
Efficient Matrix Rank Computation with Application to the
Study of Strongly Regular Graphs∗

John P. May
University of Delaware

Newark, DE, USA
jpmay@udel.edu

David Saunders
University of Delaware

Newark, DE, USA
saunders@udel.edu

Zhendong Wan
Drexel University

Philadelphia, PA, USA

wan@cs.drexel.edu

ABSTRACT
We present algorithms for computing the p-rank of inte-
ger matrices. They are designed to be particularly effective
when p is a small prime, the rank is relatively low, and
the matrix itself is large and dense and may exceed virtual
memory space. Our motivation comes from the study of
difference sets and partial difference sets in algebraic design
theory. The p-rank of the adjacency matrix of an associated
strongly regular graph is a key tool for distinguishing differ-
ence set constructions and thus answering various existence
questions and conjectures. For the p-rank computation, we
review several memory efficient methods, and present re-
finements suitable to the small prime, small rank case. We
give a new heuristic approach that is notably effective in
practice as applied to the strongly regular graph adjacency
matrices. It involves projection to a matrix of order slightly
above the rank. The projection is extremely sparse, is cho-
sen according to one of several heuristics, and is combined
with a small dense certifying component. Our algorithms
and heuristics are implemented in the LinBox library. We
also briefly discuss some of the software design issues and
we present results of experiments for the Paley and Dickson
sequences of strongly regular graphs.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm Design and
Analysis; I.1.4 [Symbolic and Algebraic Manipulation]:
Applications

General Terms
Algorithms, Design, Performance

Keywords
matrix p-rank, out of core methods

∗Research was supported by National Science Foundation
Grant CCF-0515197

This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in:
ISSAC’07, July 29–August 1, 2007, Waterloo, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-743-8/07/0007.

1. INTRODUCTION
This is a study of the problem of computing the p-rank of

an integer matrix with particular emphasis on the case when
the matrix is large and dense, the rank is relatively small,
and the prime is tiny (such as p = 3). We are motivated by
problems arising in the study of the difference sets and par-
tial difference sets of finite groups and their corresponding
strongly regular graphs.

Matrix rank has been perhaps the most widely used ex-
act linear algebra computation to date. In any event, it
has been often the goal of computations requested by users
of the LinBox software library [17] for exact linear algebra
computations over the integers and over finite fields. Besides
being of interest itself in numerous applications, rank plays
an important role in solving singular systems and comput-
ing invariants. For example the rank is used in solving large
sparse linear systems [15] computing homology groups [8],
and in computation of Gröbner bases [10].

For integer matrices the expedient of choosing a word-size
(≤ 232−1) prime number at random and computing modulo
that prime is fast and sure, avoiding computation with large
integers.

For sparse and structured matrices, LinBox uses blackbox
methods for rank [21, 14, 3, 9]. These are probabilistic, re-
quiring that a few vectors over GF (p) be chosen at random.
For word-size primes this works well. However, if p is too
small, it becomes impossible to guarantee that the probabil-
ity of success is non-zero without moving the computation
into an extension field GF (pk).

For dense matrices Gaussian elimination is used and it is
organized for efficient use of the highly tuned floating point
BLAS kernel. This works well, even for small primes [7].

However in our application, the matrices are too large
for direct elimination, the matrices are too dense for sparse
elimination, and, as mentioned above, the small primes con-
found the probabilistic algorithms used in the blackbox ap-
proach. More importantly, perhaps, the very low rank ex-
pected invites us to find a more space and time efficient
approach suitable to such very low rank. In addition, since
these matrices are defined by formula, we can construct por-
tions of the matrix at will. However, it is costly enough to
generate an entry of a matrix (generally a few computa-
tions in GF (q), for q the dimension of the matrix) that our
methods must avoid computing the entries excessively many
times.

We were asked to compute 3-ranks for several families of
matrices by Qing Xiang, who uses these computations in the
study of difference set constructions [20]. In particular, we

1

looked at the Paley and Dickson families of constructions but
our methods should apply to the other families mentioned
in [20] as well. The matrices in all these families are of order
32k. Their 3-ranks are around 22k (exactly this in the Paley
case), and generally less than 22k+1. Values of k up to 4
pose no problems for straight-forward dense methods, while
k = 5 begins to be a challenge (matrix order 59049). By the
methods we develop here k = 6 (order 531441) is accom-
plished and k = 7 (order 4782969) is within reach. About
half of the matrix entries are nonzero, so sparse representa-
tions and methods are of no help. Memory management is a
key issue. For instance, 5314412 = 324 bytes is a quarter of
a terabyte. For the matrices of order 310 we have sufficient
memory for direct elimination. For the matrices of order
312, blackbox methods still work directly, albeit slowly. At
this point the heuristic methods presented in this paper are
of significant benefit. For the next order of interest, 314, the
memory and time efficiency we provide is essential and, in
fact, use of parallelism and “out of core” strategies become
necessary as well.

In the next section we summarize some definitions and
basic facts about difference sets and strongly regular graphs
that give rise to the matrix p-rank computations that are the
motivation of this paper. Next we analyze algorithms for the
problem, including a proof that a random projection method
works well for small primes, and give a method of lower
complexity (assuming the success of a heuristic component).
It works well in practice as demonstrated in section 4 on
experimental results. We finish with a brief discussion of
software design issues for such large matrices and a brief
concluding section.

