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Abstract. Many fundamental problems for approximate polynomials can be reformu-
lated as structured linear approximation problems. Problems such as finding polyno-
mials with a GCD which are nearest to given relatively prime polynomials, finding
the nearest Ore polynomials with a non-trivial GCRD, finding the nearest polynomial
which functionally decomposes, and finding the nearest multivariate polynomial which
factors or divides another polynomial, can all be cast as so-called Structured Total Least
Squares (STLS) problems. More generally, given a basis of “structure” matrices for a
vector spaceV of structured matrices, and a matrixA in V, the STLS problem seeks to
find the “nearest”B to A in V such thatB is singular.

We present an implementation of one heuristic (the Riemannian SVD) to solve
the STLS problem, and demonstrate its effectiveness on the problems discussed above.
For the approximate GCD problem, we compare the solutions this approach finds to
solutions found by other methods.

Introduction

In this paper we consider the application of the Riemannian SVD algorithm to the struc-
tured linear algebra problems associated with some fundamental problems for approxi-
mate polynomials.

We begin in Section 1 by presenting the “linearization” of these approximate poly-
nomial problems. That is, we encode the input as a structured matrix, and show that a
solution corresponds to finding a nearby singular matrix with the same structure. Near-
ness will be measured in the coefficient 2-norm of the input polynomials, and our result-
ing matrix formulations will optimize exactly this norm. We consider the problems of
univariate and multivariate polynomial GCD, specific degree GCD and polynomial divi-
sion, multivariate polynomial factorization, approximate functional decomposition, and
Ore polynomial GCRD. Only the last of these linearizations is new, but the consistent
formulation proves useful in what follows.
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In Section 2 we introduce the Riemannian SVD algorithm, as developed in De Moor
(1993, 1994). This is an effective and very general heuristic tool for finding nearby singu-
lar structured matrices.

Finally in Section 3, we present preliminary data suggesting the effectiveness of
the Riemannian SVD algorithm on approximate polynomial problems. A more complete
analysis will be provided in the full version of this paper.

1. Linearization of Polynomial Algebra Problems

In this section we formulate a number of fundamental problems with (approximate and
exact) polynomials as structured linear algebra problems.

Univariate and Multivariate Polynomial GCD

The (exact) polynomial GCD problem can be stated as follows: givenf, g ∈ C[x1, . . . , xn],
computed ∈ C[x1, . . . , xn] of maximal degree such thatd divides bothf andg. The con-
version of the univariate GCD to a linear problem has been known since the 19th century.
The approach, which works for the multivariate case as well, is to reformulate the problem
as follows: givenf andg, find u andv of so that

u f + v g = 0 with deg u < deg g and deg v < deg f. (1)

For multivariate polynomials several notions of degree will work in(1); the most com-
monly used notion is probably total degree.

Since polynomial multiplication is a linear map, for a fixed polynomial basis, we
can encode (1) as a matrix:

Syl(f, g) =
[
C [deg g−1](f) C [deg f−1](g)

]
whereC [d](f) is the matrix representing the multiplication off by a polynomial of degree
d. In the univariate case, the matrixSyl(f, g) is, of course, the Sylvester matrix off and
g. This reduces the GCD problem to computing a non-trivial null-vector of the matrix
Syl(f, g).

The approximate version of univariate GCD has been considered in Karmarkar and
Lakshman Y. N. (1998); Schönhage (1985); Corless et al. (1995); Emiris et al. (1997);
Ruppert (1999); Corless et al. (2004); Zhi (2003); Zeng (2004); Li and Zeng (2005);
Beckermann and Labahn (1998b,a) and the multivariate GCD in Ochi et al. (1991); Sasaki
and Sasaki (1997); Zhi and Noda (2000); Zhi et al. (2001); Zeng and Dayton (2004). The
univariate problem is, in some sense, solved by Karmarkar and Lakshman Y. N. (1998)
(or at least shown to be computable in polynomial time), but there has since been much
work done in making approximate GCD computation more practical. The problem of
finding, in polynomial time, a guaranteed nearest pair of multivariate polynomials with a
non-trivial GCD is still open, though some of the above listed algorithms appear effective
and efficient in practice.
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Specified Degree GCD and Polynomial Division

When considering the GCD problem approximately, one often wishes to find an approxi-
mate GCD of a certain prescribed degree. The corresponding exact problem is represented
by (1) with modified bounds onu andv:

u f + v g = 0 with deg u ≤ deg g − k and deg v ≤ deg f − k. (2)

Then (2) has a solution(u, v) exactly whenf andg have a GCD of degree at leastk.
Notice that this encodes the problem of division whenk = min{deg f,deg g}. One can
encode (2) as a matrix which we will denoteSylk(f, g). Now again, computing a GCD of
degree at leastk of f andg reduces to computing a null-vector ofSylk(f, g).

