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ABSTRACT
Consider a rational matrix, particularly one whose entries
have large numerators and denominators, but which is pre-
sented as a product of very sparse matrices with relatively
small entries. We report on a numerical algorithm which
computes the inertia of such a matrix in the nonsingular
case and effectively exploits the product structure. We offer
a symbolic/numeric hybrid algorithm for the singular case.
We compare these methods with previous purely symbolic
ones. By “purely symbolic” we refer to methods which re-
strict themselves to exact arithmetic and can assure that
errors of approximation do not affect the results. Using an
application in the study of Lie Groups as a plentiful source
of examples of problems of this nature we explore the rel-
ative speeds of the numeric and hybrid methods as well as
the range of applicability without error.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm Design and
Analysis; G.1.3 [Numerical Analysis]: Numerical Linear
Algebra; I.1.4 [Symbolic and Algebraic Manipulation]:
Applications

General Terms
Algorithms, Design, Performance

Keywords
lie group, matrix signature, product eigenvalue problem,
symbolic/numeric hybrid method

1. INTRODUCTION
This is a study of the computation of the inertia of a ra-

tional matrix by a combination of exact linear algebra and
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numeric methods. Matrix inertia is a central concept of lin-
ear algebra. It is closely related to questions of Lyapunov
stability, generalizing the discussion of stable, positive defi-
nite, and semi-definite operators. It plays a significant role
in many applications.

The inertia of a real symmetric matrix (or Hermitian com-
plex matrix) is the triple (n, z, p) whose entries are the num-
bers of, respectively, negative, zero, and positive eigenvalues.
Real matrices A, B are congruent if there exists an invert-
ible real matrix C such that B = CACT . By Sylvester’s law
of inertia [13; 8, §8.1.5], matrices are congruent if and only
if they have the same inertia. Thus the inertia character-
izes the congruence equivalence classes and every matrix is
congruent to a unique diagonal matrix of the form

0

@

Ip 0 0
0 −In 0
0 0 0z

1

A .

Because it characterizes conjugacy and because of its re-
lation to stability in control theory and other domains, the
inertia of a linear operator is an intensely studied concept.
It turns out to be relevant to the study of Weyl groups as
well. We use examples from this context to motivate and
illustrate the symbolic/numeric methods we propose here.
This work extends a previous effort using only the exact
linear algebra methods [1].

The actual computational problem we consider is an in-
stance of finding the inertia of a product of matrices

A = AkAk−1 · · ·A1. (1)

A number of authors have sought information about such
products of matrices including various decompositions [4, 9,
16, 17, 18, 19, 20, 21, 23] A recent review of theoretical re-
sults and numerical algorithms in this area [23] refers to this
subject area as “product eigenvalue problems.” A unifying
theme is to extract desired results by means of processing
the individual factors

Ak, Ak−1, . . . , A1

without explicitly forming the product matrix, A.
In section 2 we briefly introduce the Weyl group applica-

tion. In section 3 we provide basic definitions and then sum-
marize the available symbolic, or exact arithmetic, methods
including one based on the product form. We also exploit
the product viewpoint for the numeric approach described
in sections 4 and 5. Computational results are reported in
section 6. Our conclusion provides cautious optimism about
the approach we have developed here and suggests several
directions for further development.



2. THE APPLICATION
Weyl groups have bases of reflections and are character-

ized by corresponding root systems. One of the questions
concerning these is the unitary dual of the associated Hecke
algebra. The irreducible root systems belong to 4 families
An, Bn, Cn, Dn and 5 exceptional cases E6, E7, E8, F4, G2.
Of these E8 has the largest Weyl group. It is of order
696,729,600. This group has 112 irreducible matrix repre-
sentations, the largest of which is by 7168× 7168 matrices.
For each representation ρ and facet ν in the space of the
root system an operator Jρ(ν) is defined whose inertia re-
veals whether or not the corresponding representation of
the Hecke algebra is unitary. For a full exposition of all this
structure, see [14]. Through this connection, matrix inertia
contributes to the study of unitary duality. For E8, there
are 1,070,716 facets of the root system. Multiply this by
the number, 112, of irreducible representations to get the
number of matrices whose inertia is of interest. The uni-
tary representations of the Hecke algebra for E8 have been
characterized [3], so the inertia calculations confirm known
results. But this E8 framework gives us a rich set of exam-
ples, prototypical of what is needed to calculate the unitary
duals for other real and p-adic Lie groups.

