
Lazy Database Replication with Ordering Guarantees

Khuzaima Daudjee and Kenneth Salem
School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

{kdaudjee, kmsalem}@db.uwaterloo.ca

Abstract

Lazy replication is a popular technique for improving
the performance and availability of database systems. Al-
though there are concurrency control techniques which
guarantee serializability in lazy replication systems, these
techniques may result in undesirable transaction orderings.
Since transactions may see stale data, they may be serial-
ized in an order different from the one in which they were
submitted. Strong serializability avoids such problems, but
it is very costly to implement. In this paper, we propose a
generalized form of strong serializability that is suitable for
use with lazy replication. In addition to having many of the
advantages of strong serializability, it can be implemented
more efficiently. We show how generalized strong serializ-
ability can be implemented in a lazy replication system, and
we present the results of a simulation study that quantifies
the strengths and limitations of the approach.

1 Introduction

Replication is a popular technique for improving the per-
formance and availability of a database system. In dis-
tributed database systems, replication can be used to bring
more computational resources into play, or to move data
closer to where it is needed.

A key issue in replicated systems is synchronization.
Synchronization schemes can be classified as eager or lazy
[7]. Eager systems propagate updates to replicas within the
scope of the original updating transaction. This makes it
relatively easy to guarantee transactional properties, such
as serializability. However, since such transactions are dis-
tributed and relatively long-lived, the approach does not
scale well. Lazy schemes, on the other hand, update repli-
cas using separate transactions.

In this paper we address a problem related to the per-
ceived ordering of execution of transactions in lazy repli-
cated systems. To understand this problem, consider a

customer of an electronic ticket reservation service. This
customer issues two transactions1 sequentially against the
ticket reservation database. The first transaction, Treserve,
books tickets for a concert and records the bookings in the
customer’s virtual shopping bag . The second transaction,
Tstatus, reports the contents of the customer’s shopping
bag.

Since the customer issues Tstatus after Treserve has fin-
ished, it is reasonable for him to expect that Tstatus will
“see” the effects of Treserve. That is, Tstatus should report
that the shopping bag contains the concert tickets. This is, in
fact, the behavior that many database systems will exhibit.
For example, if the database system uses eager replication
or no replication, and it uses two-phase locking, Tstatus

will appear to follow Treserve. However, if the ticketing
database is replicated and lazily synchronized, this may not
be the case. The Treserve and Tstatus transactions may run
against different copies of the data and, in particular, Tstatus

may run against a copy that does not yet reflect the updates
made by Treserve.

There are several concurrency control algorithms that
guarantee global serializability in lazy replicated systems
[5, 4, 16, 13]. However, serializability is not enough to solve
this transaction ordering problem. Serializability ensures
that transactions will appear to have executed sequentially
in some order. However, it does not guarantee that the se-
rialization order will be consistent with the order in which
the transactions are submitted to the system. A concurrency
control algorithm that guarantees only serializability may
serialize Tstatus before Treserve even if Treserve is submit-
ted first. This happens when Tstatus is allowed to see a stale
copy, as described above.

Our transaction ordering problem could be solved by
using a concurrency control that guarantees strong se-
rializability [3], rather than plain serializability. Infor-
mally, strong serializability means that sequential transac-
tions must be serialized in the order in which they are sub-

1Perhaps this customer issues these transactions indirectly, by interact-
ing with a web service provided by the e-ticketer.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

T reserve T status

T avail
time

Customer #1 Transactions

Customer #2 Transaction

Figure 1. Execution Example with Two Cus-
tomers

mitted. In our example, Tstatus would have to be serialized
after Treserve. However, none of the proposed concurrency
controls for lazily replicated systems guarantee strong se-
rializability, and there is good reason for this. Although
strong serializability would address our transaction order-
ing problem, it is too strong. In a strongly serializable sys-
tem, once one copy of the data has been updated, all other
copies are effectively rendered useless until they, too, have
been updated. Showing a stale copy to a subsequent trans-
action will violate the strong serializability guarantee. This
effectively neutralizes many of the advantages of using lazy
replication in the first place.

In this paper, we address this transaction ordering prob-
lem in lazy replicated systems. We make two contributions
to the body of work in this area. First, since serializability is
not strong enough to address the transaction ordering prob-
lem and strong serializability is too strong, we propose a
new criterion called strong session serializability. The idea
behind strong session serializability can be illustrated with
the help of the diagram in Figure 1. The figure shows the
transactions Treserve and Tstatus that have already been de-
scribed. In addition, the figure shows a transaction Tavail,
which is issued by a different customer. Tavail simply
checks ticket availability for the concert.

With strong session serializability, we preserve the order-
ing of Treserve and Tstatus. However, we do not (necessar-
ily) preserve the ordering of Tavail with respect to Treserve

and Tstatus. The intuition is that the ordering of Treserve

and Tstatus is important, in this case because the sequen-
tial nature of those transactions is observed by Customer
1. However, the ordering of Tavail relative to the other two
transactions is not directly observed by either customer. In-
deed, customers do not observe other customers’ requests at
all, except indirectly through their effects on the database.
In our example, strong session serializability frees the sys-
tem to serialize Tavail before or after Treserve, and before
or after Tstatus.

In general, strong session serializability allows us to
specify which transaction orderings are important and

which are not. As we describe in Section 2, this is accom-
plished by grouping transactions into sessions. Transaction
ordering is preserved between transactions in the same ses-
sion, but not between transactions in different sessions.

By ignoring unimportant transaction orderings, we ex-
pect to be able to implement strong session serializability
efficiently. Our second contribution is a pair of algorithms
for implementing strong session serializability in lazy repli-
cated systems. These algorithms are presented in Section
3.2. We have used simulation to compare the cost of pro-
viding strong session serializability using these algorithms
with the cost of providing plain serializability, and with the
cost of providing strong serializability. The results of these
experiments are presented in Section 5. The experiments
show that, under the right conditions, strong session serial-
izability can be provided almost as efficiently as plain se-
rializability, and at a much lower cost than strong serializ-
ability.