2. DIFFERENCE SETS, STRONGLY
REGULAR GRAPHS, AND P-RANK

The matrices considered in this paper arise from the study
of difference sets and partial difference sets, which play im-
portant roles in several branches of discrete mathematics
and coding theory. Difference sets and partial difference sets
are constructed from finite groups. In turn these may be de-
rived from finite fields and semifields. They are associated
with graphs by the Cayley construction. A semifield has
the properties of a field except for associativity of multipli-
cation. Among the questions being pursued in the extensive
literature of this area is to determine whether or not various
distinct constructions yield isomorphic objects. The p-rank
of an associated adjacency matrix of the Cayley graph is a
useful invariant. If two constructions lead to matrices with
distinct ranks, the objects are inequivalent.

In this section we provide some basic definitions and ref-
erences on this topic. We also describe the construction of
the specific examples we use in the experiments section to
measure the effectiveness of the algorithms.

Let G be a finite group of order ν. A k-element subset
D of G is called a (ν, k, λ) difference set if each non-identity
element of G can be expressed as a “difference” (xy−1, x, y ∈
D) of elements of D, in exactly λ ways. A k-element subset
D of G is called a (ν, k, λ, µ) partial difference set if each
non-identity element of D can be expressed as a difference
of elements of D in exactly k ways and each non-identity
element of G−D can be expressed as a difference of elements
of D in exactly µ ways. For example, Let D consist of all
nonzero squares of GF (q), where q is a odd prime power.

It is a (q, (q − 1)/2, (q − 3)/4) difference set of the additive
group of GF (q) if q ≡ 3 mod 4. It is a (q, (q − 1)/2, (q −
5)/4, (q−1)/4) partial difference set of the additive group of
GF (q) if q ≡ 1 mod 4. For surveys on difference sets and
partial difference sets, we refer to [16, 22]. A difference set
D in a finite group G is called skew Hadamard if G is the
disjoint union of D, D(−1), and 1. The Paley difference set
mentioned above is an example. More generally, a subset D
of a finite group G of order ν (ν ≡ 1 mod 4) is called a Paley
type difference set if D is a (ν, (ν−1)/2, (ν−5)/4, (ν−1)/4)
partial difference set.

A graph Γ with ν vertices is said to be a (ν, k, λ, µ)-
strongly regular graph if each vertex is joined to exactly k
other vertices, and any two adjacent vertices are both joined
to exactly λ other vertices and two non-adjacent vertices are
both joined to exactly µ other vertices. There is a strong
relationship between strongly regular graphs and partial dif-
ference sets. Given a set D in additive group G with 0 /∈ D
and −D = D, we can construct a Cayley graph which is a
graph Γ with elements of G as vertices such that two vertices
x, y ∈ G are joined if and only if x − y ∈ D. If the set in a
group is a partial difference set, then its Cayley graph is a
strongly regular graph. On the other hand, if a strongly reg-
ular graph has a regular automorphism group G, a partial
difference set can be obtained. Therefore, strongly regu-
lar graphs with regular automorphism groups and partial
difference sets are equivalent. The strongly regular Cayley
graph constructed from the set of nonzero squares in GF (q)
(q is a prime power and q ≡ 1 mod 4) is called the Paley
graph. Another interesting type of strongly regular graphs
is the P∗-graphs. Let q be an even power of a prime con-
gruence to 3 modulo 4, g be a primitive element of GF (q),
and the set S = {gj : j ≡ 0, 1 mod 4}. Then S is a Paley
type partial difference set in (GF (q), +). The Cayley graph
constructed from S is called the P∗-graph. The P∗-graph
construction was used in [20].

Two difference sets D1, D2 of a group G are said to be
srg-equivalent if the corresponding Cayley graphs are isomor-
phic. The p-rank computation of their adjacency matrices
can be used to distinguish srg-inequivalent partial difference
sets of GF (q), where q is a power of the prime p.

It was conjectured that Paley difference sets are the only
examples of skew Hadamard difference sets in Abelian groups.
This was disproved by Ding and Yuan [4]. It was conjectured
by René Peeters that Paley graphs of non-prime order are
uniquely determined by their parameters and the minimality
of their relevant p-rank. This was disproved in [20].

Numerous other strongly regular graphs are constructed
from partial difference sets defined as the set of squares in a
semifield. In particular, we look at the partial difference sets
coming from the Dickson family of finite commutative semi-
fields. The matrix M corresponding to a semifield (K, +, ∗)
has dimension equal to |K|. The diagonal entries Mi,i are
0 for all i. The entry Mi,j is 1 if the difference of the ith

and jth elements of K is in D, the set of squares in K,
and Mi,j is 0 otherwise. We will be computing the p-rank
of M − I. The simplest example is the Paley matrix when
K = GF (pk). The other example we will consider is the
Dickson matrix which exists for orders 32k. The defining
semifield is K = GF (pk) × GF (pk), where ‘+’ is defined
coordinate-wise and ‘∗’ is defined by

(a, b) ∗ (c, d) = (ac + gbσdσ, ad + bc).