The matrices Jρ(ν) for E8 may be scaled to integer ma-
trices. Measurements in [1] have shown that the integer
entries are about 33 lg(n) bits long. But importantly these
matrices are constructed as a product of 121 very sparse
matrices with very short bit lengths for the non-zeroes. It
is this product form that we exploit for the numeric method
applied in this paper.

3. SYMBOLIC METHODS
The paper of Adams, Saunders, and Wan [1] is motivated

by the goals of the Lie Atlas Group regarding E8 and the
other Weyl groups. In that paper the trade offs among
three purely symbolic methods were studied. In this section
we briefly summarize the two most useful of those methods
called DSLU and BBSM. The DSLU is a Dense Symmetric
LU decomposition [8, §4.1.2] and BBSM, Black Box Sym-
metric Minimal polynomial [5], is a blackbox method obtain-
ing the inertia from the coefficient signs of a characteristic
polynomial. The new numeric component we introduce in
this paper is elimination based (like DSLU) but exploits the
product form representation of the matrix (like BBSM). The
blackbox method is the asymptotically faster of these two
symbolic methods, but it was shown that the crossover in
the run times would occur around the largest matrix un-
der consideration. Inertia for matrices of the largest order,
7168, was not computed, but extrapolating from the times
for smaller representations it was estimated that the run
time would be more than a CPU year. Thus we are moti-
vated to find faster methods or to apply parallelism.

In most cases a symmetric matrix A has a unique LDLT

decomposition where D is diagonal and L is unit lower tri-
angular. When the LDLT decomposition exists, the inertia
is determined by the sign pattern on the diagonal of the
congruent matrix D. Also in most cases the inertia can
be determined from the sign pattern of the coefficients of
the characteristic polynomial of A. The problematic case
is when strings of successive zero coefficients occur. In our
examples we have not encountered this problem.

For integer symmetric matrix A, the DSLU method is

to compute the LU decomposition of A modulo a series of
convenient (word sized) primes and obtain the diagonal D
of the LDLT by combining the diagonal matrices Dp of
A = LpDpLT

p (mod p) using the Chinese remainder algo-
rithm, CRA. If a symmetric matrix has an LU decomposi-
tion without permutations where L is unit lower triangular
and U is upper triangular, then U = DLT where D is di-
agonal. Then we see that A is congruent to D so that the
inertia is easily read off from the sign pattern of the entries
of D. It is possible that A may not have an LU decom-
position. In that case relatively simple adjustments can be
made such as random conjugacy preconditioning, but that
has not proven necessary in our examples. The ith diagonal
entry of D is a quotient of the ith leading principal of A over
the i − 1 leading principal minor. Thus sizes are bounded
by Hadamard’s bound. The “early termination” strategy
can be used in the CRA process. In our examples this saves
about a O(lg(n)) factor in the run times. The run time of
DSLU for a dimension n matrix with entries of size O∼(n)
entries is in O∼(n4).

The BBSM method uses the matrix A in product form,
A = AkAk−1 · · ·A1, where k = 121. The only computa-
tion required of the matrix is the matrix-vector product
y = Ax. This may be computed by successive application
of the sparse factors Ai. In practice, some of the Ai are di-
agonal and may be multiplied by adjoining factors without
changing sparsity. When this is done for the representation
of E8 that we are using, k = 94 factors result. The idea
of BBSM is to compute the characteristic polynomial of A
or a diagonally congruent matrix. This is done by use of
Wiedemann’s algorithm [5, 15, 24] for the minimal polyno-
mial including diagonal preconditioning if necessary to get
the minimal polynomial to reveal the characteristic polyno-
mial. It turns out that preconditioning is seldom necessary
in our examples. Again, the polynomial computations are
done modulo word sized primes and CRA is used to combine
the images to get the integer characteristic polynomial. The
coefficients of the characteristic polynomial are sums of mi-
nors, so again the number of primes can be determined either
by upper bound calculation or the early termination strat-
egy. The BBSM algorithm runs in O∼(n3), however this
O∼(n3) comes with much larger constant coefficient (and
lg(n) factors) than DSLU’s O∼(n4). Two major components
contribute to the unrevealed factor in the O∼(n3). One is
that the fast floating point BLAS linear algebra kernels are
used in the DSLU algorithm. The other is that matrix vec-
tor product is done 2n times in BBSM and the cost of each
one is represented as O∼(n). However the cost of an appli-
cation of A to a vector is application of 121 sparse matrices
each with about nlg(n) entries. So a hidden factor of around
2× 121× lg(n) is present overall.

