputs one. When it sees less h values, it outputs h. A more intuitive output
for a profit maximizing auction would be to output h when there are more bids at value h.

It might be nice to be able to argue that auctions with this unintuitive property are not compet-
itive; however, this is not true. Note that we can combine a hard-coded auction and a competitive
auction by flipping a fair coin and running the former or the latter depending on the outcome of
the toss. The resulting auction is competitive, with the competitive ratio twice that of the under-
lying competitive auction. Furthermore, on the hard-coded input b∗, the expected revenue of the
auction is at least T (b∗)/2, which can be significantly bigger than F(b∗).
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Although a competitive auction can outperform F on some inputs, we conjecture that this
happens at the expense of the competitive ratio and auctions designed to achieve high competitive
ratios do not outperform F in this sense. In the next section we introduce the class of monotone
auctions that includes RSOP, RSPE, DOP, and Vickrey with reservation price. We show that no
monotone auction can outperform F .

8.2. Monotonicity

The intuition underlying our notion of monotonicity is that the bid-independent function defin-
ing the auction should output higher prices when it sees higher bid values.

Definition 8.1. An auction is monotone if for any pair of bidders i and j with bi � bj , we have:

∀x � bi, Pr[bidder i wins at price � x] � Pr[bidder j wins at price � x].
The intuition is that if bi < bj , then b−i looks like a higher set of bids than b−j . Therefore,

the price bidder i pays if he wins will tend to be higher than the price bidder j pays if he wins.
The class of monotone auctions is very general. It is not difficult to verify that the Vickrey

auction with a reservation price is monotone. Thus, the optimal Bayesian auctions for i.i.d. prior
distributions are monotone. Analysis of RSOP, RSPE, and DOP, the auctions introduced in this
paper, shows that they are also monotone. The proofs of these facts are given in Appendix B. Our
optimal single-price omniscient auction, F , is also monotone.

We now show that F is the optimal monotone auction. This further justifies our comparison
to F and the related metric F (2).

Theorem 8.2. Let A be any monotone (truthful) randomized auction. For all bid vectors b, the
revenue R = A(b) of A on input b satisfies

E[R] �F(b).

Proof. Let f be the bid-independent function defining A. For each i, define gi(x) =
Pr[f (b−i ) � x].

Now consider the following thought experiment. Let U be a random variable that is uniform
on [0,1]. Imagine running the bid-independent auction that for each i uses g−1

i (U) as the of-
fer price for bidder i, with g−1

i defined as g−1
i (y) = inf {x: gi(x) = y}. We denote by RU the

resulting auction revenue. We observe that the distribution of the offer price for bidder i in this
experiment is precisely the same as the original distribution of the offer price for bidder i:

Pr
[
g−1

i (U) � x
] = Pr

[
U � gi(x)

] = gi(x).

Therefore, by summing the expectations for the bidders, we obtain

E[RU ] = E[R].
We complete the proof by showing that the expected revenue from our thought experiment

E[RU ] is at most F(b). Conditioned on U = u, let k be the index of the smallest winning bid.
Thus, g−1

k (u) � bk . Since A is monotone, for x � bk and all j with bj � bk , we have gk(x) �
gj (x). Furthermore, gk(x) and gj (x) are monotone non-decreasing functions. Therefore, it must
be that g−1

j (u) � g−1
k (u) � bk � bj and therefore all bidders with bid values at least bk win at

a price at most bk . Thus, the revenue, Ru, is at most bk times the number of bids with bid value
least bk which totals to at most F(b). This holds for all u ∈ [0,1], and thus E[RU ] � F(b). �
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9. Conclusions and recent progress

In this paper, we introduced a framework for designing and analyzing profit-maximizing truth-
ful auctions that are competitive against the optimal single price omniscient auction on all inputs.
We provided motivation for the framework and presented two competitive auctions.