2

Here g is a primitive element in GF (pk) and σ is a non-
trivial automorphism of GF (pk). This semifield multipli-
cation is plainly commutative. It also distributes over ad-
dition, but fails to be associative. For our experiments we
used the primitive element chosen by the Givaro [11] im-
plementation of the field GF (q) and we used the Frobenius
automorphism σ(x) = xp. The p-rank is independent of the
primitive element or automorphism chosen for the matrix
construction. It is also independent of the order in which
row and column indices are associated with semifield ele-
ments (a matter just of row/column permutations). In our
experiments, we use GivaroGFq, the LinBox wrapper of the
Zech’s logarithm table implementation of the field GF (pk)
in Givaro. Our experiments are done in the case p = 3 with
2 ≤ k ≤ 6.

3. P-RANK ALGORITHMS
Our application produces very large dense matrices which

turn out to have rather low rank. The families of matrices
under study appear to have ranks significantly lower than
the matrix order, for instance, the matrices coming from
Paley graphs and P∗-graphs. The Paley graph adjacency
matrices A of dimension n = pe (n is congruent to 1 modulo
4) have the property [2]:

rankp(2A + I) = (
p + 1

2
)e.

The P∗-graph adjacency matrices of dimension pe (p is a
prime congruent to 3 modulo 4 and e is an even number)
have the property [20]:

rankp(2A + I) = 2(
p + 1

4
)e(3

e
2 − 1).

For several other classes, such as the Dickson graphs, rank
formulas are not known. The P∗-graphs introduced in [20]
are of interest because they disprove an earlier conjecture
that the Paley graphs would have the smallest p-ranks. We
have verified the P∗-graph ranks for orders up to 310. For
measuring the effectiveness of several algorithm choices, it
suffices to study one class of known rank formula (Paley)
and one class of unknown rank formula (Dickson). This
gives a nice combination of reassurance (Paley computed
ranks agree with formula) and drama (we determine Dickson
ranks de novo).

3.1 Space Efficient Rank Algorithms
Since we are interested in computing on large cases where

O(n2) memory is not available, we restrict our attention to
methods that use O(nr) memory for an n×n matrix of rank
r and we eventually develop a method that uses O(r2 + nc)
memory for a small c. In fact c is O(log(1/ε)), where ε
is the probability of error we are willing to tolerate. Thus
c = 20 gives less than one in a million chance of a wrong
rank returned.

Algorithm 1: Rank of matrix A ∈ GF (p)n×n, computed
deterministically.

Step 1: Determine b such that b rows of A may be stored
in main memory.

Step 2: Row reduce the leading b rows of A obtaining s
linearly independent rows.

Step 3: while unprocessed rows remain and s < b
adjoin b− s unprocessed rows
row reduce to obtain s′ independent rows
discard any dependent rows
set s← s′

Step 4: if s ≥ b return “fail” else return rank = s.

This algorithm is deterministic and requires O(n2r) arith-
metic operations in GF (p) and uses O(nr) memory. It can
be quite fast in practice with the block elimination done us-
ing, for example, LU-Divine [7]. Also it is very well suited to
a large dense matrix stored on disk or that can be generated
on demand as is the case for our SRG problems. However
on current hardware, the limiting cost is the O(nr) memory
usage. For instance the Paley graph matrix at exponent e
has n = 3e and r = 2e. If floats are used for the elements
(for the sake of BLAS), then the memory needed is 4 × 6e

bytes. This is about 8GB when e = 12 and completely out
of reach when e is larger.

Next we turn to a probabilistic method to address the
memory issue and achieve a lower memory usage, but it
comes at the cost of working over a moderate sized exten-
sion field of GF (p) where highly tuned arithmetic and BLAS
type kernels are not currently available, but see [6] concern-
ing BLAS. This algorithm is from [3].

Algorithm 2: Rank of matrix A ∈ GF (p)n×n, probabilis-
tic blackbox method.

Step 1: Choose the degree d of the field extension to be
used. Compute two random nonsingular n×n diagonal
matrices D and E over GF (pd).

Step 2: Precondition to blackbox B ← DAT EAD.

Step 3: Compute the minimal polynomial of B by Wiede-
mann’s algorithm [21] over the extension field. If its
degree is n and its least monomial with nonzero coeffi-
cient is of degree k, (and k 6= 0), return rank r = n−k.

This approach to rank requires O(n2rd) arithmetic opera-
tions in GF (p), where d is the degree of the extension field.
It is Monte Carlo, with probability of failure no more than
(2n2 − n)/pd. It uses O(nd) memory to store a few vectors
over the extension field. It also requires each entry of A to
be either recalled from disk storage or regenerated by for-
mula O(r) times. In the presence of ample disk space but
insufficient main memory, a storage scheme could be used
with significant but constant overhead. Assuming O(1) cost
to generate an entry from formula, it can be more efficient
to regenerate entries on demand. We have not explored this
trade-off in detail. In either case, the matrix access cost is
O(n2r) overall.

Finally, we present a straightforward probabilistic algo-
rithm to compute the rank of A when we have a small upper-
bound for its rank.

Algorithm 3: Rank of matrix A ∈ GF (p)n×n, probabilis-
tic dense method. Input is A and probabilistic error
tolerance ε.