Strong session serializability provides a basis for captur-
ing applications’ transaction ordering constraints, while si-
multaneously providing sufficient flexibility to allow those
constraints to be enforced in lazy replicated systems.

2 Sessions and Strong Session Serializability

Breitbart, Garcia-Molina and Silberschatz [3] used the
term strong serializability to mean serializability in which
the ordering of non-concurrent transactions is preserved in
the serialization order. Since we are concerned in this paper
with replicated databases, we present here a slightly modi-
fied version of their definition that is appropriate when there
is replication.

Definition 2.1 Strong 1SR: A transaction execution his-
tory H is strongly serializable (Strong 1SR) iff it is 1SR
and, for every pair of committed transactions Ti and Tj

in H such that Ti’s commit precedes the first operation of
Tj , there is some serial one-copy history equivalent to H in
which Ti precedes Tj .

A transaction execution history over a replicated database
is one-copy serializable (1SR) if it is equivalent to a serial
history over a single copy of the database [2].

As discussed in Section 1, strong 1SR can be too strong:
it requires the enforcement of transaction ordering con-
straints that may be unnecessary and costly. For example,
strong 1SR requires Tavail to be serialized after Treserve in
the example of Figure 1. In a replicated system, this means
that Tavail cannot run at a site until Treserve’s updates have
been propagated there.

Strong session serializability captures the idea that or-
dering constraints may be necessary between some pairs of
transactions, but not between others. Abstractly, we use ses-
sions as a means of specifying which ordering constraints

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

are important and which are not. A session is simply a set of
transactions. The transactions in an execution history H are
partitioned into one or more sessions. Ordering constraints
will be enforced among transactions in a single session, but
not between transactions from different sessions.

We use a session labeling to identify which transactions
are assigned to each session:

Definition 2.2 Session Labeling: A session labeling LH of
an execution history H assigns a session label (identifier)
to each transaction in H .

We use the notation LH(T) to refer to the session label of
transaction T . Given an execution history H and a labeling
LH , we define our correctness criterion as follows:

Definition 2.3 Strong Session 1SR: A transaction execu-
tion history H is strong session 1SR under labeling LH iff
it is 1SR and, for every pair of committed transactions Ti

and Tj in H such that LH(Ti) = LH(Tj) and Ti’s com-
mit precedes the first operation of Tj , there is some serial
one-copy history equivalent to H in which Ti precedes Tj .

To use Definition 2.3, we must specify a session labeling
for the transactions. The appropriate choice depends on the
requirements of the application. For example, one natural
choice might be to associate one session with each client ap-
plication connection to a database server. This would have
the effect of ordering the transactions over a single connec-
tion, but not across connections. In the case of the example
in Figure 1, we wish to enforce ordering constraints among
the transactions generated by a single customer, but not be-
tween transactions generated by different customers. There-
fore, it is natural to use a distinct session label for each
customer’s interactions with the reservation system. In a
three-tier web services environment, the customer sessions
may be tracked by the application server or web server us-
ing cookies or a similar mechanism. In this case, the upper
tiers can create session labels and pass them to the database
system to inform it of the ordering constraints.

Strong session 1SR is stronger than 1SR, but weaker than
strong 1SR. If LH assigns the same label to all transactions
in H , then strong session 1SR reduces to strong 1SR. Con-
versely, if LH assigns a distinct label to each transaction in
H , then no ordering constraints are important, and strong
session 1SR reduces to 1SR. Otherwise, strong session 1SR
will be somewhere in between. In the example of Figure 1,
suppose that the first customer’s transactions (Treserve and
Tstatus) get one session label, and the second customer’s
transaction (Tavail) gets a different session label. Table 1
summarizes the transaction serialization orders that would
be allowed under 1SR, strong 1SR and strong session 1SR
under this labeling. As the example shows, strong session
1SR allows more flexibility than strong 1SR, while preserv-
ing the important ordering constraints.

Strong
Strong Session
1SR 1SR 1SR

Treserve < Tavail < Tstatus ok ok ok
Treserve < Tstatus < Tavail - ok ok
Tavail < Treserve < Tstatus - ok ok
Tavail < Tstatus < Treserve - - ok
Tstatus < Treserve < Tavail - - ok
Tstatus < Tavail < Treserve - - ok

Table 1. Serialization Orders Permitted by Var-
ious Correctness Criteria

3 Enforcing Strong Session Serializability

In this section we present two algorithms for enforcing
strong session serializability in a replicated database sys-
tem with lazy update propagation. Our presentation will
proceed in two steps. First, we will describe a basic repli-
cated database system. The basic system uses well-known
transaction execution and update propagation mechanisms
to guarantee global one-copy serializability (1SR), but not
strong session 1SR. Next, we will present a session man-
ager that extends the basic system. With the addition of the
session manager, the system guarantees strong session 1SR.

3.1 The Basic System

Figure 2 illustrates the architecture of the basic system.
A primary site holds the primary copy of the database, and
one or more secondary sites hold secondary copies of the
database. Each site consists of an autonomous database
management system with a local concurrency controller.
For the purposes of this paper, we will assume that the
database is fully replicated at the secondary sites. This is
not necessary for the concurrency controls that we will de-
scribe, but it simplifies the presentation. If the database
were not fully replicated, an additional mechanism would
be needed to route transactions to the sites that hold the par-
ticular data they require.

Clients connect to the secondary sites and submit
streams of transactional database operation requests. We
assume that read-only transactions are distinguished from
update transactions in the request streams. Each transac-
tion is executed at a single site. Read-only transactions are
executed at the secondary site to which they are submitted.
Update transactions are forwarded by the secondaries to the
primary and executed there. According to the classification
proposed by Gray and colleagues [7], this is a lazy master
architecture.

A desirable feature of this architecture is that an arbitrary
number of secondary sites can be added to scale the system

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

Update and Read-Only
Transactions

Primary Site

Secondary Sites

Lazy Update Propagation

Forwarded Update
Transactions

Clients

Figure 2. Lazy Master System Architecture

with increasing read-only transaction workloads. The ar-
chitecture is best suited to read-mostly workloads since the
primary site is a potential update bottleneck. Many common
workloads in application areas such as decision support and
web commerce are read-mostly [19, 11, 20]. However, if
the update load at the primary does become an issue, data
partitioning can be used to distribute the update load over
multiple primary sites. As discussed in Section 3.1.1, the
important property of the primary site, for our purposes, is
that it should be capable of generating transaction sequence
numbers and propagating updates in serialization order.