Since this paper was originally prepared, there has been significant progress in the study of
competitive auctions. Here, we have shown an upper bound of four and a lower bound of 2.42
on the competitive ratio the best competitive auction. Considering the construction of the auc-
tion with the optimal competitive ratio, Hartline and McGrew (2005) have recently shown that,
for three bidders, the lower bound derived in this paper is tight by explicitly giving a 13/6-
competitive three-bidder auction. They then used this auction to derive what is currently the best
known competitive auction for an arbitrary number of bidders, achieving a competitive ratio of
3.24. Construction of the optimal auction for four or more bidders is still an open question; how-
ever, we conjecture that the competitive ratio of the optimal auction matches our lower bound.

Our analysis here of the random sampling optimal price auction (RSOP) gives a rather poor
bound on its performance and is fairly complicated to boot. Recently, Feige et al. (2005) gave an
improved analysis of RSOP which shows that it is in fact at most 15-competitive. We encourage
interested readers to refer to their proof rather than our original proof given here. It remains open
to get the best possible bound on RSOP’s competitive ratio – we conjecture that it is in fact
4-competitive.

Another interesting recent technique used to design randomized competitive auctions is the
consensus estimate approach of Goldberg and Hartline (2003). The best known auction based
on this technique obtains a competitive ratio of 3.39. The consensus estimate technique is also
useful for designing auctions that use only a single sale price (Goldberg and Hartline, 2003) or
are collusion resistant (Goldberg and Hartline, 2005) with high probability.

In further research on the role of randomization in auction design, Aggarwal et al. (2005)
have shown that asymmetric deterministic competitive auctions exist. In particular they give a
reduction that shows how to convert a randomized competitive auction into an asymmetric de-
terministic auction that is competitive with at most a factor of four loss in the competitive ratio.
Taken together with the results in this paper showing that symmetric deterministic competitive
auctions do not exist and symmetric randomized competitive auctions do exist, our understanding
of the role of randomization and asymmetry in competitive auction design seems to be complete.

Segal (2003) and Baliga and Vohra (2003) consider using techniques related to ours for the
case where the bidders’ valuations are drawn from an unknown distribution. Among other things,
they show that the deterministic optimal price (DOP) auction is asymptoticly optimal when the
bidders’ valuations come from distributions with bounded support. Baliga and Vohra also extend
their analysis to a double auction problem (which was independently considered in a worst case
setting by Deshmukh et al., 2002). These papers take an important step towards combining worst-
case analysis with the traditional (Bayesian) analysis of auctions.

There has also been a significant amount of recent research on an online version of this auction
problem where the bidders arrive one at a time and the auctioneer must decide at the time of each
arrival on the price to offer each bidder. Researchers have considered both unlimited supply (Bar-
Yossef et al., 2002; Blum and Hartline, 2005; Blum et al., 2003; Kleinberg and Leighton, 2003)
and limited supply (Hajiaghayi et al., 2004) variants of this online auction problem.

Finally, we note that a number of recent papers have applied worst-case competitive analysis to
other mechanism design problems (e.g., Abrams, 2006; Aggarwal and Hartline, 2006; Archer and
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Tardos, 2002; Balcan et al., 2005; Borgs et al., 2005; Deshmukh et al., 2002; Elkind et al., 2004;
Fiat et al., 2002; Karlin et al., 2005; Lavi and Nisan, 2000; Talwar, 2003).
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Appendix A. Analysis of RSOP

Below we prove that RSOP is competitive. Moreover, we show that, as m gets large, the
expected profit of RSOPr tends to F (m) for r = �m

2 (1 − δ)�. This implies that for any ε > 0,
there is an m′ such that for any m � m′, RSOPr is (1 + ε)-competitive against F (m).

A.1. Preliminaries

We begin our analysis of RSOPr with some preliminary lemmas. We will use the following
definitions:

• For any value v, let Fv = vnv (respectively F ′
v = vn′

v and F ′′
v = vn′′

v) where nv is the number
of bids in b (respectively b′ and b′′) greater than or equal to v. Thus, Fv is the profit from
using v as an offer price for b.

