
AMS-SIAM Special Session on Symbolic-Numeric
Computation and Applications

A Comparison of Heuristics for Solving
Problems in Approximate Polynomial Algebra

John May

(Joint work with Mark Giesbrecht)

University of Waterloo

Waterloo, Ontario, Canada

– p.1

Approximate Polynomial Problems

For a set of polynomialsF = { f1, f2, . . . , fn} and a property of a set of
polynomialsP:

e.g.F = { f} andP = f is factorizable.

e.g.F = {g,h} andP = g andh have a non-trivial GCD

– p.2

Approximate Polynomial Problems

For a set of polynomialsF = { f1, f2, . . . , fn} and a property of a set of
polynomialsP:

e.g.F = { f} andP = f is factorizable.

e.g.F = {g,h} andP = g andh have a non-trivial GCD

Optimization Problems:
Full optimization (hard): GivenF compute the nearest (in the 2-norm) set
F̃ = { f̃1, f̃2, . . . f̃n} to F so thatdeg f̃i ≤ degfi andF̃ has propertyP

“Soft” approximate problem: GivenF, find aF̃ so thatF̃ has propertyP,
∑i ‖ fi − f̃i‖

2
2 is relatively small anddeg f̃i ≤ degfi

– p.2

Linearization of Polynomial Problems

Many polynomial problems can be reformulated as computing the nullspace
of a structured matrix

– p.3

Linearization of Polynomial Problems

Many polynomial problems can be reformulated as computing the nullspace
of a structured matrix

This may not be efficient for exact computation, but lends itself well to
approximate computation

– p.3

Linearization of Polynomial Problems

Many polynomial problems can be reformulated as computing the nullspace
of a structured matrix

This may not be efficient for exact computation, but lends itself well to
approximate computation

For example, computegcd(f ,g) becomes: find the “smallest” non-zero vector
in the nullspace ofSyl(f ,g)

– p.3

Linearization of Polynomial Problems

Many polynomial problems can be reformulated as computing the nullspace
of a structured matrix

This may not be efficient for exact computation, but lends itself well to
approximate computation

For example, computegcd(f ,g) becomes: find the “smallest” non-zero vector
in the nullspace ofSyl(f ,g)

Approximate algebra version of GCD: find the nearest non-relatively prime
pair f̃ , g̃ to f ,g and computegcd(f̃ , g̃)

– p.3

Linearization of Polynomial Problems

Many polynomial problems can be reformulated as computing the nullspace
of a structured matrix

This may not be efficient for exact computation, but lends itself well to
approximate computation

For example, computegcd(f ,g) becomes: find the “smallest” non-zero vector
in the nullspace ofSyl(f ,g)

Approximate algebra version of GCD: find the nearest non-relatively prime
pair f̃ , g̃ to f ,g and computegcd(f̃ , g̃)

Reformulated:

Find the rank deficient Sylvester matrixS which is nearest toSyl(f ,g). In the
two norm: find theStructured Total Least Squares solution to the system
Syl(f ,g) · x = 0

– p.3

Total Least Squares

Least Squares:find ∆b with smallest norm possible so thatAx = (b+∆b) is
consistent.
Easy:find the projection ofb onto the column space ofA

– p.4

Total Least Squares

Least Squares:find ∆b with smallest norm possible so thatAx = (b+∆b) is
consistent.
Easy:find the projection ofb onto the column space ofA

Total Least Squares (TLS):find ∆b and∆A each with smallest norm possible
so that(A+∆A)x = (b+∆b) is consistent.
Harder:form the augmented matrixM = [A |b] and compute the nearest
singular matrix toM using the singular value decomposition

– p.4

Total Least Squares

Least Squares:find ∆b with smallest norm possible so thatAx = (b+∆b) is
consistent.
Easy:find the projection ofb onto the column space ofA

Total Least Squares (TLS):find ∆b and∆A each with smallest norm possible
so that(A+∆A)x = (b+∆b) is consistent.
Harder:form the augmented matrixM = [A |b] and compute the nearest
singular matrix toM using the singular value decomposition

Structured Total Least Squares (STLS):restrict[∆A |∆b] ∈ S ⊂ Cr×c whereS

is a set of structured matrices (for algebraic problemsS is often a linear
subspace ofCr×c)
Very Hard in general:polynomial time solutions exist for certain special cases
only