The basic system uses the following general approach
to ensure global serializability. All update transactions are
serialized by the local concurrency control at the primary
site. Updates are propagated lazily to the secondary sites,
and are installed there in the same order in which they were
serialized at the primary. Thus, at any time, each secondary
site will hold a snapshot, probably stale, of the primary
database. Read-only transactions run against these snap-
shots. The secondary sites are not synchronized with each
other, so at any given time some secondary sites may be
more or less fresh than others. There are several specific
issues that must be addressed in order to make this general
approach work. We discuss these in the next two subsec-
tions.

3.1.1 The Primary Site

We assume that the primary site is capable of associating
a sequence number with each update transaction committed
there. We will use seq(T) to denote the sequence number of
transaction T . We also assume that these sequence numbers
are consistent with the local transaction serialization order
at the primary site. That is, seq(T1) < seq(T2) if and only
if T1 precedes T2 in the local serialization order. For our
purposes it is not important how the sequence numbers are
generated as long as they are available. However, one sim-

ple way to implement such sequence numbers is to use the
log sequence numbers of the transactions’ commit records.2

Updates made by committed transactions, together with
the transactions’ sequence numbers, are propagated lazily
from the primary site to the secondary sites. Lazy propa-
gation means that propagation occurs some time after the
update transaction has been committed. We assume that
the propagation mechanism propagates updates in serializa-
tion order, and that updates are not lost or reordered during
propagation. If the primary database resides at a single site
as shown in Figure 2, this is relatively easy to achieve us-
ing log sniffers, triggers, or other mechanisms. If, for per-
formance reasons, the primary database is partitioned over
several sites, it is necessary for these sites to generate a sin-
gle, unified stream of updates (consistent with the primary
serialization order) for propagation to the secondary sites.
This is more difficult in the multi-site case than it is in the
single site case, but it is certainly possible. For example,
Liu and colleagues have described a log-sniffing mechanism
that merges updates from the logs of a partitioned database
system into a single stream [10]. We will not be concerned
in this paper with the exact format of the change log or the
update propagation messages.

3.1.2 The Secondary Sites

At each secondary site, propagated updates are placed in a
FIFO update queue. A refresh process removes propagated
updates from the update queue and applies them to the lo-
cal database copy. Note that there is an independent refresh
process at each secondary site. For each propagated update
transaction, the refresher uses a local transaction to remove
the transaction’s updates from the update queue and then ap-
ply them to the local secondary database copy. These local
transactions are called refresh transactions. Thus, for ev-
ery update transaction at the primary there is eventually one
corresponding refresh transaction at each secondary site.

Refresh transactions are also used to maintain a database
sequence number, seq(DB), at each secondary site. Each
secondary site has its own seq(DB), which is independent
of the sequence numbers at the other secondary sites. When
a refresh transaction applies updates at a secondary site,
it also sets that site’s seq(DB) to match the transaction
sequence number that was propagated with those updates.
These sequence numbers are not needed by the basic system
to ensure serializability. However, as described in Section
3.2, they are used by the session managers to enforce strong
session serializability.

It is important that refresh transactions at each secondary
site be serialized in the order in which their correspond-

2This approach also requires that the local concurrency control at the
primary site guarantees commitment ordering [15]. Commitment ordering
is a stronger property than strong serializability, which is required at the
primary site if Theorems 2 and 3 are to hold.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

ing update transactions were serialized at the primary site.
We use a simple mechanism to achieve this. First, the re-
fresh process performs the refresh transactions sequentially
in the order in which updates are retrieved from the local up-
date queue. Second, the local concurrency controller at the
secondary is required to guarantee the strong serializability
property. This property ensures that sequentially executed
transactions are serialized in the order in which they are ex-
ecuted.3 Note that it is possible to use other techniques, e.g.
ticketing or transaction conflict analysis [6, 8], to order the
refresh transactions. However, since our approach depends
only on the proper serialization of the refresh transactions
and not on the particular mechanism used to achieve it, we
will stick with the simple sequential execution mechanism
in this paper.

Theorem 1 The basic system guarantees 1SR.

Proof: Let Ti represent the ith transaction in the local se-
rialization order at the primary, and let Si represent the
database state at the primary site that results from Ti’s ex-
ecution. Without loss of generality (since secondary sites
are independent of one another), suppose there is a single
secondary site, and let Ri represent the ith refresh transac-
tion to commit at that site. Because (1) the primary site
propagates updates in serialization order, (2) updates are
not reordered during propagation, (3) the refresh process
applies update transactions in the order received, and (4)
the local concurrency control at the secondary site ensures
strong serializability, Ri applies Ti’s updates to the database
at the secondary site. Since this is true for all i, and since
refresh transactions are the only update transactions at the
secondary site, the secondary database will be in state Si

as a result of Ri’s execution.4 Now consider an aribtrary
read-only transaction Tr that is serialized after Ri and be-
fore Ri+1 by the local concurrency control at the secondary
site. Tr sees state Si. Thus, it can be serialized after Ti and
before Ti+1 in an equivalent one-copy serial schedule. All
other read-only transactions at the secondary can be serial-
ized the same way.�

3.2 The Session Manager

In this section, we show how to augment the basic sys-
tem so that it will guarantee strong session 1SR. Previously,
we assumed that each client submits a sequence of trans-
actions to a secondary site. We will now make the addi-
tional assumption that each client’s transactions constitute
a session. That is, we wish to enforce ordering constraints
among the transactions submitted by a single client, but not

3Strong serializability is guaranteed by well-known concurrency con-
trols such as two-phase locking.

4There is an implicit assumption here that all copies of the database
start in the same state.