• Let R be the random variable representing the profit of the auction RSOPr (where the input b
is implied by the context). Recall from the definition of the RSOPr auction that p′ = optr (b

′)
and p′′ = optr (b

′′) are the offer prices used for b′′ and b′ respectively. Thus, the profit of the
auction is R = F ′

p′′ + F ′′
p′ .

• Let Eα be the event

Eα: R � (1 − α)(Fp′ + Fp′′) (1)

for 1/2 � α � 1. This event holding for small α indicates a high profit, a significant fraction
of the total profit achievable using p′ and p′′ as offer prices.

• Let r = �m
2 (1 − δ)�. Suppose that optm(b) = zk , the kth largest bid in b. Define H to be the

event that (a) there are at least r bids in b′ that are at least zk and (b) there are at least r bids
in b′′ that are at least zk . Note that if H does not occur then RSOPr may be unable to pick
an offer price of magnitude similar to zk from at least one of the partitions.

The key lemma we use is the following:

Lemma A.1. Let 0 < δ < 1 and r = �m
2 (1 − δ)�. Then, for any b, RSOPr satisfies

Pr
[
R � 1 − α

α
F (m)(b)

]
� Pr[Eα ∩ H ]

and thus

E[R] � 1 − α

α
F (m)(b)Pr[Eα ∩ H ].
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Proof. Suppose that F (m)(b) = kzk . By definition, optr (b
′) returns the p′ that maximizes F ′

p′
conditioned on there being r bids that are at least p′ (likewise for b′′ and p′′). Notice that,
conditioned on H , there are at least r elements in each of b′ and b′′ that are at least zk . Thus, we
can conclude that

F ′
zk

� F ′
p′ and F ′′

zk
� F ′′

p′′ .

We also have

F (m)(b) = Fzk
= F ′

zk
+ F ′′

zk
,

and thus

F (m)(b) � F ′
p′ + F ′′

p′′ . (2)

Event Eα holding, Eq. (1) allows us to lower bound the profit R as

R � (1 − α)[Fp′ + Fp′′ ]
= (1 − α)[F ′

p′ + F ′′
p′ + F ′

p′′ + F ′′
p′′ ]

= (1 − α)[R + F ′
p′ + F ′′

p′′ ]
which by Eq. (2) gives

R � (1 − α)
[
R +F (m)

]
.

Event H holding, we rearrange terms to obtain

R � 1 − α

α
F (m). �

This lemma reduces our problem to studying the events Eα and H .
To do so, for any j , we define Bj to be the j highest bids in b (i.e., {z1, . . . , zj }), and let

n′(Bj ) be the number of these bids that are in b′.

Definition A.2. Given c: 0 < c < 1/2, we say that Bj is c-good if

�cj� � n′(Bj ) � j − �cj�.
Otherwise, Bj is c-bad.

We prove that Bj is likely to be c-good using the following version of the Chernoff bound:

Theorem A.3 (see e.g. Motwani and Raghavan, 1995, p. 70). Let Xi , 1 � i � n, be independent
Bernoulli trials such that for all i, Pr[Xi = 1] = 1/2. Then for X = ∑

1�i�n Xi , and 0 < δ � 1,

Pr
[
X < (1 − δ)

n

2

]
< e−δ2n/4.

Since the partition of b into the two subvectors b′ and b′′ is done by flipping a fair coin for
each bid, we can conclude from the Chernoff bound that

Pr[Bj is c-bad] � 2e−(1−2c)2j/4.
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Thus, we can conclude by a simple union bound that

Pr[Bj is not c-good for some j > t ] �
∑
j�t

2e−(1−2c)2j/4

and therefore we have

Lemma A.4.

Pr[Bj is not c-good for some j > t] � 2e−(1−2c)2t/4

1 − e−(1−2c)2/4
.

A.2. Analysis of RSOP

We are now ready to proceed with the analysis of RSOPr . First we show that as m increases,
the competitive ratio of the auction approaches one.