Step 1: Choose c ← logp(2/ε) and choose b so that b ≥
rank(A)+c (This requires some prior knowledge about
A - recursive doubling of b can be used if initial choice
of b is too small)

3

Step 2: Project A to a b × b matrix B ← LAR. Where R
and LT are randomly chosen from A ∈ GF (p)n×b.

Step 3: Compute r, the rank of B. If r ≤ b − c return r,
else “fail” (or double b and repeat).

This requires O(n2 b) arithmetic operations in GF (p) and
O(n b) storage for L, R, and intermediate results. If one
begins by computing AR, then note that no more than O(nb)
of A need be in memory at any one time and that blocks of
A only need be generated (or taken from disk) once. Since
b is O(r), we are using O(n2r) time and O(nr) memory.

We must demonstrate that this algorithm finds the rank
with the specified 1− ε probability of success.

Theorem 1. Assuming b is an upper bound of the rank
of A as described in Step 1 of Algorithm 3 then r is the rank
of A with probability P (rank(A) = rank(B)) ≥ 1− 2/pc.

Proof. Let ρ denote the true rank of A and consider
the columns of AR. Let us denote the columns of R by
r1, . . . rb. If these are uniformly randomly chosen then s1 =
A r1, . . . , sb = A rb will be a uniform random sample of the
column-space of A. Now, suppose that t < ρ is the dimension
of the span of {si}, and, without loss of generality, that
s1, . . . , st is a basis. That means that sj , for j ∈ {t+1, . . . , b}
are linearly dependent on the other sis. The probability of
this happening for each sj , a random sample of the column
space of A, is less than 1/pρ−t < 1/p. Thus when the ri are
chosen randomly and independently, the probability that
there are c random vectors which happen to lie in the t
dimensional subspace of the ρ dimensional column space of
A is less than 1/pc. Hence, the probability that the {si}
span the full column-space of A is at worst 1 − 1/pc. The
same argument may then be applied to the row span of AR
with random samples of this row span given by the rows of
L(AR). The probability of error is again less than 1/pc and
the overall probability of success is at least (1 − 1/pc)2 ≥
1− 2/pc.

In summary, randomly projecting down to a block size
slightly larger than the rank suffices for a high probability of
success even when the field characteristic is small. It would
be useful to project with cheaper preconditioners L and R
than full random matrices as we use here. For examples,
Toeplitz, sparse, or butterfly matrices might work. These
have been used as preconditioners to ensure useful properties
for fields of large characteristic [21, 14, 3, 9]. We know of
no argument to justify one of them for this context. But
note that if L = [L1 | L2]

T and R = [R1 | R2], where
L1AR1 has the same rank as LAR and L2, R2 are n×c fully
random blocks, then our proof of the theorem applies. In
other words, the larger parts of L and R, namely L1 and R1,
could be chosen heuristically with fast computation in mind
and the result validated by a relatively few fully random
rows and columns. This is similar to what we propose next,
a computation using the Schur complement.

Speed is important to our problem, but the memory is-
sue is of even greater importance. We will use a heuristic
somewhat like that just described, but follow with a valida-
tion that uses less than nr memory and has a deterministic
variant.

3.2 Rank Isolating Heuristics
We discuss several heuristics which succeed on varying

numbers of all possible matrices. At least one of them works
on each matrix we have encountered in practice. All of these
may be viewed as computing the leading b× b block of B =
LAR, for some nonsingular n × n preconditioning matrices
L and R and hoping its rank equals that of A. Three of
them have the specific block pattern

L =

„
Ib X
0 In−b

«
, R =

„
Ib 0
Y In−b

«
.

Coupled with a certificate or Monte Carlo verification that
the rank of the upper-left block of LAR is actually the rank
of all of LAR, these heuristics make effective methods in
practice.

Heuristic scheme: Rank of matrix A ∈ GF (p)n×n.

Step 1: Let b = 1.

Step 2: Choose b × n − b block X and n − b × b block Y
according to a specified heuristic (see below).

Step 3: For

A =

„
B C
D E

«
,

where B is b×b, compute M ← B+CY +XD+XEY

Step 4: Compute r = rank(M).

Step 5: If c = b − r is too small (see Theorem 1), then
double b and go to step 2. Otherwise return the rank
r. Optionally, first certify the rank.

The repeated doubling of the block size b assures that the
largest block size is no more than 2r and this doubling is the
source of a log(r) factor in the time estimates. In practice
we have often been able to start with a more reasonable
initial guess than b = 1 and effectively eliminate the log(r)
factor.

Assume the cost of computing CY and XD are each a
function c(n, b) of the shape. This c(n, b) is at most O(nb2),
for dense X and Y , and at least 0 for zero blocks X and
Y . That gives away two of our heuristics. The other two
lie somewhere between these extremes in cost. Let us as-
sume E is decomposed in blocks of b columns so that E =
(E2, E3, . . . , En/b). Then XE = (XE2, XE3, . . . , XEn/b),
and the overall cost of step 3 is (n/b+2)c(n, b). The cost of
the rank computation is O(b3) with classical methods. Since
we keep the block size within a constant multiple of the rank,
overall the heuristic scheme costs O(c(n, r) n log(r)/r + r3).

What heuristic might we try in step 2? Here are some
ideas. They are given in increasing order of cost (and range
of effectiveness), and after that the two certificate strategies
are discussed.

