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Abstract. Computing a decomposition of a polynomial f(x) as a functional compo-
sition g(h(x)) of polynomials g(x) and h(x), is an important and well-studied prob-
lem, both for exact and approximate inputs. In this paper, we re-examine the origi-
nal (exponential-time) algorithm of Barton and Zippel for this task, which looks for
special factors of an associated separated bivariate polynomial. We demonstrate algo-
rithms using this approach which are reasonably fast (i.e., run in a polynomial number
of operations) for exact computation, and provide an effective new approach for the
decomposition of approximate polynomials. For approximate polynomials we exhibit
rigorous lower bounds on the distance to the nearest decomposable polynomial, as well
as robust numerical algorithms.

1. Introduction
Given a polynomial f ∈ K[x] of degree n over a field K, the problem of polynomial
decomposition asks if there exist polynomials g, h ∈ K[x] such that f(x) = g(h(x)) with
1 < deg g,deg h < n. This problem has been studied for exact polynomials and rational
functions by many authors, including Alonso, Gutiérrez, and Recio (1995), Gutiérrez,
Recio, and de Velasco (1988), Kozen and Landau (1989), von zur Gathen (1990), and
Zippel (1991).

In Corless, Giesbrecht, Jeffrey, and Watt (1999), the problem of the functional de-
composition of approximate polynomials is examined. That is, for a given polynomial
f ∈ C[x], polynomials g, h ∈ C[x] are sought such that there exists a “small” fM with
f(x) + fM(x) = g(h(x)). Here “small” is measured by the coefficient 2-norm: for

u =
∑

0≤i≤m

uix
i ∈ C[x], the coefficient 2-norm is defined by ‖u‖2 =

∑
0≤i≤m

uiui,

where ui is the complex conjugate of ui.
In Section 1 of this paper we reconsider the original algorithm of Barton and Zip-

pel (1976) for decomposing a polynomial f ∈ C[x]. Their algorithm is based upon the
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fact that, for any right composition factor h of f , h(x) − h(y) divides f(x) − f(y). We
show that, except for a particular easily handled class of polynomials, their algorithm in
fact runs in polynomial time. In Section 2 we exhibit a reduction from the problem of
decomposition to that of (structured) bivariate factoring to look at approximate polyno-
mial decomposition. We demonstrate algorithms to provide rigorous lower bounds on the
distance to an indecomposable polynomials (using the techniques of Kaltofen and May
(2003)). In Section 3, we show how to use recent approximate bivariate factoring algo-
rithms for polynomials to compute approximate decompositions of polynomials. Finally,
in Section 4, we perform an empirical analysis on our new algorithm as compared to the
techniques of Corless et al. (1999).

2. Barton and Zippel’s algorithm revisited
Given a polynomial f ∈ K[x], over a field K, we first consider the problem of determining
if f can be functionally decomposed in K[x], that is, determining if there exist g, h ∈ K[x],
of degrees r, s ≥ 2 respectively (with n = r · s), such that f(x) = g(h(x)) = (g ◦ h)(x).
The polynomial h is called a right composition factor of f . If f does decompose, we
compute a decomposition.

The first known algorithm to compute the functional decomposition of a polynomial
was given in Barton and Zippel (1976), and relied upon the following theorem of Fried
and MacRae:

Fact 2.1 (Fried and MacRae, 1969). Let x, y be independent indeterminates over a field
K and f, h ∈ K[x]. Then h(x)− h(y) divides Φf = (f(x)− f(y))/(x− y) if and only if
f(x) = g(h(x)) for some g ∈ K[x].

Polynomials of the form Φf are called separated polynomials, and for any polyno-
mial h ∈ K[x], we write Φh for (h(x) − h(y))/(x − y). The above fact leads directly to
the decomposition algorithm from Barton and Zippel (1976, 1985):

Algorithm 2.2.
INPUT: A polynomial f ∈ K[x].
OUTPUT: g, h ∈ K such that f = g ◦ h, or f is indecomposable.