Theorem A.5. Let 0 < δ < 1, and let r = �m
2 (1 − δ)�. Then there is an absolute constant C > 0

such that for any b,

Pr
[
R � 1 − δ/2

1 + δ/2
F (m)

]
� 1 − e−Cδ2m.

Thus, as m → ∞, RSOPr is (1 + δ/2)/(1 − δ/2) competitive against F (m).

Proof. Fix ε = δ/2. Let Z be the event that Bj is 1
2 (1 − ε)-good for all j > m

2 (1 − 2ε). By
Lemma A.4, there is a constant C1 > 0 such that

Pr[Z] � 1 − e−C1δ
2m. (3)

If Z holds, then F ′
p′ � 1

2 (1 + ε)Fp′ and F ′′
p′′ � 1

2 (1 + ε)Fp′′ and thus

R = F ′
p′′ + F ′′

p′ � 1

2
(1 − ε)(Fp′ + Fp′′).

Thus,

Pr
[
E 1

2 (1+ε)

]
� 1 − e−C1δ

2m. (4)

We now bound Pr[H ]. As before, we assume that optm(b) is the kth largest bid zk . We also
assume, without loss of generality, that zk is in b′, and that z� is the smallest bid larger than zk

that is in b′′. Let G be the event that there is at least one element zi with m(1 − ε) � i � m in
each of b′ and b′′. Then

Pr[G] = (
1 − 21−εm

)
If events G and Z hold, then

m(1 − ε) � � < k. (5)

Moreover, we can conclude that there are at least m
2 (1 − ε) > r bids above zk in b′ and at least

m
2 (1 − ε)(1 − ε) > r bids above z� in b′′. Thus, from Eqs. (4) and (5), we conclude that there is
an absolute constant C > 0 such that

Pr
[
E 1 ∩ H

]
� 1 − e−Cδ2m. (6)
2 (1+ε)
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Combining Eq. (6) and Lemma A.1, we obtain the theorem. �
Next we show that RSOP is β-competitive for a (relatively large) constant β .

Theorem A.6. There is a constant β such that RSOP is β-competitive.

Proof. As before, we denote by zi the value of the ith largest bid. Suppose that opt2(b) is the
kth largest bid, so that F (2) = kzk . We restrict our attention only to partitions of the bids in which
the highest bid z1 is in one subvector, without loss of generality, in b′, and both z2 and zk are
in the other subvector. This event, which we shall denote G, occurs with probability 1/4. Let H

denote the event that for all j � 2, Bj is 1
20 -good and event G holds.

We first claim that it is an immediate corollary of Lemma A.4 is that

Pr
[
Bj is

1

20
-good for all j > 20

]
� 0.8.

Moreover, if event G holds, all 2 � j � 20 are 1
20 -good, since z1 is in b′ and z2 is in b′′. Thus,

with probability at least 0.8 − Pr[¬G] = 0.8 − 0.75 = 0.05, event H occurs.
As before, we denote by n′

v (respectively n′′
v) the number of bids in b′ (respectively b′′) that

have value at least v.
Let p′′ = opt(b′′). Since zk is also in b′′, we have that

p′′n′′
p′′ � zkn

′′
zk

.

Conditioned on event H , the revenue obtained from the bids in b′ (the part containing z1) is
at least

n′
p′′p′′ � n′

p′′
zkn

′′
zk

n′′
p′′

.

In addition, we have that n′
p′′ � np′′/20, n′′

p′′ � np′′(1 − 1/20), and n′′
zk

� nzk
/20, and thus,

conditioned on event H ,

n′
p′′p′′ � zknzk

(
1

20

1

20

1

1 − 1
20

)
.

The expected revenue of RSOP is thus at least 0.05
19·20F (2), proving that RSOP is constant

competitive. �
Appendix B. Monotonicity of DOP, RSOP, and RSPE

Recall that the intuition underlying our notion of monotonicity is that the bid-independent
function defining the auction should output higher prices when it sees higher bid values (Defini-
tion 8.1).