For each read-only transaction T in session s:
WAIT UNTIL seq(DB) ≥ seq(s) AT SECONDARY SITE

START T AT SECONDARY SITE

PERFORM T ’S READS AT SECONDARY SITE

COMMIT OR ABORT T AT SECONDARY SITE

IF T COMMITTED THEN

seq(s) ← seq(DB)
ENDIF

For each update transaction T in session s:
START T AT PRIMARY SITE

PERFORM T ’S READS/WRITES AT PRIMARY SITE

COMMIT OR ABORT T AT PRIMARY SITE

OBTAIN seq(T) FROM PRIMARY SITE

IF T COMMITTED THEN

seq(s) ← seq(T)
ENDIF

Figure 3. The BLOCK Algorithm

between transactions submitted by different clients. Each
transaction has associated with it, either explicitly or im-
plicitly, a session label, so that the secondary site can tell
which transactions belong to which session.

This simple session model has two properties which are
significant to the algorithms that we will describe. The first
property is that the transactions within a session are submit-
ted sequentially, not concurrently. The second property is
that each session is associated with a single secondary site.
A relaxation of the first property would be relatively simple
to handle. We have chosen to retain it because it simplifies
the presentation of our algorithms. The second property,
on the other hand, allows the secondary sites to operate
independently of one another. Without it, enforcement of
strong session 1SR would require coordination among the
secondary sites.

Each secondary site has a session manager. The session
managers, together with the propagation, refresh, and lo-
cal concurrency control mechanisms described in Section
3.1, are responsible for enforcing strong session 1SR. Each
session manager is responsible for the sessions that are as-
sociated with its secondary site.

3.2.1 The BLOCK Algorithm

We propose two algorithms that can be used by the ses-
sion managers to enforce strong session 1SR. The first al-
gorithm, BLOCK, is summarized in Figure 3. Each session
manager maintains, for each of the sessions s for which it
is responsible, a sequence number seq(s). A session’s se-
quence number essentially indicates database state “seen”
by the most recently committed transaction in that session.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

The BLOCK algorithm works by delaying read-only trans-
actions, if necessary, until the database state at the sec-
ondary site is at least as great as seq(s).5 This, plus the
local concurrency control at the secondary site, is sufficient
to ensure that each read-only transaction will be serialized
after its predecessors in its session.

Theorem 2 If each site guarantees strong serializability lo-
cally, then the BLOCK algorithm, in conjunction with the
propagation and refresh mechanisms of the basic system,
guarantees global strong session 1SR.

Proof: Suppose that the claim is false, which means that
there exists a pair of transactions T1 and T2 in the same ses-
sion s for which T1 is executed before T2 but T1 cannot be
serialized before T2. There are four cases to consider:
Case 1: Suppose T1 and T2 are update transactions. T1 and
T2 both execute at the primary site. Since the primary site
ensures strong serializability and since T2 starts after T1 fin-
ishes, T1 is serialized before T2, a contradiction.
Case 2: Suppose T1 is a read-only transaction and T2 is
an update transaction. Since T1 precedes T2 and T2 pre-
cedes its refresh transaction (TR

2), T1 precedes TR
2 at the

secondary site. Since the secondary site ensures strong se-
rializability, T1 is locally serialized before TR

2 at the sec-
ondary, and thus it is globally serialized before T2, a con-
tradiction.
Case 3: Suppose T1 is an update transaction and T2 is a
read-only transaction. When T1 commits, seq(s) is set to
seq(T1). The blocking condition ensures that no subse-
quent read-only transaction in s can run until seq(DB) is
at least as large as seq(T1). Thus, T2 does not execute until
sometime after T1’s refresh transaction has finished. Since
the secondary site ensures strong serializability, T2 is serial-
ized after T1’s refresh transaction at the secondary site, and
therefore after T1 in the global serialization order, a contra-
diction.
Case 4: Suppose both T1 and T2 are read-only transactions.
Both transactions run at the secondary site. Since strong se-
rializability is guaranteed locally there, T2 sees the database
in the same state as T1, or in a later state. Thus, it can be
serialized after T1, a contradiction.�

3.2.2 The FORWARD Algorithm

The second algorithm, called FORWARD, handles update
transactions the same way that the BLOCK algorithm does,
but it handles read-only transactions differently. The han-
dling of read-only transactions under the FORWARD algo-
rithm is summarized in Figure 4.

As was the case under the BLOCK algorithm, each ses-
sion manager maintains, for each of its sessions, a sequence

5Recall that seq(DB), which indicates the current state of the database
at the secondary site, is maintained by the refresh transactions.

For each read-only transaction T in session s:
IF seq(DB) ≥ seq(s) AT SECONDARY SITE THEN

START T AT SECONDARY SITE

PERFORM T ’S READS AT SECONDARY SITE

COMMIT OR ABORT T AT SECONDARY SITE

IF T COMMITTED THEN

seq(s) ← seq(DB)
ENDIF

ELSE

START T AT PRIMARY SITE

PERFORM T ’S READS AT PRIMARY SITE

COMMIT OR ABORT T AT PRIMARY SITE

OBTAIN seq(T) FROM PRIMARY SITE

IF T COMMITTED THEN

seq(s) ← seq(T)
ENDIF

ENDIF

Figure 4. Read-Only Transactions Under the
FORWARD Algorithm

number seq(s). The FORWARD algorithm works by for-
warding some read-only transactions to the primary site for
execution. Specifically, if the database at the secondary
site is too stale to execute a particular read-only transac-
tion without violating session ordering constraints, then the
read-only transaction is forwarded to the primary site. Since
the primary site is always in the “latest” state, this ensures
that the read-only transaction will “see” its session prede-
cessors. However, it increases the load at the primary site,
which is also responsible for all update transactions.

In Section 3.1.1, we assumed that the primary site is able
to associate a sequence number with each update transac-
tion that commits there. When the FORWARD algorithm is
used, it is also necessary for the primary site to associate
a sequence number with each read-only transaction that is
forwarded to it. The primary site should not associate new
sequence numbers with read-only transactions. Rather, each
read-only transaction should be assigned the same sequence
number as the most recent (in the primary’s local serializa-
tion order) committed update transaction.