Unlike the standard GCD problem, there is no known polynomial-time algorithm to
find the closest pair of polynomials with a GCD of a specified degree, even for univariate
polynomials.

We should note that an alternative notion of approximate GCD requires anε >
0 as input and asks for the polynomials with GCD of largest degree that lie within a
perturbation of less thanε. We make no direct statement about this problem, other than to
note that a solution to the minization problem we will provide a solution to this problem,
though the presribed degree GCD problem may well be more difficult.

Multivariate Polynomial Factorization

The exact absolute factorization problem is: given a polynomialf ∈ C[x1, . . . , xn], n >
1, find non-constant polynomialsf1, . . . , fr ∈ C[x1, . . . , xn] so thatf =

∏r
i=1 fi with r

as large as possible. Forn = 2, Ruppert (1999) shows testing ifr > 1 is a linear problem
and Gao (2003) shows that computingfi is a linear problem. Both results are generalized
for all n > 1 in May (2005). To convert this to a linear problem, consider the partial
differential equations

∂

∂xi

g

f
=

∂

∂x1

hi

f
, i = 1, . . . , n− 1, (3)

with various constraints on theg andhi. For testing irreducibility the following constraints
are used: ifdegxi

f = ei for i = 1 . . . n,

degx1
(g) ≤ e1 − 2, degxi

(g) ≤ ei i = 2 . . . n− 1,

degxi
(hj) ≤

{
ei+1 if i 6= j
ei+1 − 1 if i = j

j = 1, . . . , n− 1.
.

Since (3) is linear in the coefficients off , for a fixed polynomial basis, we can write a
matrix of the equations and denote itRup(f). The polynomialf has non-trivial factors
exactly ifRup(f) has a non-trivial nullspace. In fact, the factors can be recovered from the
nullspace of a very similar matrix. The matrixRup(f) can be improved for polynomials
without dense support (Gao and Rodrigues, 2003; May, 2005).

The approximate factorization problem has been studied in Sasaki et al. (1991,
1992); Galligo and Watt (1997); Huang et al. (2000); Sasaki (2001); Galligo and Rup-
precht (2001); Corless et al. (2001, 2002); Nagasaka (2002); Kaltofen and May (2003);
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Sommese et al. (2004); Gao et al. (2004). To date, computing, in polynomial time, the
nearest polynomial which factors is still an open problem.

Univariate Functional Decomposition

Given a univariate polynomialf ∈ C[x], we sayf is decomposable if we can compute
g, h ∈ C[x], deg h > 1 so thatf = g ◦ h. For a fixedh, computingg is clearly a linear
problem. Due to a theorem of Fried (1970), we have that, except for a small class of
special cases,f decomposes exactly whenΦ(f) = (f(x) − f(y))/(x − y) factors over
C[x, y]. Thus,f decomposes exactly whenRup(Φ(f)) has a non-trivial nullspace and
the decompostion factors off can be recovered from the factors ofΦ(f) as in Barton and
Zippel (1985).

Two algorithms for computing approximate decompositions is given in Corless et al.
(1999) and another approach is presented in Giesbrecht and May (2005). While both of
these approaches seem to perform well, neither is guaranteed to find the closest polyno-
mial which decomposes. No polynomial-time algorithm to compute the nearest polyno-
mial which decomposes is known.

Ore Polynomial GCRD

Informally, an Ore polynomial is a polynomial in which the coefficients do not com-
mute with the indeterminant in certain specific ways. Ore polynomials provide a natural
generalization of both differential and difference operators, and are used extensively in
computer algebra systems for the solution of such equations. We will consider univariate
Ore polynomials with coefficients inC(x) and an indeterminateD. For simplicity, the
indeterminantD can be considered to be either a differential operatorD(xn) = n xn−1

or a shift operatorD(x) = x − 1 which have commutation rulesD x = 1 + xD and
D x = (x + 1)D respectively. Since there is a Euclidean algorithm for left and right
division over Ore polynomial rings, one can define the notions of greatest common right
divisor and least common left multiple. As with the commutative case,f and g have
a common right divisord if they have a common left multiple, that isu f = v g with
degD u < degD g anddegD v < degD f (Bronstein and Petkovsěk, 1996).