Heuristic 1 is simply to hope the leading block has the
same rank as A, i.e.,set X = 0 and Y = 0. Since c(n, r) is
zero, the time is O(r3). The memory is O(r2).

This has proven to be useful, for example, with the Paley
graph matrices where the leading r × r submatrix turned
out to be nonsingular in every case.

Heuristic 2 is to set X and Y to a string of scalar
matrix b × b blocks, X = (l2Ib, l3Ib, . . . , ln/bIb) and Y =

4

(r2Ib, r3Ib, . . . , rn/bIb)
T , where the scalars li and ri are cho-

sen at random from GF (p). The random distribution used
can be varied, but we used a uniform distribution. In this
case the cost of step 3 in the scheme is O(n2) because each
entry of E contributes once, multiplied by a scalar from X
and a scalar from Y , as a summand of an entry of XEY .
Thus the run time is O(n2 log(r) + r3). Since the space to
store X and Y is just that of the O(n/r) scalars involved,
the memory usage is O(r2 + n/r).

This worked for the Dickson graph matrices over GF (3)
about half the time, by which we mean that we probabilis-
tically verified the computed rank about half the time in
trials.

Heuristic 3 is to use butterfly matrices for L and R [3,
18]. A b-block product of a dense matrix and a butterfly
costs O(b2 log(b)), so a modified step 3 costs O(n2 log(b)).
With the doubling and the largest block size b = O(r), this
leads to an O(n2 log(n) log(r)+r3) time cost and O(n log(n)+
r2) memory cost for heuristic 3.

We did not pursue this in experiments, since the heuristics
1 and 2 are simpler, did work in practice, and are predicted
to be faster. We conjecture that butterflies may work with
provable error bound when r is a suitably small factor of
the final block size used. Observe that they work when the
block size is n [19]. Do they work when the block size is
r log(n)?

Heuristic 4: Finally, the scheme could be made into a
Monte Carlo algorithm by using random dense blocks for X
and Y .

If a suitable over-estimate for the rank is used as the final
block size, this produces the correct rank with bounded error
probability. Specifically if the final block size is b = r + c
where r is the leading block’s rank, then the chance that r
is not A’s rank is less than 1/pc by a similar argument to
that used for theorem 1.

This method uses O(n2r log(r)) arithmetic operations in
GF (p). It uses O(rn) memory if X or Y is stored, as at
first may seem necessary. Heuristic 4 uses O(r2) memory by
computing the X and Y a b×b block at a time. The product
step is then for i ∈ {1, . . . , n/b}, for j ∈ {1, . . . , n/b}, B =
B+XiAi,jYj where the indexed items are b×b blocks. Each
block of X can be generated just when needed. However the
blocks of Y must be available to be reused each time through
the outer loop. For the claimed space cost these blocks of
Y may be regenerated from a saved seed each time they are
needed. This is where the dependence on a pseudo-random
system enters in. Alternatively, X and Y may be saved on
disk between uses, but then there is not a memory advantage
over algorithm 1.

The heuristic methods are straightforward and seem to
work well enough in practice. However, they do not provide
truly quantifiable probability of error in principle. We will
offer two methods to certify the rank in order to address
this problem and allow us to use one of the earlier, cheaper
heuristics.

It should be noted that even when the heuristic scheme
is combined with a good certificate for rank, we do not ob-
tain an algorithm for computing rank. This is because our
method can return “fail” in place of a probabilistically cor-
rect rank and we cannot guarantee that there is a non-zero
probability of obtaining a result other than “fail”.

3.3 Rank Certificates
The first certificate is deterministic and the second is

Monte Carlo but faster. Both certificates require than the
initial r×r block of the matrix be non-singular. This means
to verify the output of the heuristic scheme, the certificate
will actually be run on the matrix LAR. This is impor-
tant since the entries of LAR will, in general, be much more
expensive to compute than those of A.

Rank Certificate 1: Given a number r, 0 ≤ r ≤ n, and
A ∈ GF (p)n×n. If A has a non-singular initial r × r
block, verify r = rank(A) otherwise return “fail”.

Step 1: Let Ai,j denote the r×r block starting at row ri+1
and column rj + 1 and let k = n/r be the number of
blocks (n can be padded to the next multiple of r).

Step 2: Compute rank(A1,1). If it is not r, return “fail”.
This may be done by LU decomposition, which will
then also be useful for the next step.

Step 3: Verify that the Schur complement [1] of block A1,1

is zero. The Schur complement may be computed in
block form as (Ai,j − Ai,1A

−1
1,1A1,j), i ∈ 2..k, j ∈ 2..k.

The A−1
1,1 may be computed explicitly or the LU of step

2 used in back-solving mode.

Step 4: If any block computed in step 3 is nonzero, return
“fail” because rank(A) is greater than r. Otherwise
return that r = rank(A) is verified.

As in the previous algorithm, there is a problem here for
memory usage in that some of the blocks in the first row and
column will have to be stored between uses when forming the
blocks of the Schur complement. The most space efficient
scheme we know is “block the blocks” in (k−1)1/2 size meta-
blocks. In this case, each of A1,i, for i ∈ {2, . . . , k} will be

constructed (k − 1)1/2 times. With this plan the memory

usage is O(r(n/r)1/2) = O((rn)1/2) (this is in the spirit of
baby step, giant step, see [13]).