As a result, the algorithm to beat for matrices of the size
we consider is DSLU, symbolic dense elimination. Thus we
try to find improvements over DSLU because it is still too
slow to compute all the inertias that must be computed for
the study of Lie group representations. As reported in [1],
the run times of DSLU are about a minute for n = 200, an
hour for n = 1000, and a year for n = 7168.

4. NUMERIC APPROACH FOR THE
NONSINGULAR CASE

The primary characteristic of symbolic computation with



rational numbers is that the computations are slow but exact
— perhaps more exact than needed. The primary character-
istic of numerical computation with floating point numbers
is that the computations are fast but approximate — perhaps
more approximate than needed. Hybrid symbolic/numerical
computation seeks to blend speed with adequate accuracy.

Finding the inertia of a symmetric matrix of rational num-
bers would seem to require only modest accuracy. After all,
consider the analogous problem for a polynomial with ra-
tional coefficients and real roots. Finding the “inertia” of
a polynomial, that is, the number of roots that are nega-
tive, zero, and positive requires very little arithmetic with
minimal accuracy. For this problem, rational arithmetic has
excessive accuracy in that the inertia does not even depend
on the exact coefficients of the polynomial, but only the pat-
tern of their signs. In contrast, finding (bracketing) the roots
of such a polynomial may require arbitrary high accuracy.

In the case of matrices rather than polynomials, it is
known that finding the inertia of a matrix is far from triv-
ial [11, 12]. This also implies that it cannot be easy to find
the characteristic or minimal polynomial of a matrix [10].
Still, it would seem that finding the inertia of a matrix,
which is trivial when its characteristic polynomial is known,
should be easier than finding its eigenvalues, which is hard
even when its characteristic polynomial is known.

Two exact methods for finding the inertia were presented
in the previous section. In addition, there is an exact sym-
bolic/numeric method [7]. Briefly, in that method, one trun-
cates a matrix A to floating point and finds an approximate
matrix of eigenvectors, Q. Then, using exact arithmetic, one
computes QT AQ, which has the same inertia as A by the
Sylvester law of inertia. The matrix QT AQ is not expected
to be exactly diagonal. Nevertheless, one modifies this prod-
uct with another congruence transformation NT (QT AQ)N,
where N is a diagonal matrix chosen to normalize the diag-
onal elements of this matrix to be near one. This exactly
computed result is then truncated to floating point and the
process is repeated.

Each iteration of the process requires O(n3) floating point
eigendecompositions and O(n3) exact matrix products. The
computational costs of such exact matrix products would
depend on the size of the integers in the matrix A. Let n
be the size of the symmetric matrix A of integers, and let
||A||2 denote the spectral norm of A, and let ǫ ≈ 10−16

characterize the accuracy of floating point arithmetic. The
total number of iterations for this method is bounded by
n lg||A||2/lg(1/ǫ). This bound includes the effect of large
integer entries through their effect on ||A||2.

This would not be a practical method for many problems
involving the product of a number of matrices. Let the num-
ber of matrices to be multiplied together be k. First of all,
the product matrix would have to be computed using k ex-
act multiplications of matrices with increasing large entries.
For estimating the number of iterations, we note that in
the worst case ||A||2 can be as large as the kth power of the
largest norm among the factor matrices. Thus, the computa-
tional complexity is dominated by n lgmaxi ||Ai||2

k/lg(1/ǫ)
times the complexity of exact multiplications of matrices
with large integer entries plus floating point eigendecom-
positions using O(n3) flops. The method presented below
involves a total of O(k n3) floating point operations and, in
practice, requires less time than forming the exact product
of the Ais.

Methods that we will discuss in this section allow the
factor matrices in the product A = AkAk−1 · · ·A1 to be
rectangular and/or non-symmetric. For the factor matrices,
eigendecompositions and their SVD generalizations would
provide scant benefit. We want to find the inertia of a prod-
uct of matrices. Even if the factor matrices are all real and
square, eigendecompositions of the factors generally tell us
little about the inertia of their product. Hence, we look to
other decompositions and seek to exploit the product struc-
ture.