We will consider the simpler case of Ore polynomials with coefficients inC[x], and
note that we can reduce to this case by multiplying to clear denominators. Then we can
set up the equations

u f − v g = 0, (4)

where

u =
degD g−1∑

i=0

di
∑

j=0..N

ui,j xj andv =
degD f−1∑

i=0

di
∑

j=0..N

vi,j xj

have symbolic coefficients andN = 2 max{degx f,degx g}(degx f + degx g) is an
upper bound on the possible degree inx of u andv. As with standard polynomials, (right
or left) multiplication by an Ore polynomial overC[x] is a linear operation and thus can
be represented by a matrix with entries inC for a fixed bivariate basis (e.g.xi Dj). Thus,
as with the standard polynomial GCD, (4) leads to a matrix which is full rank exactly if
f andg have no GCRD. Similar results can be found for the GCLD of Ore polynomials
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as well as specified degree GCRDs and GCLDs and hence Ore polynomial left and right
division.

While it is quite natural that differential and difference equations be considered with
approximate or floating point coefficients, we know of no previous work addressing such
questions, at least in a symbolic-numeric framework. A contribution of this work is that
such problems can be linearized, and are hence amenable to the structured linear algebra
methods, and specifically the Riemannian SVD, presented in Section 3 of this paper.

2. Structured Total Least Squares

Thetotal least squares problemis a generalization of the typical linear least squares prob-
lems. Give an input matrixA ∈ Cm×n of full rank, it finds the “smallest”AM ∈ Cm×n

such thatA + AM is of lower rank thanA. The size ofAM is measured in terms of the
matrix 2-norm. Viewed another way, given aA ∈ Cm×n andb ∈ Cm, the problem seeks
AM ∈ Cm×n andbM ∈ Cm such that there exists anx ∈ Cn with (A + AM)x = b + bM,
and such that‖[AM|bM]‖2 is minimal. The total least squares problem can be solved ex-
actly and efficiently using the usual singular value decomposition algorithm; see Golub
and Loan (1995).

TheStructured Total Least Squares(STLS) problem solves a similar problem to the
total least squares problem except that the input matrixA is structured, and we insist that
its perturbationA + AM has the same structure asA. More formally, we define structure
by means of a basisB1, . . . , B` ∈ Cm×n for a vector spaceV of structured matrices.
GivenA ∈ V, the structured total least squares problems seeks ab = (b1, . . . , b`) ∈ R`

with ‖b‖2 minimal, andy ∈ Rn with ‖y‖2 = 1, such that(A +
∑

biBi)y = 0.
There are many algorithms for the STLS problem: the constrained total least squares

method of Abatzoglou and Mendel (1987) and Abatzoglou and Hackman (1991), the Rie-
mannian SVD of De Moor (1993, 1994), and the structured total least norm (STLN) of
Rosen et al. (1996); Van Huffel et al. (1996), are the three primary (and to some extent
equivalent) algorithms for this problem. See the thesis of Lemmerling (1999) for an ex-
tensive survey and detailed analysis. It should be noted that in general this is a non-convex
optimization problem for which none of these algorithms is guaranteed to find a solution.

De Moor (1993), Lemmerling et al. (2002), and Lemmerling (1999) discuss the
Structured Total Least Squares, and present heuristic algorithms. While they do not prove
their algorithms always gets a minimal solution (indeed, they do not), experimental eval-
uation seems suggests considerable robustness.

An interesting point of comparison for the Riemannian SVD approach presented
in this current paper should be the use of the STLN to approximate low-rank Sylvester
matrices by Kaltofen et al. (2005).

Riemannian SVD

In this paper we will consider the application of the Riemannian SVD to the STLS prob-
lem. While not particularly efficient, at least not in the general form we employ it, it will
have the advantage that it attempts to optimize a norm which corresponds directly to the
coefficient 2-norm of the polynomials involved in our problems.
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De Moor (1993), Lemmerling (1999) and Lemmerling et al. (2002) show STLS to
be equivalent to a non-linear Singular Value Decomposition: LetA =

∑
i ci Bi be the

input matrix. The STLS problem is reduced to finding the triplet(u, τ, v) corresponding
to the smallestτ such that

Av = Dvuτ uT Dvu = 1,

AT u = Duvτ vtDuv = 1,

vT v = 1.