B.1. DOP is monotone

As DOP is a symmetric auction, the order of the bids in the input does not affect the outcome.
For convenience of notation we will assume that they are indexed from highest, b1, to lowest, bn.
We denote by t = opt(b) and t1 = opt(b−1) the optimal sale price for b and b−1, respectively.
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Theorem B.1. DOP is monotone as

• It uses the single sale price t1 for all winners.
• All bidders that bid above the lowest winning bid also win.

Proof. Recall that the bid-independent function that implements DOP is f (b) = opt(b) =
argmaxbk

kbk . We will show that for any bidder i that wins the auction, bidder i − 1 also wins
the auction and at the same price. From this, a simple induction gives the theorem.

In the case that bi = bi−1 the fact that DOP is symmetric implies that they must both win at
the same price. Now consider the case that bi−1 > bi . Since bidder i wins, the computation of
opt(b−i ) must find the maximum of kbk for k < i and (k − 1)bk for k > i to be (k∗ − 1)bk∗ for
k∗ > i. The only difference between the computation of opt(b−i ) and of opt(b−i+1) is that for
opt(b−i ) we consider (i − 1)bi−1 and for opt(b−i+1) we consider (i − 1)bi . Since opt(b−i ) finds
(k∗ − 1)bk∗ bigger than the other values it considers and since (i − 1)bi−1 > (i − 1)bi , it must
be that (k∗ − 1)bk∗ is the biggest value that opt(b−i+1) considers as well. �
B.2. RSOP auction

We will show that RSOP is monotone with respect to any two bidders i and j . First fix i and
j such that bi � bj . The randomness of RSOP is in the partitioning. We verify the monotonicity
of RSOP by presenting a disjoint grouping of the partitionings such that each group is monotone
with respect to i and j and the RSOP auction is just a randomization over monotone groups.

We put partitionings with bi and bj in the same partition in their own group. Note that these
groups are monotone with respect to bi and bj because both bi and bj are offered the same price.

Any partitioning with bi and bj in opposite partitions we will pair in a group with the parti-
tioning we get when we swap bi with bj . This gives us a group with two partitionings:

Partitioning P : B1 ∪ {bi} and B2 ∪ {bj }.
Partitioning P ′: B1 ∪ {bj } and B2 ∪ {bi}.

We show that this group {P,P ′} is monotone with respect to bi and bj if one of the two partition-
ings is chosen by flipping a fair coin. Consider the thought experiment where for bi a “heads”
coin flip means use P and “tails” means use P ′, but for bj a “heads” coin flip means use P ′ and
“tails” for P . In this experiment, “heads” results in bi getting the optimal price for B2 ∪ {bj }
and bj getting the optimal price of B2 ∪ {bi}. This is just the outcome of DOP on the bid set
B2 ∪ {bi, bj }. Likewise on “tails”, the outcome is that of DOP on the bid set B1 ∪ {bi, bj }. By
Theorem B.1, both of these outcomes are monotone. Note that the outcome for bi and bj as
random variables in our thought experiment are the same as the random variables for their actual
outcomes for this grouping. Thus, this grouping is monotone with respect to bidders i and j .

B.3. RSPE auction

To show that RSPE is monotone, we will use the same general approach as for RSOP of
finding disjoint groupings in the partitionings and showing that each is itself monotone with
respect to two bids bi and bj with bi � bj .
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As with RSOP, partitionings with both bi and bj on the same partition are themselves
monotone as the profit extraction mechanism is monotone: it gives an outcome such that all
winning bidders pay the same price and all bidders whose bid value is above this price win.

Likewise, we pair a partitioning with bi and bj in different partitions, with the partitioning
with bi and bj swapped. We get partitionings P and P ′ as defined above:

Fj = F
(
B2 ∪ {bj }

)
, Fi = F

(
B1 ∪ {bi}

)
,

F ′
i = F

(
B2 ∪ {bi}

)
, F ′

j = F
(
B1 ∪ {bj }

)
.

Since bi � bj , we have:

Fj � F ′
i , F ′

j � Fi.