.

Theorem 3 If each site guarantees strong serializability lo-
cally, then the FORWARD algorithm, in conjunction with the
propagation and refresh mechanisms of the basic system,
guarantees global strong session 1SR.

Proof: Suppose that the claim is false, which means that
there exists a pair of transactions T1 and T2 in the same ses-
sion for which T1 is executed before T2 but T1 cannot be
serialized before T2. There are four cases to consider:

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

Case 1: Suppose T1 and T2 both execute at the primary.
This is the same as Case 1 in Theorem 2.
Case 2: Suppose T1 executes at the secondary and T2 exe-
cutes at the primary. If T2 is an update transaction, this is
the same as Case 2 in Theorem 2. If T2 is a read-only trans-
action, let Tu be the latest update transaction whose effects
were seen by T1. Tu preceded T1, and thus T2, at the pri-
mary site. Since the primary ensures strong serializability,
T2 must be serializable after Tu, and thus after T1.
Case 3: Suppose T1 executes at the primary and T2 ex-
ecutes at the secondary. When T1 commits, seq(s) is
set to seq(T1). The forwarding condition ensures that no
subsequent transaction in s can run at the secondary until
seq(DB) is at least as large as seq(T1). If T1 is an update
transaction, then the condition ensures that T2 does not run
until sometime after T1’s refresh transaction has finished.
Since the secondary site ensures strong serializability, T2

is serialized after T1’s refresh transaction at the secondary
site, and therefore after T1 in the global serialization order,
a contradiction. If T1 is a read-only transaction, a similar
argument shows that T2 sees at least the same updates as
T1, and thus can be serialized after T1.
Case 4: Suppose T1 and T2 both execute at the secondary.
This is the same as Case 4 in Theorem 2.�

3.2.3 Discussion

Both the BLOCK algorithm and the FORWARD algorithm re-
quire the session manager to read the value of seq(DB). As
a result, the session manager conflicts with refresh transac-
tions running at its secondary site, and seq(DB) is a poten-
tial database hotspot. However, the session manager need
not read seq(DB) within the scope of the requested trans-
action (T in Figures 3 and 4). Instead, it can minimize con-
tention for seq(DB) by using a separate, short transaction
to read it.

A second issue with both algorithms is maintaining the
strong session 1SR guarantee in the case of a failure of a ses-
sion manager. Under either algorithm, the session manager
updates seq(s) outside the scope of the requested transac-
tion T . This creates a small failure window between the
commit of T and the change to seq(s). Of course, this
window could be closed completely by simply updating
seq(s) within the scope of T in Figures 3 and 4. How-
ever, this may hurt performance by increasing the size of
T , and by turning read-only transactions into update trans-
actions. Furthermore, updating seq(s) within T may imply
reading seq(DB) within T , since the new value of seq(s)
may come from seq(DB). This further increases the size of
T , and may introduce conflict between T and refresh trans-
actions.

To avoid these potential performance problems, we al-
low the failure window to exist, and we address the problem

Parameter Description Default

num clients number of clients varies
num sec number of secondary

sites
5

think time mean client think time 7s
session time mean session duration 15 min.

update tran prob probability of an update
transaction

20%

conflict prob transaction conflict prob-
ability

20%

tran size mean number of opera-
tions per transaction

10

op service time service time per opera-
tion

0.02s

update op prob probability of an update
operation

30%

propagation delay propagator think time 10s

Table 2. Simulation Model Parameters

by properly reinitializing seq(s) when the session manager
recovers from a failure. Specifically, the session manager
should initialize seq(s) (for each of its sessions s) to the
current sequence number of the database at the primary site.
The session manager can determine the primary’s sequence
number by executing a dummy transaction Tinit at the pri-
mary, obtaining Tinit’s sequence number from the primary,
and then initializing seq(s) to seq(Tinit).

4 Simulation Model

We have developed a simulation model of the lazy mas-
ter replicated database system described in Section 3.1. We
have used the simulator to compare the Block and Forward
global concurrency control protocols described in Section
3.2 and to determine the impact of the correctness criterion
(1SR, strong session 1SR, or strong 1SR) on system perfor-
mance. The model is implemented in C++ using the CSIM
simulation package [12].

The model consists of one CSIM resource (server) for
each site in the system. Client processes simulate the ex-
ecution of transactions requested by system clients. Each
client process is associated with a particular secondary site,
and it submits all of its transactions to that site. The client
processes are uniformly distributed over the available sec-
ondary sites. In addition, there are processes that simu-
late update propagation and refresh transactions at the sec-
ondary sites. The model’s parameters are summarized in
Table 2.

There are num clients client processes. Each client pro-
cess generates a series of sessions. Session lengths are ex-
ponentially distributed with a mean length of session time.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

Within each session, a client iteratively generates transac-
tions, with exponentially distributed think times of mean
length think time between them. When a session is finished,
the client immediately initiates a new session so that the to-
tal number of concurrent sessions is num clients at all times.

A transaction is an update transaction with probability
update tran prob, otherwise it is a read-only transaction.
Our default transaction mix is 80% read-only, 20% update,
although we also ran some experiments with a 95%/5%
mix. Note that the “shopping” mix specified in the TPC-
W benchmark is an 80/20 mix of read-only and update web
interactions, and the “browsing mix” is a 95/5 mix.6 The de-
fault think time and session time values are also taken from
the TPC-W benchmark specification [19].

In the transaction execution model, each transaction pro-
ceeds first to the session manager at the secondary site to
which it is submitted. The session manager directs each
transaction to the primary site or to the secondary site for
execution. If the session manager is using the BLOCK algo-
rithm, it may also cause the transaction to block.

After leaving the session manager, each transaction pro-
ceeds to the local concurrency control at the site to which
it is assigned. We use a simple model of the local concur-
rency control, which works as follows. Each newly arriv-
ing transaction has a probability conflict prob of conflicting
with each transaction that is already in the local system (ei-
ther running or waiting to run). If a newly arriving trans-
action does not conflict with any existing transactions, it
begins running immediately. Otherwise, it waits for all con-
flicting transactions to complete before it begins running.