1. Form Φf = (f(x)− f(y))/(x− y);
2. Factor Φf completely over C[x, y]; if Φf is irreducible, f is indecomposable;
3. Examine all factors of Φf , looking for factors of the form Φh = ((h(x)−h(y))/(x−

y) for some h ∈ K[x].
4. If no factors of the form Φh exist then f is indecomposable, otherwise, we have

found a factor h from which we can compute g;

Note that in Step 4, computing g from a given h is simply a matter of solving the
system of equations

f −
r∑

i=0

gi hi = 0, (2.1)
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which are linear in g0, g1, . . . , gr ∈ K, where g =
∑

0≤i≤r gix
i, and r = deg g =

n/ deg h.
The running times of Steps 1, 2, and 4 of Algorithm 2.2 are clearly polynomial

in the degree of f . However, the possibility of having to check what could be exponen-
tially many combinations of factors of Φf in Step 3 prevents the algorithm from having a
running time which is polynomial in the degree.

We can avoid this exponential-time step, at least for tame polynomials as follows.
All f ∈ K[x] are tame when the characteristic of K is zero. When the characteristic char K
of K is p > 0, then a polynomial is tame if p > deg f (a more inclusive definition of tame
polynomials is given in (Turnwald, 1995, Definition 4.1) and von zur Gathen (1990)). Of
course, Barton and Zippel’s (1985) algorithm works over any field, whereas we confine
ourselves to the tame case in the remainder of this paper.

The following theorem of Turnwald (1995) is a refinement of Fried’s (1970) break-
through solution of “Schur’s conjecture”:

Fact 2.3 (Turnwald, 1995). Let f ∈ K[x] be tame and indecomposable of degree n > 1.
Suppose that n is not an odd prime and it is not the case that f(x) = αDn(a, x + b) + β
for α, β, a, b ∈ K, where a = 0 if n = 3. If f(x) is indecomposable, then (f(x) −
f(y))/(x− y) is absolutely irreducible.

The notation Dn(a, x) refers to a Dickson polynomial. The Dickson polynomials
can be defined as the compositions of Chebyshev polynomials, linear polynomials, and
polynomials of the form xm, or more concretely as

Dn(x, a) =
bn/2c∑
i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i

=xn − naxn−2 + n(n− 3)/2 · a2xn−4 + · · ·

The implications of Fact 2.3 for decomposition are that if f is not of prime degree
and Φf factors in K[x, y] then f decomposes. Also, if h is an indecomposable compo-
sition factor of f then Φh is irreducible in K[x, y] unless h is a Dickson polynomial.
Thus, searching combinations of factors of Φf is not necessary unless f has only Dickson
polynomials as right composition factors. We show that this latter case is not difficult to
handle, as it turns out that we can detect if a polynomial f has Dickson polynomials as
right composition factors simply by examining the three highest-order coefficients of f .

Lemma 2.4. Suppose f ∈ K[x] is monic and has a right composition factor of prime
degree q ≥ 3 which is a Dickson polynomial Dq(a, x + b). Then f has the form:

f = xn + nb xn−1 +
(

n(n− 1)
2

b2 − n a

)
xn−2 + · · ·

Proof. If f ∈ K[x] is monic and f = g ◦Dq(a, x + b) then g is monic as well (since Dq

is monic). If q ≥ 3 is prime, then

Dq(a, x + b) = xq + q b xq−1 +
(

q(q − 1)
2

b2 − q a

)
xq−2 + · · · ,
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so

g(Dq(a, x + b)) =
(

xq + q b xq−1 +
(

q(q − 1)
2

b2 − q a

)
xq−2 + · · ·

)k

+ · · ·

= xq k + k (q b xq−1) (xq)k−1 +
k(k − 1)

2
(q b xq−1)2 (xq)k−2

+ k

(
q(q − 1)

2
b2 − q a

)
xq−2 (xq)k−1 + · · ·

= xn + nb xn−1 +
(

n(n− 1)
2

b2 − n a

)
xn−2 + · · ·

�

This yields the following improved version of Barton and Zippel’s algorithm.

Algorithm 2.5.
INPUT: A tame polynomial f = xn + fn−1 xn−1 + fn−2 xn−2 + . . . ∈ K[x].
OUTPUT: g, h ∈ K such that f = g ◦ h, or a message that f is indecomposable.