Note that if bi does not win for either P or P ′ then this grouping is trivially monotone with
respect to bidders i and j . Otherwise, suppose bi wins in partitioning P and pays price pi . We
will show that bj wins in P ′ and pays p′

j � pi .
Let peR be the bid-independent function for ProfitExtractR . Recall that for partitioning P , the

price for bi is computed by running ProfitExtractFj
on B1 ∪ {bi}. For partitioning P ′ the price

for bj is computed by running ProfitExtractF ′
i

on B1 ∪ {bj }. Thus,

pi = peFj
(B1) � peF ′

i
(B1) = pj .

The intermediate step here follows because Fj � F ′
i and because peR is monotone in R.

Appendix C. Technical proof for Section 5

First we prove Lemma 5.2 that says that for the prior distribution defined in Section 5, we
have

E
[
F (2)

(
b(n)

)] = n − n

n∑
i=2

(−1

n

)i−1
i

i − 1

(
n − 1

i − 1

)
.

Proof. In this proof we will get a closed form expression for Pr[F (2)(b(n)) > z] and then inte-
grate to obtain the expected value. Note that all bids are at least one and therefore, we will assume
that z � n. Clearly for z < n, Pr[F (2)(b(n)) > z] = 1. To get a formula for Pr[F (2)(b(n))], we
define a recurrence based on Fn,k defined as

Fn,k = max
i

(k + i)bi

for bids b(n) sorted from highest to lowest (i.e., bi � bi+1). Intuitively, Fn,k represents the optimal
single price revenue from b(n) and an additional k consumers each of which has a value equal
to the highest bid, b1. To define the recurrence, fix n, k, and z and define the events Hi for
1 � i � n. Intuitively, the event Hi represents the fact that i bidders in b(n) and the k additional
consumers have bid high enough to equally share z, while no larger set of j > i bidders of b(n)

can do the same:

Hi = bi � z/(k + i) ∧
n∨

j=i+1

bj < z/(k + j)

=
(

n
)(

k + i
)i

Pr[Fn−i,k+i < z].

i z
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Note that events Hi are disjoint and that Fn,k is at least z if and only if one of the Hi occurs.
Thus,

Pr[Fn,k > z] = Pr

[
n∧

i=1

Hi

]
=

n∑
i=1

Pr[Hi]

=
n∑

i=1

(
n

i

)(
k + i

z

)i

Pr[Fn−i,k+i < z]. (7)

Also, note that F0,k = 0. For n bids b(n), F(b(n)) = Fn,0. We are interested in F (2)(b(n)) which
is the same as F(b(n)) = Fn,0 except that we ignore the H1 case. This gives

Pr
[
F (2)

(
b(n)

)
> z

] = Pr[Fn,0 > z] − Pr[H1]
= Pr[Fn,0 > z] − n

z
Pr[Fn−1,1 < z]. (8)

So in order to obtain Pr[F (2)(b(n))] we need to solve the recurrence Fn,k , i.e., Eq. (7). We will
show that the solution is:

Pr[Fn,k > z] = 1 −
(

z − k

z

)n(
z − k − n

z − k

)
. (9)

Note that our solution for the recurrence is correct for n = 0. We show that it is true in general
inductively:

Pr[Fn,k > z] =
n∑

i=1

(
n

i

)(
k + i

z

)i

Pr[Fn−i,k+i < z].

Substituting in our solution, we get

Pr[Fn,k > z] =
n∑

i=1

(
n

i

)(
k + i

z

)i(
z − k − i

z

)n−i(
z − k − n

z − k − i

)

= z − k − n

zn

n∑
i=1

(
n

i

)
(k + i)i(z − k − i)n−i−1.

We now apply the following version of Abel’s (1826) Identity:

(x + y)n

x
=

n∑
j=0

(
n

j

)
(x + j)j−1(y − j)n−j .

Making the change of variables, j = n − i, x = z − k − n, and y = k + n we get:

zn

z − k − n
=

n∑
i=0

(
n

i

)
(k + i)i(z − k − i)n−i−1.