Once a transaction has finished with the local con-
currency control, it can run. Each transaction consists
of a number of operations. Each operation takes time
op service time at the server. The number of operations in
each transaction is randomly chosen in the range tran size
plus or minus 50%. For update transactions, each oper-
ation has probability update op prob of being an update,
otherwise it is a read. All transactions running at a given
site share that site’s single server, which uses a round-robin
queuing discipline with a time slice of 0.001 seconds.

Propagation processes running at each site are used to
simulate the propagation mechanism. There is one propa-
gation process per site. At the primary site, the propagation
process goes through a series of propagation cycles, with a
delay of propagation delay time units between the end of
one cycle and the beginning of the next. During each prop-
agation cycle, the process propagates all transactions that
have committed at the primary since the last propagation
cycle. To do this, the process generates a single message
describing the updates of all of these transactions and broad-

6The TPC-W benchmark specifies the read/write mix in terms of web
interactions, not database transactions. There is not necessarily a one-to-
one correspondence between the two.

casts the message to the secondary sites. The primary’s
propagation process consumes op service time during each
propagation cycle. It does not use the local concurrency
control at the primary site, since we assume that the propa-
gator is implemented as a log sniffer.

Propagation messages are assumed to be delivered at the
secondary sites after a delay of length propagation delay.
The simulation does not include an explicit resource to rep-
resent the network. We assume that the network has suffi-
cient capacity so that network contention is not a significant
contributor to the propagation delay.

At each secondary site, the local propagation process
receives the broadcast propagation messages and installs
the transaction update information in an update queue in
the local database. The propagation process consumes
op service time for each propagation message it handles. It
does not use the local concurrency control when it inserts
update information into the update queue. The queue oper-
ations conflict only with the refresh processes, which reads
from the other end of the queue. Thus, we assume that any
contention would be insignificant.

At each secondary site there is a set of refresh processes.
Each refresh process iteratively waits to obtain one trans-
action’s update records from the local update queue, and
then runs a single refresh transaction to apply those updates
to the secondary database. The refresh transaction must
pass through the local concurrency control at the secondary
site. It has probability conflict prob of conflicting with each
read-only transaction at the site. In addition, we force a
conflict between every pair of refresh transactions at a site.
This, together with our local concurrency control mecha-
nism, ensures that refresh transactions are not reordered by
the local concurrency control. The refresh process con-
sumes op service time at the secondary server to retrieve
the transaction record from the update queue. It consumes
an additional op service time per update operation during
the execution of the refresh transaction itself.

5 Performance Analysis

We ran a series of experiments using the simulation
model, with two goals in mind. The first was to deter-
mine the cost, in terms of transaction throughput and re-
sponse time, of providing strong session 1SR rather than
the weaker 1SR. The second was to compare the two algo-
rithms, BLOCK and FORWARD, that guarantee strong ses-
sion 1SR. To facilitate these comparisons we implemented
two more algorithms for the session manager, in addition to
BLOCK and FORWARD:

ALG-1SR: ALG-1SR provides only global serializabil-
ity (1SR), not strong session 1SR. ALG-1SR simply
routes all update transactions to the primary site, and

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

all read-only transactions to the secondary site. Trans-
actions are never blocked by Alg-1SR itself, although
they may, of course, be blocked by the local concur-
rency control at their assigned site. Under this algo-
rithm, the system operates like the basic system de-
scribed in Section 3.1.

ALG-STRONG-SITE-1SR: This is the same as the BLOCK

algorithm of Figure 3 except that there is only a sin-
gle session per secondary site, rather than one ses-
sion per client. Thus, ALG-STRONG-SITE-1SR main-
tains only one session sequence number (seq(s)) at
each secondary site. It enforces many more transac-
tion ordering constraints than those required by strong
session 1SR, but fewer than would be required by a
true implementation of strong 1SR. In our experiments
we have used it as a surrogate for a strong 1SR algo-
rithm. ALG-STRONG-SITE-1SR should result in per-
formance no worse than (and probably significantly
better than) that of any algorithm that provides true
strong 1SR.

5.1 Methodology

For each run, the simulation parameters were set to the
default values shown in Table 2, except as indicated in the
descriptions of the individual experiments. Each run lasted
for 35 simulated minutes. We ignored the first five minutes
of each run to allow the system to warm up, and measured
transaction throughput, response times and other statistics
over the remainder of the run. Each reported measurement
is an average over five independent runs. We computed 95%
confidence intervals around these means. These are shown
as error bars in the graphs.

5.2 Performance of the Default Configuration

We ran a series of experiments in which our default con-
figuration, with five secondary sites, was subjected to load
from an increasing number of clients. The results of these
experiments are shown as throughput, read-only transaction
response time and update transaction response time plots in
Figures 5, 6 and 7, respectively. Each curve describes the
behavior of one of the four global concurrency control algo-
rithms (ALG-1SR, BLOCK, FORWARD and ALG-STRONG-
SITE-1SR) that we considered.

At low loads, the FORWARD algorithm provides bet-
ter read response times than BLOCK, and approximately
the same overall throughput and response times as ALG-
1SR. However, as the load increases, FORWARD breaks
down because it saturates the primary site. The BLOCK

algorithm is more consistent. Its performance is similar
to that of ALG-1SR over the load range that we tested,

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

tp
s)

Number of Clients

Block
Forward
Alg-1SR

Alg-Strong-Site-1SR

Figure 5. Transaction Throughput vs. Number
of Clients

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250

R
es

po
ns

e
T

im
e

(s
)

Number of Clients

Block
Forward
Alg-1SR

Alg-Strong-Site-1SR

Figure 6. Read-Only Transaction Response
Time vs. Number of Clients

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250

R
es

po
ns

e
T

im
e

(s
)

Number of Clients

Block
Forward
Alg-1SR

Alg-Strong-Site-1SR

Figure 7. Update Transaction Response Time
vs. Number of Clients

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

and it was much better than that of ALG-STRONG-SITE-
1SR. This indicates that strong session 1SR, which is guar-
anteed by the BLOCK algorithm, can be achieved at about
the same cost as plain 1SR. Furthermore, a comparison of
the performance of ALG-STRONG-SITE-1SR with that of
BLOCK shows that it is important to avoid enforcing unnec-
essary transaction ordering constraints. The BLOCK algo-
rithm, which only enforces transaction ordering constraints
within session, performs better than ALG-STRONG-SITE-
1SR, which enforces additional constraints.