1. Form Φf = (f(x)− f(y))/(x− y);
2. Factor Φf completely in K[x, y]; if Φf is irreducible, f is indecomposable;
3. Attempt to find an irreducible factor of Φf of the form Φh for some h ∈ K[x];
4. If such an h was found in Step 3, compute g from the system (2.1) so that f(x) =

g(h(x));
5. If no such h was found in Step 3, for each prime number q which divides n = deg f ,

determine if h(x) = Dq(a, x + b) is a right composition factor of f , where

b = fn−1/n, a =
1
n

(
n(n− 1)

2
(fn−1/n)2 − fn−2

)
;

This can be done by attempting to compute a left composition factor g by solving
the system (2.1), and testing that f(x) = g(h(x)).

Algorithm 2.5 works for similar reasons to Barton & Zippel’s, except now we know
that the Φh corresponding to a non-Dickson factor must be irreducible by Fact 2.3 (and
Dickson factors are dealt with in Step 5). It clearly requires only a polynomial number of
operations since the factor combination of Algorithm 2.2 has been eliminated and Step 5
involves trying fewer than n possibilities for q.

While Algorithm 2.5 is interesting as a theoretical and historical artifact, in that a
slight modification of the first algorithm of Barton and Zippel in fact runs in polynomial-
time, it is really not competitive for exact decomposition of polynomials. A faster poly-
nomial time algorithm from Kozen and Landau (1989), and a nearly linear time algorithm
in von zur Gathen (1990), have been known for over 15 years. However, Algorithm 2.5
lends itself well to approximate decomposition, as we shall see in the next section.
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3. Approximate Decomposability Testing
The relationship between decomposition and bivariate factorization presented in the pre-
vious section make it straightforward to transform decomposition into a linear problem.
This provides a useful approach to approximate decomposition using recent approximate
bivariate decomposition and irreducibility testing algorithms.

For a given f =
∑n

i=0 fi xi ∈ R[x] (with n not prime), we know f decomposes if
and only if

Φf =
f(x)− f(y)

x− y
=

n∑
i=1

fi

i−1∑
j=0

xi−j−1yj

 (3.1)

factors in C[x, y]. Kaltofen and May (2003) provide a method for computing a lower
bound on how far an irreducible bivariate polynomial is from a reducible polynomial.
Their method employs (and extends) the linearization of Ruppert (1999). Stated in a
somewhat non-standard way, Ruppert shows that for any n, m positive integers, there
exist matrices Rij ∈ Z4mn×2mn+n−1 for 0 ≤ i < m and 0 ≤ j < n, with the following
properties. Let

w =
∑

0≤i≤n

∑
0≤j≤m

wijx
iyj ∈ R[x, y].

Then

Rup(w) =
∑

0≤i≤n

∑
0≤j≤m

wijRij ∈ R4mn×2mn+n−1 (3.2)

has full rank if and only if w is absolutely irreducible. Kaltofen and May (2003) show that
if w is irreducible and w̃ does not have degree greater than w in either variable, then

‖w − w̃‖2 <
σ(Rup(w))

max{m,n}
√

2mn− n

implies that w̃ is irreducible, where σ(Rup(w)) is the smallest singular value of Rup(w).
They also show that ‖Rij‖ < max{n, m}. Note that Kaltofen and May (2003)’s result is
stronger than an immediate application of Ruppert’s theorem as it allows the degree of w̃
to be smaller than that of w.

Returning to the decomposition problem, Φf has factors if and only if the matrix
Rup(Φf ) does not have full rank. Thus, we can bound the distance of an indecomposable
f to a decomposable polynomial by bounding the distance of Rup(Φf ) to a matrix of
lower rank, as done in Kaltofen and May (2003) through the singular value decomposi-
tion.

Theorem 3.1. If f ∈ R[x] is an indecomposable polynomial, and f̃ ∈ R[x] is a decom-
posable polynomial with f̃(0) = f(0) and deg f̃ ≤ deg f then

‖f − f̃‖2 ≥
σ(Rup(Φf ))
n2
√

2n2 − n
.
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Proof. Since Φf is irreducible and Φf̃ is not, and degx Φf = degy Φf = d we have, from
Theorem 1 of Kaltofen and May (2003),

‖Φf − Φf̃‖2 ≥
σ(Rup(Φf ))
n
√

2n2 − n
.

Looking at (3.1) it is easy to see that:

‖Φf − Φf̃‖2 = ‖Φf−f̃‖2 ≤ n ‖(f − f̃)− (f − f̃ mod x)‖2 ≤ n ‖f − f̃‖2.