– p.4

Strategies for STLS

Ignore Structure

Try to solve STLS problems arising in approximate algebra bytreating them
as TLS problems then improve the answer using an iterative scheme
Leads to “soft” optimization algorithms and lower bounds

– p.5

Strategies for STLS

Ignore Structure

Try to solve STLS problems arising in approximate algebra bytreating them
as TLS problems then improve the answer using an iterative scheme
Leads to “soft” optimization algorithms and lower bounds

Iterative Heuristics that Account for Structure

Our method: Riemannian SVD

RiSVD is easy to implement but slow

RiSVD works with linear structuresS = span{Bi} and norm‖A‖2 = ∑ |ai|
2

whereA = ∑aiBi

– p.5

Strategies for STLS

Ignore Structure

Try to solve STLS problems arising in approximate algebra bytreating them
as TLS problems then improve the answer using an iterative scheme
Leads to “soft” optimization algorithms and lower bounds

Iterative Heuristics that Account for Structure

Our method: Riemannian SVD

RiSVD is easy to implement but slow

RiSVD works with linear structuresS = span{Bi} and norm‖A‖2 = ∑ |ai|
2

whereA = ∑aiBi

Another method: STLN

Harder to implement, but faster. Optimizes a different norm(matrix2-norm).

– p.5

The Riemannian SVD

Let A = ∑i ci Bi be the input matrix. Find the triplet(u,τ,v) corresponding to
the smallestτ such that

Av = Dvuτ uT Dvu = 1

AT u = Duvτ vtDuv = 1

vT v = 1

– p.6

The Riemannian SVD

Let A = ∑i ci Bi be the input matrix. Find the triplet(u,τ,v) corresponding to
the smallestτ such that

Av = Dvuτ uT Dvu = 1

AT u = Duvτ vtDuv = 1

vT v = 1

• Du andDv have a quadratic dependence onu,v respectively

• v (the null vector) and̂ci = ci −uT Tivτ form a solution to the STLS
problem

• In order to determine(u,τ,v), we holdDu,Dv fixed, and perform an
inverse iteration to determine updated vectorsu,v

• Each iteration is solved by putting the constraints of the RiSVD into a
large linear system, and solving foru,v

• Du,Dv are then updated, and another iteration is performed

– p.6

Linearizable Polynomial Algebra Problems
• Univariate and Multivariate Polynomial GCD

via the Sylvester type matrices

– p.7

Linearizable Polynomial Algebra Problems
• Univariate and Multivariate Polynomial GCD

via the Sylvester type matrices

• Specified Degree GCD and Polynomial Division

via Sylvester type matrices

– p.7

Linearizable Polynomial Algebra Problems
• Univariate and Multivariate Polynomial GCD

via the Sylvester type matrices

• Specified Degree GCD and Polynomial Division

via Sylvester type matrices

• Multivariate Polynomial Factorizations

via the Ruppert matrix

– p.7

Linearizable Polynomial Algebra Problems
• Univariate and Multivariate Polynomial GCD

via the Sylvester type matrices

• Specified Degree GCD and Polynomial Division

via Sylvester type matrices

• Multivariate Polynomial Factorizations

via the Ruppert matrix

• Univariate Polynomial Decomposition

via reduction to multivariate factorization

– p.7

Linearizable Polynomial Algebra Problems
• Univariate and Multivariate Polynomial GCD

via the Sylvester type matrices

• Specified Degree GCD and Polynomial Division

via Sylvester type matrices

• Multivariate Polynomial Factorizations

via the Ruppert matrix

• Univariate Polynomial Decomposition

via reduction to multivariate factorization

• Ore Polynomial GCRD

via a generalization of the Sylvester matrix

– p.7

Univariate Decomposition

Given f ∈ C[x], f is decomposable if∃ g,h ∈ C[x], degh > 1 so thatf = g◦h

For a fixedh, computingg is clearly a linear problem

Due to a theorem of Fried (1969), except for few special cases, f decomposes
exactly whenΦ(f) = (f (x)− f (y))/(x− y) factors overC[x,y]

f decomposes if and only ifRup(Φ(f)) has a non-trivial nullspace

Decompostion factors off can be recovered from the factors ofΦ(f) as in
Barton and Zippel

– p.8

Univariate GCD Experiments

500 examples such that:6≤ degg = degf ≤ 11, before noise
deggcd(f ,g) = 1. Coeffs of f andg are floating point numbers in[−10..10]
with added noise of size≈ 10−2.

The output from three methods used at the starting point for alocal
optimization routine.