Because of the low operation counts of the usual algo-
rithms, the method of choice to obtain the inertia of a sym-
metric real matrix is to compute the decomposition

A = LDLT . (2)

In numerical analysis, one refers to this as the LDLT de-
composition. In this decomposition, D is a diagonal matrix,
L is a lower triangular matrix with ones on its diagonal and
LT denotes its transpose. If A is nonsingular, so is L. In
this case L and D are uniquely determined by the matrix
A. By the Sylvester law of inertia, A and D = L−1AL−T

have the same inertia, where L−T denotes the inverse of the
transpose of L. Naturally, the inertia of the diagonal matrix
D is obvious, as are its eigenvalues.

The decomposition in (2) is a good method for finding the
inertia of a matrix A if, firstly, the decomposition exists, and
secondly, if the diagonal of the matrix D can be computed
accurately enough to determine which of its elements are
negative, zero, and positive. We present two examples.

The first example matrix,

„

0 1
1 0

«

, (3)

does not have a LDLT decomposition. Row or column piv-
oting (exchanging) produces the identity matrix, but this
does not have the same inertia.

In a second example, D is computed too inaccurately to
determine the number of positive elements of the diagonal
matrix D. Matlab has a datatype for exact integers of lim-
ited size, so that entering the following matrix with m = 108

produces exactly

„

m− 1 m
m m + 1

«

=

„

99999999 100000000
100000000 100000001

«

. (4)

The matrices L and D of the LDLT decomposition found
with a Matlab computation have exact integers on their
diagonals. However, one diagonal entry of D is the positive
integer 99999999, and the other diagonal entry is 0. Thus,
the computed D does not give the inertia correctly. A zero
eigenvalue is impossible because the determinant of the ma-
trix we entered is exactly −1, as is clear from the left hand
side of (4).

For a matrix A expressed as a product of matrices,

A = AkAk−1 · · ·A1, (5)

we develop a LDLT decomposition of A in the following



way:

A = AkAk−1 · · ·A3A2A1

= AkAk−1 · · ·A3A2(L1D1U1)

= AkAk−1 · · ·A3(A2L1)(D1U1)

= AkAk−1 · · ·A3(L2D2U2)(D1U1)

= AkAk−1 · · · (A3L2)(D2U2)(D1U1)

. . .

= (AkLk−1) · · · (D3U3)(D2U2)(D1U1)

= (LkDkUk) · · · (D3U3)(D2U2)(D1U1)

= Lk(DkUk) · · · (D3U3)(D2U2)(D1U1)

= Lk[Dk · · ·D3D2D1]L
T
k . (6)

The above flow of equations ended rather abruptly, but the
final transition depends on two simple insights. Firstly, The
penultimate equation is a product of upper triangular ma-
trices, aside from its first factor Lk. The diagonal of any
product of upper triangular matrices is simply the product
of the diagonals. In the present case, the diagonal of the
product is the product of the Di matrices, because the Ui

matrices have all ones on their diagonals. This product of
the Di appears in the last equation. Secondly, no compu-
tation is needed to identify the remaining upper triangular
matrix that remains on the right of the product of the Di

in (6). This matrix has to be the transpose of Lk because
of the uniqueness of the LDLT decomposition of (2).

In general, the sparsity of the matrices Ai in (6) will have
little benefit. The operations count for (6) is bounded by k,
the number of n× n matrices Ai times the complexity of a
matrix multiplication and computing a LDU decomposition,
namely, O(n3) flops.

The above algorithm, which we will denote NPLU, has
the useful feature of processing the individual factors in
A1, . . . , Ak−1, Ak without explicitly forming their product.
Instead, the k products Ai+1Li are formed.

We now give an alternative algorithm in which the prod-
ucts Ai+1Qi are formed, where Qi is a real unitary matrix.
The advantage is that multiplication of a matrix Ak+1 by
a unitary matrix does not change the norm or the condi-
tion number of Ak+1. In contrast, multiplication by a non-
unitary matrix can increase both its norm and its condition
number. Such increases are not necessarily detrimental, but
increases can be avoided as a precaution by using a QR de-
composition

A = QR, (7)

where Q is unitary and R is upper triangular.
For a product of matrices, (6) can be replaced with a

scheme that generates the QR decomposition of

A = AkAk−1 · · ·A1. (8)

Of course, we ultimately want a LDLT decomposition of A,
to determine its inertia, but we first get a QR decomposition
of A and then, at the very last moment, we find a LDU
decomposition of Q. The overall scheme is very much like
(6), but with a special twist at the end. The scheme goes as

follows.