The algorithm calls for an r×r-matrix inversion and (k−
1)2 r×r-matrix multiplications requiring O(k2r3) = O(n2r)
arithmetic operations. Add to this the cost of constructing
the Ai,j blocks, which may be O(r2) or greater depending on
which preconditioner is being used with A. With the precon-
ditioners we have used, the cost of generating the first row
and column is much higher than the cost for generating the
other rows and columns. For instance, the cost to generate
the (i, j) block may be c(i) c(j), where c(1) = n, and c(l) = r
for l > 1. In this case, the total time for the algorithm Rank
Certificate 1 is O((k−1)2r2 +(k−1)nr+n2 +(k−1)3/2nr),

which is O(n2(n/r)1/2).
Finally, we describe a faster, probabilistic, rank certificate

based on the Schur complement:

Rank Certificate 2 Given A ∈ GF (p)n×n, rank candi-
date r (with A expected to have leading principal r-
minor nonzero) and error probability bound ε > 0,
return r = rank(A) verified with probability of error
less than ε, or “rank is greater” or “fail” (from step 2),

Steps 1,2: . . . are as in Certificate 1. Also compute c =
logp(1/ε) and let X be a n × c random matrix with
Xi denoting the i-th r × c block. Let W be an r × c
matrix.

5

Step 3: {Compute the Schur complement multiplied by X.}
For

A =

„
B C
D E

«
, B is r × r.

Compute and compare EX and DB−1CX in a just-
in-time fashion:

Wi ← B−1A1,iXi, i = 2 . . . k. { W = B−1CX }
For (i from 2 to k)

T ← Ai,1Wi, { i-th block of DB−1CX }
U ←

Pk
j=2 Ai,jXj , { i-th block of EX }

If U 6= T , return “rank is greater”.

Step 4: Rank is verified. Return “rank is r”.

Theorem 2. If certificate 2 verifies the rank r, the prob-
ability of error is less than ε. It runs in O(r3 + n2c) arith-
metic operations in GF (p) and uses O(r2 + nc) memory.
Each block of A is accessed once.

Proof. Correctness of the just-in-time check for the zero
Schur complement is by an argument similar to that we gave
in theorem 1 (and also used for example in [12, Theorem
2.2]. If the Schur complement is nonzero, the chance that a
matrix random-vector product is zero is at most 1/p.

The inversion of the leading block in step 2 requires O(r3)
in classical elimination. The computation of W in Step 3
uses (k − 1)r2c operations, which is O(nrc). Each iteration
of the second for-loop costs r2c for T and (k − 1)r2c for U
and rc for the equality check. Thus the time for the loop as
a whole is in O(n2c). The space and A access assertions are
evident.

3.4 Failed Certificate Correction
It may be that the above rank certifications fail. The first

way they can fail is if the B, the upper left block, is singular.
In this case, a new preconditioner or a smaller upper block
will need to be computed by rerunning one of the heuristics
in Section 3.2. The other cause for failure is that the Schur
compliment S = E −DB−1C is not 0. In this case, we may
still recover the rank of A with high confidence. So long as
B was full rank, we have

A =

„
B C
D E

«
=

„
I 0

DB−1 I

« „
B 0
0 S

« „
I B−1C
0 I

«
,

and we see that rank(B) + rank(S) = rank(A). If most of
the rank was contained in B, that means we can effectively
use Algorithm 3 to compute the rank of the Schur comple-
ment computed in the rank certification step. Specifically,
we compute the rank of (E − DB−1C) X = SX. If the
rank of this (n − r) × c matrix is significantly less than c,
then with high probability it is the rank of S and we report
rank(A) = rank(B)+rank(S). This increases the space cost
if we store all of the T and U values computed in step 3
of Certificate 2. We can avoid this by instead computing a
random c×(n−r) matrix Y and accumulating V = Y SX as
V ← V + Y (U − T) at each iteration of the loop in step 3.
It should be noted that this method comes with only an
a posteriori computed probability of correctness. However,
it may provide enough confidence in its answer to avoid a
possibly very lengthy recomputation of the entire method.

dimension Rank CPU Time RAM Usage

34 = 81 24 = 16 0.0097s 30kB

36 = 729 26 = 64 0.03s 120kB

38 = 6561 28 = 256 0.93s 1.2MB

310 = 59049 210 = 1024 63.0s 18MB

312 = 531441 212 = 4048 4632s 195MB

Table 1: The Paley SRG example computed with
Heuristic 1 and Certificate 2.

dimension Rank CPU Time RAM Usage

34 = 81 20 0.021s 35kB

36 = 729 85 0.35s 180kB

38 = 6561 376 33.3s 2.0MB

310 = 59049 1654 1799s 36MB

312 = 531441 7283 168076s 516MB

Table 2: The Dickson SRG example computed with
Heuristic 2 and Certificate 2.

4. EXPERIMENTS
The benchmarks in this section were written using the

LinBox library and run on a machine with two 3.20 GHz
Intel Dual Xeon processors and 6 GB of shared RAM. The
runs used just one processor.

Table 1 and Table 2 collect the results of computing 3-rank
using the heuristic scheme and certifying the rank with cer-
tificate 2. We chose not to implement certificate 1 since it
is clearly much more expensive than certificate 2. In par-
ticular, it has to re-compute blocks of LAR

√
k times and

those computations are already the most time intensive part
of the computation when using heuristic 2 with certificate 2.

Extrapolating from the table 1, heuristic 1 and Rank cer-
tificate 2, should compute the rank of the Paley matrix of
dimension 314 in about 4 days using about 2 gigabytes of
RAM. Unfortunately, 314 is past the limit of the Givaro li-
brary’s fast implementation of Galois fields. Thus we expect
an implementation using a slower field arithmetic implemen-
tation to require a factor of 3 or 4 more time.

Extrapolating from the table 2, heuristic 2 and rank cer-
tificate 2, should compute the rank of the Dickson matrix of
dimension 314 using about 1 CPU year and about 7.3 giga-
bytes of RAM. The drastic difference in timings compared
to the Paley case, comes from applying the more expensive
preconditioner in Heuristic 2.

In the both of the above sets of experiments, the dominat-
ing cost is that of the rank certificate. If the heuristic com-
putes the rank correctly, the certificate generally accounted
for about 75% of the total computation time. At least 75%
of that cost was for the just-in-time computation of the (very
large) block E.

We also computed the rank of the Paley matrix using al-
gorithm 2 (blackbox) and algorithm 3 (dense elimination
method after JIT computation of a projection). The time
and memory usage for these computations are given in Ta-
bles 3 and 4.

As can be seen from table 3, the blackbox method uses
much less RAM than the heuristic methods but at the cost

6

dimension Rank CPU Time RAM Usage

34 = 81 24 = 16 0.020s 20kB

36 = 729 26 = 64 4.45s 128kB

38 = 6561 28 = 256 4131s 1.1MB

310 = 59049 210 = 1024 est. 30 days est. 15MB

Table 3: The Paley SRG example computed with
Algorithm 2: the Weidemann Blackbox method

dimension Rank CPU Time RAM Usage

34 = 81 24 = 16 0.010s 20kB

36 = 729 26 = 64 0.780s 875kB

38 = 6561 28 = 256 208s 13.4MB

310 = 59049 210 = 1024 1496s 467MB

312 = 531441 212 = 4048 est. 5 days est. 13GB

Table 4: The Paley SRG example computed with Al-
gorithm 3: just-in-time projection plus dense elimi-
nation

of much more time. In table 4, it can be seen that the LAR
projection algorithm, while faster than algorithm 2, is still
far slower than the heuristic plus certification method. That
is, in practice, the heuristic plus certification method allows
us to compute the rank of a Paley matrix one size larger
(i.e. dimension 9 times larger and rank 4 times higher) than
could be computed with a dense elimination algorithm using
the same computing resources.

5. SOFTWARE DESIGN
The heuristics and algorithms discussed in this paper were

implemented using the LinBox library [5]. One new concept
we added to the library was that of a “just in time matrix”.
That is, a matrix to which we have access to the entries, but
those entries are not stored in RAM – they are computed
(or retrieved) just in time for computation. Contrast this
to the idea of a black-box matrix: while a black-box may
not be stored in RAM it also does not allow access to its
entries directly, it allows only matrix-vector products to be
computed. A simple example of a matrix that admits a
just in time implementation is a Hilbert matrix: H where
Hi,j = 1/(i + j).

In the library, we provide a generic JITMatrix class. This
class is a derived class of BlackBox and thus provides all the
features of a black box matrix and allows JITMatrix objects
to be used in most LinBox algorithms. The JITMatrix class
is also templated by a generator and a field. The generator is
a function object which must take a pair of indices (i, j) and
return an element of the field corresponding to the (i, j)th

entry of the matrix. An instance of a JITMatrix will require
only enough storage for the generator and the field. For ex-
ample, in the case of GF (pk) the field may store arithmetic
tables, and in the case of a Hilbert matrix the generator may
precompute and store all the reciprocals up to 1/(2 n).

An entry of a Paley-type matrix is computed by deter-
mining if the difference of a pair of elements in a semifield
is a square in the semifield. We implement our generator
by precomputing the list of squares in the semifield (storing

this takes space O(n)). The generator function then just
computes a subtraction in the semifield, and does a look up.
A generic Paley-type matrix class is possible where the user
provides an object to do the semifield arithmetic.

However, for the Paley-type matrices we are using block
methods so we chose a block just in time design. That is,
we have created a JITMatrix whose entries are b × b dense
matrices. In order to do this, we had to create a BlockRing

which is an object for expressing the arithmetic functions on
blocks consistent with the LinBox “field” concept. It wraps
some of the functionality of a field for dense matrices. Of
course the inversion and division functions are partial in a
block ring (ring of square matrices). In fact we have not yet
implemented these partial functions at all, since they are
not needed in the algorithms.

In some cases, we found it necessary to precondition a
Paley-type matrix. For simple preconditioners, it is possi-
ble to embed the preconditioner in the generator function
object. In doing so, the preconditioned Paley-type matrix
is still implemented as a JITMatrix. This allows us to com-
pute with n × n Paley-type matrices where n2 entries are
too large to fit in memory but r2 + n entries are not.

6. CONCLUSION
We have addressed the problem of p-rank computation

for very large matrices when p is small and the rank to be
computed is relatively small. We have offered a heuristic
(heuristic 2 coupled with certificate 2) that worked well on
some very large matrices (of order about 5 × 105, hence
containing 2.5 × 1011 entries). This method has as a very
low a space complexity. It involves processing the matrix
only a few times, whether from disk storage or from formula
generation and thus is suitable for matrices that will not fit
in main memory. It has faster asymptotic complexity than
any method we know and it has fast practical performance
due to the use of the fast level 3 BLAS matrix operation
kernels.

We have applied this technique to assist in the study of
strongly regular graphs, particularly to assist the the project
to identify p-rank formulas for certain families of strongly
regular graphs. To date we have ranks of matrices of orders
up to 312 in the Paley, P*, and Dickson sequences, as well as
a few other isolated constructions. In the case of Paley and
P* constructions this verifies proven formulas. No formula
is known for ranks of the Dickson sequence. We would like
to compute ranks for the 314 and 316 orders in pursuit of
such a formula.

In the process we have started a design process for the soft-
ware library LinBox which should prove useful for the imple-
mentation of block blackbox methods, out of core methods,
and parallel methods. In immediate future work we will im-
plement some of these features, in particular for the sake of
computing the rank of the order 314 Dickson rank.

7. REFERENCES
[1] M. Brookes. The matrix reference manual.

http://www.ee.ic.ac.uk/hp/staff/www/matrix/

property.html#schurcomp, 2005. [Online; accessed
22-January-2007].

[2] A. E. Brouwer and C. A. Van Eijl. On the p-rank of
the adjacency matrices of strongly regular graphs. J.
Algebraic Comb., 1(4):329–346, 1992.

7

[3] L. Chen, W. Eberly, E. Kaltofen, W. Turner, B. D.
Saunders, and G. Villard. Efficient matrix
preconditioners for black box linear algebra. LAA
343-344, 2002, pages 119–146, 2002.

[4] C. Ding and J. Yuan. A family of skew Hadamard
difference set. J. Comb. Theory, Ser. A,
113:1526–1535, 2006.

[5] J-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi,
B. Hovinen, E. Kaltofen, B. D. Saunders, W. Turner,
and G. Villard. Linbox: A generic library for exact
linear algebra. In ICMS’02, pages 40–50, 2002.

[6] J-G. Dumas, T. Gautier, and C. Pernet. Finite field
linear algebra subroutines. In Proc. of ISSAC’02,
pages 63 – 74. ACM Press, 2002.

[7] J.-G. Dumas, P. Giorgi, and C. Pernet. FFPACK:
Finite field linear algebra package. In Proc. of
ISSAC’05, pages 119–126, 2004.

[8] J-G. Dumas, B. D. Saunders, and G. Villard. Smith
form via the valence: Experience with matrices from
homology. In Proc. of ISSAC’00, pages 95 – 105. ACM
Press, 2000.

[9] J.-G. Dumas and G. Villard. Computing the rank of
large sparse matrices over finite fields. In Proc.
CASC’2002, The Fifth International Workshop on
Computer Algebra in Scientific Computing, pages
22–27. Springer-Verlag, 2002.

[10] J.-C. Faugère. Parallelization of Gröbner basis. In
H. Hong, editor, PASCO’94, volume 5 of Lecture notes
series in computing, pages 109–133, 1994.

[11] Thierry Gautier, Jean-Louis Roch, and Gilles Villard.
Givaro, a C++ for algebraic computations.
http://www-lmc.imag.fr/Logiciels/givaro.

[12] M Giesbrecht, A. Lobo, and B. D. Saunders.
Certifying inconsistency of sparse linear systems. In
Proc. of ISSAC’98, pages 113–119. ACM Press, 1998.

[13] E. Kaltofen. An output-sensitive variant of the baby
steps / giant steps determinant algorithm. In Proc. of
ISSAC’05, pages 138–144, 2002.

[14] E. Kaltofen and B. D. Saunders. On Wiedemann’s
method of solving sparse linear systems. In Applied
Algebra, Algebraic Algorithms and Error-Correcting
Codes, volume 539 of LNCS, pages 29–38, 1991.

[15] B. A. LaMacchia and A.M. Odlyzko. Solving large
sparse linear systems over finite fields. Lecture Notes
in Computer Science, 537:109–133, 1991.

[16] S. L. Ma. A survey of partial difference sets. Designs,
Codes and Cryptography, 4:221–261, 1994.

[17] The LinBox Team. Linbox, a C++ library for exact
linear algebra. http://www.linalg.org/.

[18] W. Turner. Preconditioners for singular black box
matrices. In Proc. of ISSAC’05, pages 332–339, New
York, NY, USA, 2005. ACM Press.

[19] W. Turner. A block wiedemann rank algorithm. In
Proc. of ISSAC’06, pages 332–339, New York, NY,
USA, 2006. ACM Press.

[20] G. Weng, W. Qiu, Z. Wang, and Q. Xiang.
Pseudo-paley graphs and skew Hadamard difference
sets from commutative semifields, 2006. Preprint.

[21] D. Wiedemann. Solving sparse linear equations over
finite fields. IEEE Trans. Inform. Theory, 32:54 – 62,
1986.

[22] Q. Xiang. Recent progress in algebraic design theory.
Finite Fields and Their Applications, 11:622–653,
2005.

8