These results are sensitive to the update propagation de-
lay, which is a key parameter in our performance model.
Ideally, updates would be propagated to the secondary sites
very quickly, and the secondary databases would be almost
as fresh as the primary. In our model, this can be simu-
lated by setting propagation delay close to zero. We ran
experiments under that condition (not shown), and found
that all four of the algorithms have almost identical per-
formance. That is, if all of the replicas are very current,
strong session 1SR is easy to achieve, and it does not matter
which of the algorithms is used to achieve it. In practice,
however, scheduling at the primary site, network latencies,
and batching may introduce propagation latencies, and will
make very low latencies difficult to achive. A nice property
of strong session 1SR is that it allows some propagation la-
tency to be tolerated without impacting transaction through-
put and response time. In particular, inter-transaction think
times within a session should effectively hide propagation
latency. In our default configuration, the mean transaction
think time (7 sec) is comparable to the propagation latency
(10 sec). This is why the BLOCK algorithm performs well
in the results shown in Figures 5, 6 and 7.

5.3 Scalability

A desirable feature of our system is that the number of
secondary sites can be scaled with the client load. To ex-
amine the effects of doing so, we ran an experiment in
which both the number of secondary sites and the number of
clients were gradually increased, with the number of clients
per secondary site held constant at 20. Figures 8, 9, and 10
show the results of this experiment.

In these experiments, the BLOCK algorithm again per-
formed about as well as ALG-1SR, and significantly better
than ALG-STRONG-SITE-1SR. The FORWARD algorithm
performed poorly, again because of the extra load it places
on the primary site. Throughput for both BLOCK and ALG-
1SR eventually peaks (with about 10 secondary sites) when
the primary site saturates. Since the primary site is the bot-
tleneck that eventually limits throughput, a key scalability
parameter is the mix of read-only and update transactions
in the workload. Figure 11 shows the result of the scala-
bility experiment using a 95/5 read/write transaction mix in

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

tp
s)

Number of Secondary Sites

Block
Forward
Alg-1SR

Alg-Strong-Site-1SR

Figure 8. Transaction Throughput, 20 Clients
per Secondary

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

R
es

po
ns

e
T

im
e

(s
)

Number of Secondary Sites

Block
Forward
Alg-1SR

Alg-Strong-Site-1SR

Figure 9. Read-Only Transaction Response
Time, 20 Clients per Secondary

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

R
es

po
ns

e
T

im
e

(s
)

Number of Secondary Sites

Block
Forward
Alg-1SR

Alg-Strong-Site-1SR

Figure 10. Update Transaction Response
Time, 20 Clients per Secondary

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55

T
hr

ou
gh

pu
t (

tp
s)

Number of Secondary Sites

Block
Forward
Alg-1SR

Alg-Strong-Site-1SR

Figure 11. Transaction Throughput, 20 Clients
per Secondary, 95/5 read/write mix

place of the default 80/20 mix. As might be expected, much
greater scalability is achieved in this case (compare Figures
8 and 11).

6 Related Work

The techniques described in this paper are global con-
currency controls implemented in a federated, replicated
database system. Breitbart, Garcia-Molina and Silberschatz
have provided a thorough overview of concurrency control
issues for federated databases [3]. That overview is not con-
cerned with issues of replication and data freshness. How-
ever, many of the general concerns of transaction ordering
that are addressed by our basic system (Section 3.1) arise in
all federated systems, whether they manage replicated data
or not. Our definition of strong serializability is based on
the one in that paper.

Bayou [18, 17] is a system that provides data freshness
to user sessions through causal ordering constraints on read
and write operations. However, Bayou guarantees only
eventual consistency, which means that servers converge to
the same database state only in the absence of updates. For
replicated data, this is the same weak notion of consistency
as convergence [21]. Bayou does not necessarily guarantee
that constraints within a session are preserved. It is possible
for the system to report that a requested session guarantee,
e.g. read-your-writes, cannot be provided.

Ladin and colleagues [9] proposed a scheme that pro-
vides data freshness guarantees to read and write operations.
In their work, if all writes are forced operations, they are di-
rected to a single “primary” site, which orders them. This
site uses a 2-phase commit protocol to propagate, in order,
each forced write’s update to a majority of replicated sites.
Subsequent operations are guaranteed to see the effects of

the forced writes. In this work there is no notion of sessions
and thus no provision of session guarantees.

Some recent work has considered the specific problem
of concurrency control for lazy master replicated database
systems. Breitbart and colleagues have developed several
protocols for guaranteeing 1SR in lazy master systems [4].
These protocols, called DAG(WT), DAG(T), and Backedge,
operate in a more general environment than the one consid-
ered here. Different database objects may have their pri-
mary copies located at different sites, and an acyclic (ex-
cept in the case of the Backedge protocol) site graph is used
to guide the propagation of updates among the sites. Like
our protocols, these rely on in-order propagation and ap-
plication of updates. Other related work on concurrency
control protocols includes the virtual sites protocol of Bre-
itbart and Korth, the quorum consensus protocol of Satya-
narayanan and Agrawal, which uses a gossip mechanism to
lazily propagate updates to sites that have missed them, and
the epidemic update propagation protocol of Agrawal and
colleagues [5, 16, 1]. Pacitti, Minet, and Simon [13] pro-
posed a lazy master update propagation protocol that uses
a worse-case estimation of update propagation time, allow-
ing a global ordering of refresh transactions. None of these
techniques address the transaction ordering problem that we
have considered, and none have a notion of transaction ses-
sions. All guarantee 1SR, but not strong session 1SR or
strong 1SR.