Method Average CPU time Avg. bw. err # of Failures

SNAP 0.211s 0.851994725594685 177

SVD GCD 0.099s 0.237547300725886 48

RiSVD GCD 3.135s 0.0774185789915351 2

Comparing with an early implementation of STLN, we found that STLN and
RiSVD achieve nearly the same backward error in most cases with RiSVD
slightly more accurate, and STLN several times faster.

– p.9

Decomposition Experiments
CGJW AppFac RiSVD

degg degh ε Error Best Abs Error Best Abs Error Best Abs

2 2 10−4 1.53e-5 0% 100% 1.59e-5 0% 98% 1.53e-5 0% 98%

2 3 10−4 1.15e-4 3% 100% 9.70e-3 0% 45% 1.26e-4 0% 97%

3 2 10−4 1.90e-5 0% 96% 1.90e-5 0% 100% 1.90e-5 0% 100%

4 2 10−4 1.85e-4 5% 97% 6.21e-2 2% 28% 2.20e-4 0% 88%

2 4 10−4 2.99e-5 0% 98% 4.17e-5 0% 83% 2.99e-5 2% 98%

2 2 10−1 8.74e-3 2% 95% 9.18e-3 2% 83% 9.52e-3 3% 87%

2 3 10−1 5.24e-2 5% 70% 5.37e-2 2% 43% 5.08e-2 12% 80%

3 2 10−1 1.54e-2 0% 85% 1.47e-2 8% 95% 1.54e-2 2% 87%

2 4 10−1 1.21e-1 5% 50% 1.61e-1 8%∗ 25% 1.21e-1 7% 53%

4 2 10−1 2.50e-2 2% 43% 2.28e-2 18%∗ 30% 2.50e-2 3% 40%

2 2 1 2.40e-2 0% 95% 2.40e-2 0% 93% 2.40e-2 0% 95%

2 3 1 1.83e-1 2% 75% 1.74e-1 7%∗ 70% 1.79e-1 7% 75%

3 2 1 1.62e-1 0% 77% 1.51e-1 7%∗ 77% 1.44e-1 8% 87%

2 4 1 3.78e-1 2% 50% 3.45e-1 30%∗ 28% 3.70e-1 8% 55%

4 2 1 2.87e-1 8% 58% 2.63e-1 22%∗ 40% 2.89e-1 5% 60%
– p.10

Ongoing and Future Work
• All RiSVD iterations stay in the coefficient field. What if theoptimum

is complex?
One possibility: Replace structured matrix with a block structured
matrix. Numbers replaced with2×2 blocks representing complex
multiplication. This can find complex optimums.

– p.11

Ongoing and Future Work
• All RiSVD iterations stay in the coefficient field. What if theoptimum

is complex?
One possibility: Replace structured matrix with a block structured
matrix. Numbers replaced with2×2 blocks representing complex
multiplication. This can find complex optimums.

• RiSVD for GCD often out performs the TLS strategy. How about for
other problems?
Main difficulties: 1. reconstruction of the solution of the polynomial
problem from the STLS solution.
2. RiSVD is less effective for non-square structures! It seems especially
bad on the Ruppert (factorization) structure. One imperfect fix: replace
A → ADAT , andBi → Bi DAT for randomly chosen diagonalD.

– p.11

Ongoing and Future Work
• All RiSVD iterations stay in the coefficient field. What if theoptimum

is complex?
One possibility: Replace structured matrix with a block structured
matrix. Numbers replaced with2×2 blocks representing complex
multiplication. This can find complex optimums.

• RiSVD for GCD often out performs the TLS strategy. How about for
other problems?
Main difficulties: 1. reconstruction of the solution of the polynomial
problem from the STLS solution.
2. RiSVD is less effective for non-square structures! It seems especially
bad on the Ruppert (factorization) structure. One imperfect fix: replace
A → ADAT , andBi → Bi DAT for randomly chosen diagonalD.

• Efficiency. The matrices can become very large and a general RiSVD
implementation can be very slow.

Can we use black box representations of the matricesBi?

Can RiSVD be tuned to run quickly on specific problems?

– p.11

Fin

– p.12

	Approximate Polynomial Problems
	Linearization of Polynomial Problems
	Total Least Squares
	Strategies for STLS
	The Riemannian SVD
	Linearizable Polynomial Algebra Problems
	Univariate Decomposition
	Univariate GCD Experiments
	Decomposition Experiments
	Ongoing and Future Work
	{Large Fin}