Thus

‖f − f̃‖2 ≥
σ(Rup(Φf ))
n2
√

2n2 − n
.

�

We now have the ability to compute a radius of indecomposability about any inde-
composable polynomial and, as with irreducibility, this gives a simple algorithm to test
the indecomposability of an approximate polynomial when a tolerance on the coefficients
is specified.

Note that, as with factorization, if we omit the degree bound, it is possible to find a
decomposable polynomial which is arbitrarily close to f , namely f ◦ (εx2 + x). It may
be that the degree bound in Theorem 3.1) is too tight; approximate decompositions up
to degree 2 deg f − 1 may be meaningful. However, we will consider only approximate
decompositions of the same degree.

Example 3.2. We begin with a decomposable monic polynomial with a large noise term
added to it (making it indecomposable):

f = (x2 − x) ◦ (x2 + 3 x) + .02 x3 = x4 + 6.02 x3 + 8 x2 − 3 x.

Then we compute

Φf = x3 + x2y + xy2 + y3 + 6.02 (x2 + xy + y2) + 8.0 (x + y)− 3.0,

and the matrix Rup(Φf ) which is 27×20. Computing the largest coefficient of ‖Rup(Φ)‖2

(where Φ is a polynomial with symbolic coefficients of the same form as Φf ) we get 200
(compared to the bound d2 (2d2−d) = 7168 from Theorem 3.1). Computing the smallest
singular value of Rup(Φf ), we find a lower bound on the distance from f to the nearest
polynomial which decomposes (in the 2-norm) is 4.32207× 10−5. Thus, any polynomial
with constant coefficient 0 which is closer than the bound must also be indecomposable.

If we want to compute a better bound to separate f from decomposable monic poly-
nomials, we can consider the largest coefficient of ‖Rup(Φ)‖2 after substituting 0 for the
symbol corresponding to coefficient of the highest total degree terms. In that case we get
100 which leads to a slightly larger bound of 5.10581× 10−5. �
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4. Approximate Decomposition
In this section we describe how to use the established connection between the decom-
posability of f and the irreducibility of Φf as a basis for decomposition algorithms. For
many polynomials it is still probably best to use one of the algorithms described in Cor-
less, Giesbrecht, Jeffrey, and Watt (1999). However, if those algorithms perform badly,
we would like an alternate approach, which in some sense has a firmer theoretical un-
derpinning. Ultimately neither of these algorithms provides a guaranteed solution in all
cases.

Approximate decomposition using approximate bivariate factorization
We can build an algorithm to compute approximate decompositions of polynomials using
the reduction to approximate bivariate polynomial factorization. The straightforward ap-
plication of the approximate factoring algorithm described in Gao, Kaltofen, May, Yang,
and Zhi (2004) to Φf creates an approximate version of Algorithm 2.5, which we explore
now.

We first note that an algorithm which finds the nearest separated reducible polyno-
mial Φf̃ ∈ R[x, y], of the form (f̃(x)− f̃(y))/(x−y), for some f̃ ∈ R[x], would actually
find the nearest decomposable polynomial f̃ to f . However, this is the problem of looking
for nearby reducible structured (i.e., separated) polynomials, which we will address in
the next subsection. In this subsection we work to reconstruct structured factors from the
factorization of a nearby unstructured polynomial.

Algorithm 4.1.
INPUT: An indecomposable polynomial f ∈ R[x] of degree n.
OUTPUT: g, h ∈ R[x] such that f ≈ g ◦ h.

1. Form Φf = (f(x)− f(y))/(x− y);
2. Compute an approximate factorization of Φf over C[x, y]; discard all factors p such

that tdeg p + 1 does not divide deg f – if no factors remain, skip to Step 5;
3. For each remaining factor compute its distance to a factor of the form Φh;

4.1 For all terms of the same total degree, compute the standard deviation of their
coefficients;

4.2 Find the maximum of the deviations over all sets of terms, and set this as the
distance to a separated factor (see (3.1));

5. Choose the factor Υ of Φ with the smallest distance to a separated polynomial, and
form h =

∑n
i=1 fix

i where fi is the average of the coefficients of the terms of Υ
with total degree i − 1; use h to compute a least squares solution g to the system
(2.1), so that ‖f − g ◦ h‖ is minimized;

6. Find a and b as in Algorithm 2.5 Step 5, and compute a corresponding g by least
squares for each possible choice of q;

7. Improve each approximate decomposition with Gauss-Newton iteration as in Cor-
less et al. (1999);

8. Return the g, h pair with the smallest value of ‖f − g ◦ h‖2;



8 Giesbrecht and May

In practice, if f is a slightly perturbed decomposable polynomial then the approxi-
mate factors of Φf tend to contain polynomials very close to the form Φh. However, there
is no guarantee on how close the approximate factors will come to having this form.

