Joint Lab Meeting

December 2005

Nearest Polynomials That Factor

John May

University of Waterloo
Waterloo, Ontario, Canada

University of Waterloo

Ontario Research Centre for Computer Algebra

Approximate Factorization Problem [Kaltofen '94]

Given $f=\sum_{i, j} c_{i, j} x^{i} y^{j} \in \mathbb{C}[x, y]$ irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ s.t. $\operatorname{deg} \tilde{f} \leq \operatorname{deg} f, \tilde{f}$ factors, and $\|f-\tilde{f}\|$ is minimal.

Problem depends on choice of norm $\|\cdot\|$, and choice of degree.

Fix

$$
\|f\|=\|f\|_{2}=\sqrt{\sum_{i, j}\left|c_{i, j}\right|^{2}}
$$

Consider different Degree Notions:
Total Degree: $\operatorname{tdeg} f=\max _{\text {monomials } x^{i} y j}\{i+j\}$
Rectangular Degree: $\operatorname{mdeg} f=<\operatorname{deg}_{x} f, \operatorname{deg}_{y} f>$

$$
\text { Example: } f=x^{2}+y^{2}-1
$$

Dangers of Growing the Degree

The condition that $\operatorname{deg} \tilde{f} \leq \operatorname{deg} f$ is essential.
For any polynomial $f,(1+\varepsilon(x+y)) f$ factors and is arbitrarily nearby.

For our example:
$f_{\varepsilon}=(1+\varepsilon(x+y)) f=\varepsilon x^{3}+\varepsilon x^{2} y+\varepsilon x y^{2}+\varepsilon y^{3}+x^{2}+y^{2}-\varepsilon x-\varepsilon y-1$

$$
\left\|f-f_{\varepsilon}\right\|_{2}=\sqrt{6}|\varepsilon|
$$

Which Degree?

The polynomial f_{ε}
has larger total degree and rectangular degree than f.
Question:
Is it possible that there is an arbitrarily close \tilde{f} that has larger total degree, but rectangular degree equal $<2,2>$?

Answer: No!
f does not factor iff the Ruppert matrix $\mathrm{R}(f)$ is full rank.
The dimensions and structure of $\mathrm{R}(f)$ are determined by the rectangular degree of f.
If mdeg $f=\operatorname{mdeg} \tilde{f}$ then $\mathrm{R}(\tilde{f})$ has the same dimensions as $\mathrm{R}(f)$.

Which Degree? (continued)

It is easy to show $\|f-\tilde{f}\|_{2} \geq c\|\mathrm{R}(f)-\mathrm{R}(\tilde{f})\|_{2}$. [K\&M ISSAC'2003]
So, if $\mathbf{R}(\tilde{f})$ has lower rank than $\mathrm{R}(f)$ then

$$
\|\mathrm{R}(f)-\mathrm{R}(\tilde{f})\|_{2} \geq \sigma(\mathrm{R}(f))>0 \Rightarrow\|f-\tilde{f}\|_{2} \geq c_{0}>0 .
$$

Moral: You should allow the total degree to go up as long as the rectangular degree does not increase, unless you have a compelling reason to preserve the total degree in your approximate factorization.

Question: Does it really make a difference?
Answer: Yes!
Constraining mdeg is less restrictive than constraining tdeg.
For our example, letting the total degree increase gives much better approximate factorizations.

Absolute Nearest: total degree 2

$$
\begin{gathered}
f_{1}=x+1, f_{2}=x-1 \\
f_{1} f_{2}=x^{2}-1 \\
\left\|f_{1} f_{2}-\left(x^{2}+y^{2}-1\right)\right\|_{2}=1
\end{gathered}
$$

Others at distance 1: $y^{2}-1$ and $x^{2}+y^{2}$

Absolute Nearest: total degree 3

$$
\begin{gathered}
f_{1}=\left((\sqrt{2} / 4-1 / 4) a^{2} b+(1 / 2-\sqrt{2} / 4) a b-1 / 2 b\right) y^{2} \\
+\left((1 / 2-\sqrt{2} / 3) a^{2}-1 / 3+(1 / 3+\sqrt{2} / 6) a\right) x+\left((\sqrt{2} / 6-1 / 3) b+1 / 6 a b+(1 / 3-\sqrt{2} / 3) a^{2} b\right) \\
f_{2}=x+\left(\sqrt{2 a\left(a^{2}+2\right)}\right) / 2 a \\
a=\sqrt[3]{4+2 \sqrt{2}}, b=\sqrt{4+2 \sqrt{2}+2 a} \\
f_{1} f_{2} \approx 1.1022+0.1243 x+.8492 x^{2}+0.59608 y^{2}-0.4907 x y^{2} \\
\left\|f_{1} f_{2}-\left(x^{2}+y^{2}-1\right)\right\|_{2} \approx 0.672722324904740
\end{gathered}
$$

Absolute Nearest: total degree 4

$$
\begin{gathered}
f_{1}=\left(1 / 3-\frac{7}{39} \sqrt{13}\right) x^{2} y+\left(-1 / 9 \sqrt{3+3 \sqrt{13}}-\frac{2}{117} \sqrt{3+3 \sqrt{13}} \sqrt{13}\right) x^{2} \\
+(3 / 13 \sqrt{13}) y+(1 / 3 \sqrt{3+3 \sqrt{13}}-1 / 39 \sqrt{3+3 \sqrt{13}} \sqrt{13}) \\
f_{2}=y-(1 / 3 \sqrt{3+3 \sqrt{13}}) \\
f_{1} f_{2} \approx-1.1094-0.1355 x+0.83206 x^{2}+0.79560 y^{2}-0.25328 y^{2} x-0.31384 x^{2} y^{2} \\
\left\|f_{1} f_{2}-\left(x^{2}+y^{2}-1\right)\right\|_{2} \approx 0.512801927021870
\end{gathered}
$$

RiSVD finds total degree $4 \mathrm{w} /$ linear factors

$$
\begin{gathered}
f_{1}=-0.38903666(x+1.54155405)(x-1.54155405) \\
f_{2}=(y-1.11493028)(y+1.11493028) \\
f_{1} f_{2} \approx-1.1507+.4842 x^{2}+.9257 y^{2}-.3895 x^{2} y^{2} \\
\left\|f_{1} f_{2}-\left(x^{2}+y^{2}-1\right)\right\|_{2} \approx 0.66783115070
\end{gathered}
$$

How the Examples were Computed

There is a nice polynomial time algorithm to find the nearest polynomial to f that has a factor of degree 1 [HLK ISSAC'99] Solve (for example):

$$
f-\left(a_{6} x y^{2}+a_{5} x y+a_{4} y^{2}+a_{3} x+a_{2} y+a_{1}\right)\left(x+b_{1} y+b_{2}\right)=0
$$

a set of linear equations in the a_{i}. This is a linear system: $M a=f$, where M has entries in $\mathbb{R}\left[b_{1}, b_{2}\right]$.
The residual of the least squares solution of this system,

$$
q=\left\|F-M\left(M^{T} M\right)^{-1} M^{T} F\right\|_{2},
$$

is a rational function in b_{1} and b_{2} which can be globally minimized by directly solving for and examining its local minima.

Minimize over \mathbb{C} by adding parameters: $b_{i} \leftarrow c_{i}+d_{i} i$.