A = AkAk−1 · · ·A3A2A1

= AkAk−1 · · ·A3A2(Q1R1)

= AkAk−1 · · ·A3(A2Q1)R1

= AkAk−1 · · ·A3(Q2R2)R1

= AkAk−1 · · · (A3Q2)R2R1

. . .

= (AkQk−1) · · ·R3R2R1

= (QkRk) · · ·R3R2R1

= (Qk)Rk · · ·R3R2R1

= (Lk+1Dk+1Uk+1)Rk · · ·R3R2R1

= Lk+1[Dk+1diag(Rk)

· · · diag(R3)diag(R2)diag(R1)]L
T
k+1.

The third from last equation gives the QR decomposition of
A. To get the desired LDU decomposition of the product
matrix A, we perform a final LDU decomposition of Qk. We
then go on to obtain the last equation just as we did in (6)
obtaining the diagonal part of the LDLT decomposition and
the upper triangular LT

k+1 matrix on the far right.
Again, the sparsity of the matrices Ai in (9) will have

little benefit. The operations count for (6) with k matrices
Ai of size n× n is bounded by O(k n3) flops.

We will call this version of NPLU using the QR decom-
position NPLUQ. In practice we have found that NPLU is
faster, but NPLUQ produces better accuracy so we generally
prefer it. In the pseudo-code description of NPLUQ given
below, we assume that the input matrix is non-singular. If
needed non-singularity can be probabilistically certified as
described in the following section.

Algorithm: NPLUQ: Numerical Product LU via QR

Input: a list of k n×n matrix factors: {Ai} whose product
is symmetric, non-singular, and admits an LU decom-
position

Output: The inertia of the product
Q

i Ai

Step 1. Set Si ← 1, for i = 1 . . . n.

Step 2. For i from 1 to k

Step 2a. Compute QR = Ai.

Step 2b. Determine if the signs of the diagonals of R were
computed accurately. If not, return “Fail”.

Step 2c. Set Sj ← Sj · sign(Rj,j), for j = 1 . . . n.

Step 2d. Set Ai+1 ← Ai+1 ·Q.

Step 3. Where QR = Ak, compute LDU = Q.

Step 4. Set Sj ← Sj · sign(Dj,j), for j = 1 . . . n.

Step 5. Return the inertia neg = #{i | Si < 0}, zeros = 0,
pos = #{i | Si > 0}.

A technique one can use in Step 2b is to compute the QR
decomposition of A−1

i and compare the signs in diag(R) to
those in the original decomposition of Ai.

It is possible to certify that the diagonals of R are com-
puted correctly [22] but because the diagonals of R are only
unique up to their signs [8, Theorem 5.2.2] and those signs



can be chosen in various ways [25], this may not help. In or-
der to assess the accuracy of the signs one needs to study the
LAPACK [2] routine DGEQRF (called by Matlab to compute
R) to find how it chooses the signs for R.

5. HYBRID APPROACH FOR THE
SINGULAR CASE

In the case that the matrix A is not of full rank, an ad-
ditional technique is needed since the LDLT decomposition
will require pivoting to avoid 0’s (except in the generic rank
profile case). A matrix has generic rank profile if the leading
principal minors are nonzero up to the rank. As seen with
(3), a one-side permutation factor introduced to provide piv-
oting will cause the inertia of D to no longer be equivalent to
that of A. To address this problem, we employ a symbolic-
numeric hybrid method.

Though the matrix A has very large entries, its dimension
is relatively small and the entries of its factors Ai are also
relatively small. Thus, it is very efficient to compute the
rank of A by choosing a random prime, p, reducing the Ai

modulo p, and then computing the rank of their product
using an LU decomposition modulo p. With high probability
this will be the rank of the original rational A [6]. If A is not
of full rank, by tracing an LU computation with symmetric
pivoting we can also try to recover a truncated permutation
P so that PAP T is r × r and has full rank modulo p, and
thus full rank over the rationals as well. This truncated
permutation P consists of the first r rows of a permutation
Q such that QAQT has generic rank profile.