If one finds that an approximate factorization of Φf does not have any factors of
the correct degree, it is possible to modify the approximate GCD algorithm used in the
approximate factorization to produce factors of a predetermined degree (by choosing what
the numerical rank of the Sylvester matrix will be, rather than trying to compute what it
should be). In this way one can always find an approximate decomposition without a
Dickson polynomial as a right decomposition factor though the backward error may be
quite bad in some cases.

In Step 6 we suggest a simple least squares heuristic to compute the nearest poly-
nomial with a right Dickson factor. In fact, since the Dickson polynomials are defined by
only two parameters (a, b ∈ R), it is easy to show that the absolutely nearest polynomial
to f with a Dickson right factor can be found by minimizing a bivariate rational function
of degree O((deg f)4). This can be solved in polynomial time in deg f and log ‖f‖ by
exact methods (see, e.g., Renegar 1992). While we make no claim that this method is at
all practical, it is interesting to note that it exists.

In the following example, Step 6 of the algorithm is omitted.

Example 4.2. Beginning with the same polynomial as in example 3.2

f = (x2 − x) ◦ (x2 + 3 x) + .02 x3,

we feed Φf into an approximate factorization algorithm and get the following factoriza-
tion:

Φf ≈ (4.9047250 + 1.6439030 x + 1.6439030 y)

· (−0.61172559 + 1.836216 x + 1.836216 y + 0.6115972 x2

− 0.003454426 xy + 0.6115972 y2)

The first factor is closer to the form Φh than the second, and the best fit h is

h(x) = 3.00099703989216 x + x2,

which we made monic to give a neater decomposition. Using least squares to solve for the
best corresponding monic g, we get

g = −1.00029893310899 x + x2.

Composing, we obtain

g(h(x)) = −3.00189413726736 x+8.00568430033252 x2+6.00199407978432 x3+x4,

which has distance 0.0189766 from the original f . �

As with factoring, if the smallest singular value of Rup(Φf ) is quite large then it
may be trivial to find a closer decomposition than the one produced by the algorithm. Most
trivial approximate decompositions have relative backward error of about 1. For example,
setting the coefficients of all the odd power terms to 0 will given a polynomial which has
a right composition factor of x2. For a randomly generated polynomial, not close to one
that decomposes, this may be the best we can do.
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Approximate decomposition by searching the Ruppert structure manifold
Because we are searching for factors of separated polynomials, we can conduct a more
focused search on the Ruppert structure manifold than is possible for Gao et al. (2004).
We saw in (3.2) that the (absolute) irreducibility of

Φf =
∑

0≤i,j≤n

φijx
iyj ∈ R[x, y], for f =

∑
1≤i≤n

fix
i ∈ R[x]

is indicated by the rank deficiency of

Rf =
∑

0≤i,j≤n

φijRij ,

for some Rij ∈ Z4n2×2n2+n−1 dependent only upon degx Φf and degy Φf . Since

Φf =
∑

1≤i≤n

fi

 ∑
0≤j≤i

xjyi−j

 ,

Φf is absolutely irreducible if and only if

Rf =
∑

1≤i≤n

fi

 ∑
0≤j≤i

Rj,i−j


is rank deficient. Thus, finding the nearest decomposable polynomial f̃ =

∑
1≤i≤n f̃ix

i

to f corresponds exactly to finding the nearest vector (f̃1, . . . , f̃n) to (f1, . . . , fn) such
that ∑

0≤i≤n

f̃iTi, where Ti =
∑

0≤j≤i

Rj,i−j for 1 ≤ i ≤ n,

is rank deficient. This problem is an instance of the Structured Total Least Squares (STLS)
problem, for which there are a number of established (albeit heuristic) algorithms. See,
e.g., De Moor (1994), Lemmerling (1999). We examine a number of approximate polyno-
mial problems and their formulations as STLS problems, as well as a particular heuristic
(the Riemannian SVD), in Botting et al. (2005). We summarize some of the results for the
approximate decomposition problem in the next section.