We plug this in above and subtract out the i = 0 term to get

Pr[Fn,k > z] = z − k − n

zn

(
zn

z − k − n
− (z − k)n−1

)

= 1 −
(

z − k
)n

(z − k − n)
.

z (z − k)
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Thus, our closed form expression for the recurrence is correct.
Recall our goal is to compute Pr[F (2)(b(n)) > z]. Equation (9) shows that Pr[Fn,0 > z] = n/z.

This combined with Eq. (8) and Eq. (9) gives the following for z � n:

Pr
[
F (2)

(
b(n)

)
> z

] = n

z
− n

z
Pr[Fn−1,1 < z]

= n

z
Pr[Fn−1,1 > z]

= n

z

(
1 −

(
z − 1

z

)n−1(
z − n

z − 1

))
.

Recall that for z � n, Pr[F (2)(b(n)) > z] = 1. To complete this proof, we use the formula
E[F (2)(b(n))] = ∫ ∞

0 Pr[F (2)(b(n)) > z]dz = n + ∫ ∞
n

Pr[F (2)(b(n)) > z]dz. In the form above,
this is not easily integrable; however, we can transform it back into a binomial sum which we
can integrate:

Pr
[
F (2)

(
b(n)

)
> z

] = n

n∑
i=2

(−1

z

)i

i

(
n − 1

i − 1

)
.

E
[
F (2)

(
b(n)

)
> z

] = n + n

∞∫
n

n∑
i=2

(−1

z

)i

i

(
n − 1

i − 1

)
dz.

= n − n

n∑
i=2

(−1

n

)i−1
i

i − 1

(
n − 1

i − 1

)
. �

Next we prove Lemma 5.4 that claims

lim
n→∞

(
1 −

n∑
i=2

(−1

n

)i−1
i

i − 1

(
n − 1

i − 1

))
= 1 +

∞∑
i=2

(−1)i
i

(i − 1)(i − 1)! .

Proof. It is sufficient to show that∣∣∣∣∣
(

1 +
n∑

i=2

(−1)i
i

(i − 1)(i − 1)!

)
−

(
1 −

n∑
i=2

(−1

n

)i−1
i

i − 1

(
n − 1

i − 1

))∣∣∣∣∣ = O

(
1

n

)
.

We use the following fact below: If, for 1 � k � K , 0 < ak < 1, then

K∏
k=1

(1 − ak) � 1 −
K∑

k=1

ak.

∣∣∣∣∣
(

1 +
n∑

i=2

(−1)i
i

(i − 1)(i − 1)!

)
−

(
1 −

n∑
i=2

(−1

n

)i−1
i

i − 1

(
n − 1

i − 1

))∣∣∣∣∣
�

n∑
i=2

∣∣∣∣ i

(i − 1)(i − 1)! −
(

1

n

)i−1
i

i − 1

(
n − 1

i − 1

)∣∣∣∣
=

n∑∣∣∣∣ i

(i − 1)(i − 1)!
(

1 − n(n − 1) . . . (n − i + 2)

ni−1

)∣∣∣∣

i=2
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=
n∑

i=2

∣∣∣∣ i

(i − 1)(i − 1)!
(

1 −
(

1 − 1

n

)(
1 − 2

n

)
· · ·

(
1 − i − 2

n

))∣∣∣∣
�

n∑
i=2

∣∣∣∣∣ i

(i − 1)(i − 1)!

(
1 −

(
1 −

i−2∑
j=1

j

n

))∣∣∣∣∣
�

n∑
i=2

∣∣∣∣ i

(i − 1)(i − 1)!
(

i2

n

)∣∣∣∣ = 1

n

n∑
i=2

i3

(i − 1)(i − 1)! � 1

n

∞∑
i=2

i3

(i − 1)(i − 1)! .

As (i − 1)! grows exponentially,
∑∞

i=2
i3

(i−1)(i−1)! is bounded by a constant and we have the
desired result. �
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