In many examples from the Lie Atlas application, A has
quite low rank. In one example, the 7168× 7168 matrix has
rank 4 (though the entries of the 4 × 4 matrix PAP T are
rational numbers several thousand bits in size). In this case
(and many other less extreme cases), the exact algorithm
described in Section 3 will work well. In a more typical
example, the rank is much higher. In these higher rank
cases, the algorithm NPLUQ described in Section 4 can be
used, but with the first factor replaced with A1 P T , and
the last factor replaced by P Ak, where P is the truncated
permutation described above. This does not reduce to the
r × r case, instead, the algorithm computes n × r matrices
Q and r × r diagonals D at each step (for each Ai). Doing
this, we get HPLUQ, the symbolic-numeric hybrid algorithm
described below.

Algorithm: HPLUQ: Hybrid Product LU via QR

Input: a list of k n×n matrix factors: {Ai} whose product
is symmetric

Output: The inertia of the product
Q

i Ai

Step 1. Choose a random prime p, and compute the LU
decomposition A =

Q

i Ai modulo p (allowing pivoting
as necessary). From the diagonal of U determine the
rank r.

Step 2. If r < n

Compute the LU decomposition modulo p again
using symmetric pivoting (return “Fail” if not possible
– e.g. all diagonals 0). Record the pivots to compute
P , an r × n truncated permutation P so that PAP T

has rank r.

Else If n = r

Set P to the identity.

Step 3. Set A1 ← A1 P T , Ak ← P Ak.

Step 4. Call NPLUQ on {Ai} and return the computed
inertia with zeros = n− r.

6. EXPERIMENTAL RESULTS
We have implemented the numerical algorithm NPLUQ

(described in Section 4) in Matlab and tested it on a large
set of examples from the Lie Atlas problem.

The codes for the exact examples in this section were writ-
ten in the Linbox library. Both the numerical and exact
examples were run on a machine with two 3.20 GHz Intel
Dual Xeon processors and 6 GB of shared RAM. The com-
putations used just one processor. As in Section 3, for all of
these examples, the number of matrix factors is k = 94.

Table 1 shows the results of the Matlab code run on all
the representations of dimensions 200 to 500 for two facets
νB and νC in the root space. The numbers in the matrix
names in the first column are numbers assigned to repre-
sentations in order of their dimension. The column “Bits”
is the number of bits needed for each rational entry of the
product matrix A. Both facets in table 1 are known to have
full rank operators. The second facet

νC =

»

0,
1

40
,

1

20
,

3

40
,

1

10
,
1

8
,

3

20
,
23

40

–

is known to have positive definite operators while the first
facet

νB =

»

1

108
,

7

108
,

11

108
,

79

540
,
109

540
,
149

540
,
209

540
,
751

540

–

has about equal numbers of positive and negative eigenval-
ues. For comparison, timings for the exact DSLU algorithm
are given. In order to check the accuracy of the numerical
output, we compared the signs of the diagonals in the com-
puted LDLT decompositions. The column “Err #” reports
the number of elements of the numerical D with the wrong
sign. “Err %” gives this same number as a percentage of
the total number of non-zero entries of D. In these exam-
ples NPLUQ encounters errors only on representation num-
ber 30. This suggests that the accuracy of this numerical
algorithm depends more on the conditioning of the matri-
ces than on the amount of round off error in the rational
to floating point conversion (facet νB has larger entries but
facet νC produces more errors). In figure 1 we can see that
the run times of both algorithms grow at about the same
quartic rate (the fit curves are degree 4 in n).

Computation on additional representations for facet B are
shown in table 2. Some of these differ from results for the
same examples in table 1 due to variations in run times
from randomizations. These expanded results suggest that
the number of miscomputed signs increases with the size of
the problem. Also, it can be seen in figure 2 that the exact
algorithm has a much greater time cost than the numerical
algorithm (the fit lines shown are again degree 4 curves - we
did not use a log scale on the time axis in order to emphasize
the infeasibility computing the large exact examples).

We also ran the symbolic-numeric algorithm HPLUQ from
section 5 on a few known semi-positive definite representa-
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Figure 2: Facet νB from Table 2

Time Err Err Time
Matrix Dim. Bits NPLUQ # % DSLU

23B 210 1190 13s 0 0% 322s
24B 210 1223 13s 0 0% 431s
25B 300 1215 53s 0 0% 1175s
26B 300 1240 34s 0 0% 1355s
27B 350 1222 57s 0 0% 1568s
28B 350 1238 59s 0 0% 1718s
29B 400 1253 95s 0 0% 2578s
30B 400 1217 84s 2 1% 2171s
31B 420 1251 94s 0 0% 3297s
32B 448 1237 117s 0 0% 4254s
33B 448 1233 117s 0 0% 3102s
34B 448 1252 113s 0 0% 3555s

23C 210 565 15s 0 0% 119s
24C 210 487 15s 0 0% 115s
25C 300 554 36s 0 0% 338s
26C 300 490 34s 0 0% 345s
27C 350 526 55s 0 0% 535s
28C 350 490 55s 0 0% 537s
29C 400 538 78s 0 0% 915s
30C 400 604 78s 200 50% 954s
31C 420 624 94s 0 0% 1229s
32C 448 537 117s 0 0% 1144s
33C 448 610 111s 0 0% 1875s
34C 448 556 116s 0 0% 1324s

Table 1: Times and errors for facets νB and νC .

tions of the facet
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The timings are recorded in table 3. These timings do not
include the cost of computing the rank of A and finding the
permutation P since this computation is the same in both
cases. From the few examples we have computed, it is clear
that the projections make the algorithm less stable than the
full rank version of the algorithm. However, the preliminary
results seem promising. The hybrid algorithm HPLUQ is
still quite a bit faster than DSLU so there is a lot of room
to add additional processing to correct the errors shown in
table 3.

Time Err Err Time
Matrix Dim. Bits NPLUQ # % DSLU

03B 8 880 ˜0s 0 0% ˜0s
05B 28 1052 1s 0 0% 2s
21B 175 1221 2s 0 0% 346s
25B 300 1215 29s 0 0% 1464s
30B 400 1217 59s 2 1% 2522s
35B 525 1244 118s 0 0% 5977s
42B 700 1242 239s 0 0% 16197s
45B 840 1249 700s 10 1% 25058s
50B 972 1242 1473s 218 22% 37063s
72B 2100 1259 5559s ? ? -

Table 2: More runs for facet νB



Time Err Err Time
Matrix Dim. Rank Bits HPLUQ # % DSLU

05A 28 6 271 ˜0s 0 0% 1s
23A 210 1 321 5s 0 0% 36s
24A 210 45 385 8s 7 16% 57s
25A 300 2 347 13s 0 0% 98s
26A 300 52 409 18s 10 19% 128s
27A 350 3 348 19s 0 0% 150s
28A 350 33 395 24s 6 18% 170s
29A 400 72 419 37s 15 21% 193s
30A 400 8 365 28s 1 13% 145s
42A 700 124 412 102s 18 15% 530s
50A 972 30 405 234s 3 10% 1161s

Table 3: Low rank operators: facet νA

7. CONCLUSION
The results presented here are still preliminary. The goal

of this project is to be able to compute the inertia of the di-
mension 7168 representations. We expect that these should
take around 5 hours using NPLUQ with double precision
floating point arithmetic. However, our current implemen-
tation requires both further optimization and more robust
error detection. We expect that by increasing the compu-
tation time (for example by employing extended precision
floating point approximations of the Ais and computations
of the QR factorizations) we can compensate for errors and
still be able to compute the inertia of the dimension 7168
case in the order of CPU days (extrapolating from table 2)
rather than the CPU year projected in [1] for the full sym-
bolic solution by DSLU.

Our experiments thus far seem to indicate that errors
in the numerical inertia calculations increase with the size.
The data seems to indicate that errors come from factors
Ai which have high condition number. Representation 30 in
table 1 illustrates this well. It is quite difficult for the numer-
ical algorithm but it is not larger than many other similarly
sized examples. We are pursuing several strategies to handle
these errors. For examples, by estimating the condition, we
hope to be able to diagnose computations that were unsta-
ble and may have miscomputed the signs of diag(R), and
then switch to extended precision computations or symbolic
techniques in only these unstable cases.

Another strategy we will explore is combining more fac-
tors to reduce the number of QR computations in the al-
gorithms NPLUQ and HPLUQ. We hope that the factor of
two (or more) speed up that could result would offset any
additional processing that would be required to handle any
additional instability introduced.
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