5. Numerical Experiments
In this section we compare our algorithm empirically with the algorithms presented in
Corless, Giesbrecht, Jeffrey, and Watt (1999). They present two algorithms, both of which
are numerical iterations starting from a potential right composition factor obtained by
running the exact decomposition algorithm of Kozen and Landau (1989). This will not
generally be a right composition factor, but they demonstrate it is often a good initial
approximation. In particular, the starting point closely matches the high order coefficients
of f , while ignoring the lower order coefficients until the iteration, which may well be
wise if these high order coefficients are dominant, as is often the case. Their first algorithm
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is a fast (linear-time), linearly convergent method, while the second is a standard, and
relatively expensive but quadratically convergent, Newton iteration.

In our tests we consider only decompositions of monic polynomials into monic poly-
nomials since we want in some sense to have representative degrees for the composition
factors. We want to avoid approximate decompositions in which the leading coefficients
of the composition factors becomes very small when compared to the other coefficients,
i.e., in which the numerical degree is not representative of the actual degree. We note
that in fact the algorithm of Corless et al. (1999) will often produce such decompositions
unless explicitly constrained not to.

We conduct tests on the method for estimating a radius of indecomposability, as de-
scribed in Section 3. The lower bounds were determined for monic polynomials generated
by choosing monic polynomials g, h ∈ R[x] with rational coefficients selected randomly
and uniformly between -5 and 5, with 6 decimal digits (except the constant coefficient
which is always 0), then composing them to form a monic f ∈ R[x]. We then perturb
each of the coefficients of f with uniformly distributed random noise of norm specified
in the column labeled “‖fM‖” in the the table below (keeping the perturbed f monic with
constant coefficient 0).

All results in the table are the median value of 100 runs, and are scaled by dividing
through by the norm of the perturbed f . The sixth column is the median of the distance
to the smallest polynomial that decomposes (computed by solving the optimization using
Groebner basis methods and the SALSA package for Maple http://fgbrs.lip6.
fr/Software/). It is interesting to note that the smallest singular value is usually quite
close to that distance. This suggests that perhaps our lower bound is too small, and that is
may be possible to prove a better lower bound, perhaps 1√

d
σ(Rup(Φf )) (or perhaps even

a constant multiple of the smallest singular value).

deg g deg h ‖fM‖ σ(Rup(Φf )) Lwr Bnd Abs Min
2 2 10−3 2.4028e-4 5.2687e-6 1.7212e-4
2 2 10−1 1.7646e-2 3.8693e-4 1.3613e-2
3 2 10−5 1.0934e-6 4.8793e-9 1.1643e-6
3 2 10−3 9.3678e-5 4.1802e-7 1.1935e-4
3 2 10−1 7.8925e-3 3.5219e-5 1.1875e-2
2 3 10−5 2.7156e-6 1.2118e-8 1.7172e-6
2 3 10−1 2.7610e-2 1.2321e-4 1.9851e-2

To compare the approximate factorization algorithms, we generated random monic
g and h with integer coefficients in [−10..10] then composed to form f =

∑
fix

i which
we perturbed with fM =

∑
δix

i where δi/(fi ε) ∈ [−10, 10] and the δi have 5 decimal
digits. This choice for fM is made to compensate for the fact that some of the coefficients
of composed polynomials are significantly larger than others.

In the following table, “CGJW” indicates the iterative algorithm from Corless et al.
(1999), “AppFac” indicates the approximate factorization based decomposition algorithm,
and “RiSVD” indicates the Riemannian SVD based method. “Error” is the median relative
error of the decomposition found over 30 or 60 runs, “Best” is the number of times this
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method was better than both the others (the difference between the sums of the columns
and 100% were two or three way ties). In some tests, indicated by a ‘*’ in the “Best”
column of “AppFac”, the best decompositions produced by the approximate factorization
method could have slightly larger degree than f (the degree was not bigger in all case
however). For small examples “Abs” is the number of times this method found the abso-
lute minimum, for larger examples the value is in italics and is the number of times the
result of this method was the best or tied for the best.