Pacitti and Simon [14] have studied the effects of differ-
ent update propagation techniques on the freshness of repli-
cated data. Our update propagation technique, in which
propagation occurs after commit, would be classified as
deferred-immediate in their work. The goal of their work
is to keep the replicas as fresh as possible as efficiently as
possible. They did not consider the relationship between
freshness and transaction ordering and execution that we
have attempted to exploit in our work.

King and colleagues considered techniques for maintain-
ing a replicated database to be used as backup in case the
primary copy fails [8]. Theirs is a lazy master approach, like
ours. Their work did not consider execution of application
transactions at the backup (secondary) site, so they were not
concerned with global concurrency controls. However, they
faced an issue that arises in all lazy replication techniques:
how to ensure that the updates are applied in the same or-
der at the secondary site as they were at the primary. They
proposed the use of transaction conflict analysis to allow
non-conflicting refresh transactions to run in parallel at the
secondary site. A similar approach could be used in our sys-
tem. However, it does require an analysis of transactions’
read sets, as well as their updates.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

7 Conclusion

In this paper, we proposed a new correctness criterion,
strong session 1SR, for transaction scheduling. Strong ses-
sion 1SR is a generalization of one copy serializability
(1SR) and strong serializability (strong 1SR), and guaran-
tees data freshness by allowing important transaction order-
ing constraints to be captured and unimportant ones to be
ignored.

Starting with a basic system that provides only 1SR
over lazily synchronized replicated data, we showed how
to modify the system so that it ensures strong session 1SR.
We proposed two global concurrency control algorithms,
called Block and Forward, to achieve this. One works by
delaying transactions that need to see fresher data, the other
works by redirecting such transactions to the fresh database
copy at the primary site. We studied the performance of our
algorithms for the lazily synchronized replicated system.
We found that when propagation latencies are low, that is,
when the secondary database copies can be kept very fresh,
ensuring strong session 1SR, and even strong 1SR, costs
very little in terms of transaction throughput and response
time. However, for longer, more realistic propagation
latencies, strong 1SR becomes very difficult to achieve
while strong session 1SR can be maintained almost as effi-
ciently as 1SR. Of the two algorithms, Block has consistent
performance at all load levels. Strong session 1SR appears
to be a useful and practical basis for enforcing transaction
ordering constraints in scalable replicated database systems.

Acknowledgement: We are grateful to M. Tamer
Özsu for his comments on an earlier draft of this paper.

References

[1] D. Agrawal, A. E. Abbadi, and R. Steinke. Epidemic algo-
rithms in replicated databases. In Symposium on Principles
of Database Systems, pages 161–172, 1997.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[3] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz.
Overview of multidatabase transaction management. VLDB
Journal, 1(2):181–293, 1992.

[4] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and
A. Silberschatz. Update propagation protocols for repli-
cated databases. In Proceedings ACM SIGMOD Interna-
tional Conference on Management of Data, pages 97–108,
June 1999.

[5] Y. Breitbart and H. F. Korth. Replication and consistency:
Being lazy helps sometimes. In Proceedings of the Sixteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 173–184, May 1997.

[6] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. On
serializability of multidatabase transactions through forced

local conflicts. In Proceedings of the Seventh International
Conference on Data Engineering, pages 314–323, 1991.

[7] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The dangers
of replication and a solution. In Proceedings of the 1996
ACM SIGMOD International Conference on Management
of Data, Montreal, Quebec, Canada, June 4-6, 1996, pages
173–182, 1996.

[8] R. P. King, N. Halim, H. Garcia-Molina, and C. A. Polyzois.
Management of a remote backup copy for disaster recov-
ery. ACM Transactions on Database Systems, 16(2):338–
368, 1991.

[9] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing
high availability using lazy replication. ACM Transactions
on Computer Systems, 10(4):360–391, 1992.

[10] C. Liu, B. G. Lindsay, S. Bourbonnais, E. Hamel, T. C.
Truong, and J. Stankiewitz. Capturing global transactions
from multiple recovery log files in a partitioned database
system. In Proceedings of 29th International Conference
on Very Large Data Bases, Sept. 2003.

[11] D. A. Menasce, V. Almeida, R. H. Riedi, F. Ribeiro, R. C.
Fonseca, and W. M. Jr. In search of invariants for e-business
workloads. In ACM Conference on Electronic Commerce,
pages 56–65, 2000.

[12] Mesquite Software Inc. CSIM18 Simulation Engine (C++
version) User’s Guide, Jan. 2002.

[13] E. Pacitti, P. Minet, and E. Simon. Replica consistency in
lazy master replicated databases. Distributed and Parallel
Databases, 9(3):237–267, 2001.

[14] E. Pacitti and E. Simon. Update propagation strategies to im-
prove freshness in lazy master replicated databases. VLDB
Journal, 8(3-4):305–318, 2000.

[15] Y. Raz. The principle of commitment ordering, or guar-
anteeing serializability in a heterogeneous environment of
multiple autonomous resource managers using atomic com-
mitment. In Proceedings of 18th International Conference
on Very Large Data Bases, pages 292–312, Aug. 1992.

[16] O. T. Satyanarayanan and D. Agrawal. Efficient execution of
read-only transactions in replicated multiversion databases.
IEEE Transactions on Knowledge and Data Engineering,
5(5):859–871, 1993.

[17] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, and
M. Theimer. Flexible update propagation for weakly consis-
tent replication. In Symposium on Operating Systems Prin-
ciples, pages 288–301, 1997.

[18] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. W. Welch. Session guarantees for
weakly consistent replicated data. In Conference on Par-
allel and Distributed Information Systems, pages 140–149,
1994.

[19] Transaction Processing Performance Council.
TPC Benchmark W (Web Commerce), Feb. 2001.
http://www.tpc.org/tpcw/default.asp.

[20] Transaction Processing Performance Council. TPC
Benchmark H (Decision Support) Revision 2.0.0, 2002.
http://www.tpc.org/tpch/default.asp.

[21] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. Consistency
algorithms for multi-source warehouse view maintenance.
Distributed and Parallel Databases, 6(1):7–40, 1998.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on July 11,2022 at 19:04:12 UTC from IEEE Xplore. Restrictions apply.

	footer1:

