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polynomials’s:

e.g.F ={f} and’g = f is factorizable

e.g.F ={g,h} and®3 = g andh have a non-trivial GCD

Optimization Problems:
Full optimization (hard): Give compute the nearest (in the 2-norm) set

F = {f1, ... f,} toF sothatdegf; < degf; andF has propertyl3

“Soft” approximate problem: GiveR, find aF so that- has property,
5i |l fi — fil|3 is relatively small andlegf; < degf
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Linearization of Polynomial Problems

Many polynomial problems can be reformulated as computiegiullspace
of a structured matrix

This may not be efficient for exact computation, but lendslfitaell to
approximate computation

For example, computgcd f,g) becomes: find the “smallest” non-zero vector
in the nullspace o8yl(f, Q)

Approximate algebra version of GCD: find the nearest noatiedly prime
pair f,§to f,gand computecd f, )

Reformulated:

Find the rank deficient Sylvester matfwhich is nearest t&yl(f,g). In the
two norm: find theStructured Total Least Sguares solution to the system
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Total Least Squares

Least Squaredind Ab with smallest norm possible so thak = (b+ Ab) is
consistent.
Easy:find the projection ob onto the column space &f

Total Least Squares (TLS)nd Ab andAA each with smallest norm possible
so that(A+ AA)x = (b-+ Ab) is consistent.

Harder:form the augmented matriX = [A| b| and compute the nearest
singular matrix tdvl using the singular value decomposition

Structured Total Least Squares (STLE&strict|/AA|Ab] € G € C™° where&
IS a set of structured matrices (for algebraic problems often a linear

subspace of" <)
Very Hard in generalpolynomial time solutions exist for certain special cases

only
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Ignore Structure

Try to solve STLS problems arising in approximate algebré&résting them
as TLS problems then improve the answer using an iterativerse
Leads to “soft” optimization algorithms and lower bounds

lterative Heuristics that Account for Structure

Our method Riemannian SVD

RiSVD is easy to implement but slow

RiSVD works with linear structureS = spar{B;} and normHAH2 =Y |a !2
whereA = 3 a;B

Another methodSTLN

Harder to implement, but faster. Optimizes a different n@matrix 2-norm).
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The Riemannian SVD

Let A= ¥ c Bj be the input matrix. Find the triplé€ti, T, v) corresponding to
the smallest such that

Av=Dwt u' Du=1
Alu=Dy\vt VD=1

viv=1

® D, andD, have a quadratic dependencelow respectively

* v (the null vector) and; = ¢; — u' Tivt form a solution to the STLS
problem

® In order to determinéu,t,v), we holdD,, D, fixed, and perform an
Inverse iteration to determine updated vectors

® Each iteration is solved by putting the constraints of th&@\R) into a
large linear system, and solving forv

® Dy, Dy are then updated, and another iteration is performed
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Linearizable Polynomial Algebra Problems

® Univariate and Multivariate Polynomial GCD
via the Sylvester type matrices

® Specified Degree GCD and Polynomial Division
via Sylvester type matrices

® Multivariate Polynomial Factorizations
via the Ruppert matrix

® Univariate Polynomial Decomposition
via reduction to multivariate factorization

® QOre Polynomial GCRD
via a generalization of the Sylvester matrix



Univariate Decomposition

Givenf € C[x|, f is decomposable if g,h € C[x|, degh > 1 so thatf =goh
For a fixedh, computingg is clearly a linear problem

Due to a theorem of Fried (1969), except for few special gasdecomposes
exactly whend(f) = (f(x) — f(y))/(x—y) factors overC|x,y|

f decomposes if and only Rup(®( f)) has a non-trivial nullspace

Decompostion factors of can be recovered from the factors®ff) as in
Barton and Zippel



Univariate GCD Experiments

500 examples such th&i:< degg = degf < 11, before noise
deggcdf,g) = 1. Coeffs off andg are floating point numbers ip-10..10]

with added noise of sizet 10 2.

The output from three methods used at the starting point local
optimization routine.

Method Average CPU time Avg. bw. err # of Failures
SNAP 0.211s 0.851994725594685 177
SVD GCD 0.099s 0.237547300725886 48
RiSVD GCD 3.135s 0.0774185789915351 2

Comparing with an early implementation of STLN, we foundtt8&LN and
RiSVD achieve nearly the same backward error in most cagesRisVD
slightly more accurate, and STLN several times faster.



Decomposition Experiments

CGJIJW AppFac RiSVD
degg|degh| ¢ Error Best | Abs Error Best Abs Error Best | Abs
2 2 1074 1.53e-5| 0% | 100% || 1.59e-5| 0% 98% || 1.53e-5| 0% 98%
2 | 3 |10°%| 1.15e-4| 3% | 100% || 9.70e-3| 0% 45% || 1.26e-4| 0% 97%
3 2 |107%| 1.90e-5| 0% 96% 1.90e-5| 0% 100% || 1.90e-5| 0% | 100%
4 | 2 |107%|| 1.85e-4| 5% 97% || 6.21e-2| 2% 28% || 2.20e-4| 0% 88%
2 | 4 |10°%| 2.99e-5| 0% 98% || 4.17e-5| 0% 83% || 2.99e-5| 2% 98%
2 2 |10 8.74e-3| 2% 95% || 9.18e-3| 2% 83% || 9.52e-3| 3% 87%
2 | 3 |107Y| 5.24e-2| 5% 70% || 5.37e-2| 2% 43% || 5.08e-2| 12% | 80%
3 2 (107 1.54e-2| 0% 85% 1.47e-2| 8% 95% || 1.54e-2| 2% 87%
2 | 4 |107Y| 1.21e-1| 5% 50% 1.61le-1| 8% 25% || 1.21e-1| 7% 53%
4 | 2 |10 2.50e-2| 2% | 43% || 2.28e-2| 18% | 30% || 2.50e-2| 3% 40%
2 2 | 1 || 2.40e-2| 0% 95% || 2.40e-2| 0% 93% || 2.40e-2| 0% 95%
2 | 3 | 1| 183e-l| 2% 75% 1.74e-1| 7% 70% || 1.79e-1| 7% 75%
3 2 | 1| 1.62e-1| 0% 77% 1.51e-1| 7% 77% || 1.44e-1| 8% 87%
2 | 4 | 1| 3.78e-1| 2% 50% || 3.45e-1| 30% | 28% || 3.70e-1| 8% 55%
4 | 2 | 1 || 2.87e-1| 8% 58% || 2.63e-1| 22% | 40% || 2.89e-1| 5% 60%
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® Al RISVD iterations stay in the coefficient field. What if tlo@timum
IS complex?
One possibility: Replace structured matrix with a blockistured
matrix. Numbers replaced withx 2 blocks representing complex
multiplication. This can find complex optimums.

®* RIiSVD for GCD often out performs the TLS strategy. How abaut f
other problems?
Main difficulties: 1. reconstruction of the solution of thelynomial
problem from the STLS solution.
2. RiISVD is less effective for non-square structures! Insgeespecially
bad on the Ruppert (factorization) structure. One impeffecreplace

A— ADAT, andB; — B;{DA' for randomly chosen diagonal.

® Efficiency. The matrices can become very large and a gen&saiR
Implementation can be very slow.
Can we use black box representations of the matiges

Can RiSVD be tuned to run quickly on specific problems?

—-p.1
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