CGJW AppFac RiSVD
deg g deg h ε Error Best Abs Error Best Abs Error Best Abs

2 2 10−4 1.53e-5 0% 100% 1.59e-5 0% 98% 1.53e-5 0% 98%
2 3 10−4 1.15e-4 3% 100% 9.70e-3 0% 45% 1.26e-4 0% 97%
3 2 10−4 1.90e-5 0% 96% 1.90e-5 0% 100% 1.90e-5 0% 100%
4 2 10−4 1.85e-4 5% 97% 6.21e-2 2% 28% 2.20e-4 0% 88%
2 4 10−4 2.99e-5 0% 98% 4.17e-5 0% 83% 2.99e-5 2% 98%
3 3 10−4 1.67e-4 0% 100% 3.08e-4 0% 60% 1.67e-4 0% 100%
2 5 10−4 4.18e-4 3% 87% 1.31e-1 10% 30% 4.18e-1 3% 87%
2 2 10−1 8.74e-3 2% 95% 9.18e-3 2% 83% 9.52e-3 3% 87%
2 3 10−1 5.24e-2 5% 70% 5.37e-2 2% 43% 5.08e-2 12% 80%
3 2 10−1 1.54e-2 0% 85% 1.47e-2 8% 95% 1.54e-2 2% 87%
2 4 10−1 1.21e-1 5% 50% 1.61e-1 8%∗ 25% 1.21e-1 7% 53%
4 2 10−1 2.50e-2 2% 43% 2.28e-2 18%∗ 30% 2.50e-2 3% 40%
3 3 10−1 1.25e-1 0% 40% 6.35e-2 60%∗ 97% 1.25e-1 0% 40%
2 5 10−1 2.04e-1 0% 87% 2.13e-1 13%∗ 60% 2.04e-1 0% 87%
5 2 10−1 2.99e-2 0% 90% 2.99e-2 10%∗ 83% 2.99e-2 0% 90%
2 6 10−1 2.40e-1 0% 80% 2.28e-1 17%∗ 83% 2.40e-1 3% 83%
3 4 10−1 1.87e-1 0% 63% 1.34e-1 37%∗ 93% 1.87e-1 0% 63%
4 3 10−1 8.20e-2 0% 83% 7.69e-2 10%∗ 80% 7.54e-2 7% 90%
6 2 10−1 2.42e-2 0% 93% 4.63e-2 7% 63% 2.42e-2 0% 93%
2 2 1 2.40e-2 0% 95% 2.40e-2 0% 93% 2.40e-2 0% 95%
2 3 1 1.83e-1 2% 75% 1.74e-1 7%∗ 70% 1.79e-1 7% 75%
3 2 1 1.62e-1 0% 77% 1.51e-1 7%∗ 77% 1.44e-1 8% 87%
2 4 1 3.78e-1 2% 50% 3.45e-1 30%∗ 28% 3.70e-1 8% 55%
4 2 1 2.87e-1 8% 58% 2.63e-1 22%∗ 40% 2.89e-1 5% 60%
3 3 1 4.98e-1 0% 40% 3.08e-1 43%∗ 93% 4.69e-1 7% 57%
2 5 1 4.02e-1 7% 53% 3.58e-1 33%∗ 70% 4.09e-1 13% 57%
5 2 1 3.80e-1 10% 60% 3.43e-1 20%∗ 80% 3.80e-1 0% 70%
2 6 1 4.53e-1 7% 60% 4.44e-1 23%∗ 73% 4.49e-1 17% 70%
3 4 1 4.54e-1 17% 57% 4.34e-1 27%∗ 53% 4.43e-1 17% 57%
4 3 1 4.13e-1 3% 60% 3.54e-1 33%∗ 83% 3.98e-1 7% 63%

On average, CGJW is about 10 times faster than RiSVD which is about ten times
faster than AppFac. All three algorithms find the same answer in most of the examples.
Occasionally, when ε is relatively small, CGJW produces a very bad decomposition, while
the AppFac or RiSVD still produce good results. On the other hand, when ε is large, the
approximate factorization may not find a factor of the correct degree leading to a worse
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result than the other two algorithms. The approximate factorization based decomposition
algorithm is also significantly slower than the other two. This suggests that in practice one
should probably used the Gauss-Newton iteration algorithm from Corless et al. (1999),
and revert first to RiSVD and failing that to AppFac if the backwards error of the result is
not about the same order of magnitude as σ(Rup(Φf )).
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