HereDu andDv have a quadratic dependence onu, v respectively. Ultimately,y = v and
ĉi = ci − uT Tivτ form a solution to the STLS problem. In order to determine(u, τ, v),
we hold Du, Dv fixed, and perform an inverse iteration to determine updated vectors
u, v. Each iteration is solved by putting the constraints of the RiSVD into a large linear
system, and solving foru, v. Du, Dv are then updated, and another iteration is performed.
The linear system is derived from the full QR decomp. ofA,

A =
[
Q1 Q2

] [
R
0

]
.

We construct the system to be lower-triangular: RT 0 0
QT

2 DvQ1 QT
2 DvQ2 0

QT
1 DvQ1τ QT

1 DvQ2τ −R

z
w
v

 =

Duvτ
0
0


whereu = Q1z + Q2w.

As we have noted, this is not a particularly efficient algorithm as stated. It uses
the basis for the structured matrices, and does not take advantage of its form or do any
normalization. This does have the advantage that it makes for a widely applicable tool.
De Moor (1994) notes that its application may be most effective when the algorithm is
specialized to specific matrix structures.

3. Experiments: GCD

An unoptimized implementation of RiSVD has been written in Maple 9 and discussed
in detail in Botting (2004). In order to use it to compute approximate GCDs we need to
first compute a structure basisB. For a pair of polynomials of fixed degree, it is trivial to
computeB in Maple by first creating a symbolic Sylvester matrix:

M:= LinearAlgebra:-Transpose(LinearAlgebra:-SylvesterMatrix(
add(a[i]*xˆi ,i=0..degree(f,x)),add(b[i]*xˆi,

i=0..degree(g,x)), x));

B:=[seq(subs([a[i]=1, seq(a[j]=0,j=0..degree(f,x)),
seq(b[j]=0,j=0..degree(g,x)) ],M), i=0..degree(f,x)),
seq(subs([b[i]=1, seq(a[j]=0,j=0..degree(f,x)),
seq(b[j]=0,j=0..degree(g,x)) ],M), i=0..degree(g,x))]:
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For the following table, we generated pairs of polynomials with machine size float-
ing point coefficients between -100 and 100, of degree 5 or 4 with an exact GCD of degree
1 or 2 and then added a random “noise” polynomial of equal degree and norm≈ 10−4

to each. On 100 of such pairs, we ran the RiSVD algorithm, the QRGCD (Corless et al.,
2004) algorithm as implemented in maple and an approximate GCD algorithm using SVD
to approximate a solution to the STLS problem (similar to algorithms discussed in Cor-
less et al. (1995) and Zeng (2004)). Using the approximate division algorithm in Maple’s
SNAP as necessary, we computed ad, u andv so thatd u−g ≈ 0 andd v−f ≈ 0. Instead
of measuring the quality of the triplet(d, u, v), we performed an iterative refinement as in
Zeng (2004) to find a triplet so thaterr = ‖d u − g‖2 + ‖d v − f‖2 is locally minimal.
The results of these experiments are presented in the following table:

Method Average CPU time Avg. err # of Failures
QRGCD 0.1s 0.28980× 10−6 3

SVD GCD 0.05s 0.28980× 10−6 1
RiSVD GCD 1.9s 0.17115× 10−6 16

In the last column, a failure is any example in which the algorithm failed to produce
anerr of less than10−4. Only examples where all three algorithms succeeded are counted
towards the averages in the second and third columns.

As we can see, the SVD and QRGCD algorithms are quite a bit faster, but clearly
does not produce optimal results; the RiSVD method offers a slight improvement. The
large number of RiSVD failures are due to some of the approximate GCDs of degree two
having complex roots. The RiSVD implementation always looks for the GCD of degree
one, and wince, the implementation is rational, we cannot possibly converge to the optimal
complex GCD.

In the following table, we used examples as in the previous table, but this time
allowed only GCDs of degree one.

Method Average CPU time Avg. err # of Failures
QRGCD 0.09s 0.178754226× 10−6 4

SVD GCD 0.04s 0.178751501× 10−6 1
RiSVD GCD 2.02s 0.178748409× 10−6 0

In none of the above examples where all three algorithms succeeded did SVD or
QRGCD find a GCD with smallererr than the one found by RiSVD, though we have
found that RiSVD is occasionally beaten by the other two algorithms especially in higher
degree examples.

In practice, RiSVD seems to produce very good numerically singular structured ma-
trices (Botting, 2004). However, it is still necessary to develop robust methods to recover
the answers we desire if they cannot be read directly from the entries of the matrix or its
null-vectors. Given the improvement over QRGCD, we are optimistic that RiSVD will
prove useful for other approximate polynomial problems as well.
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For the final version of this paper we will provide an extensive empirical evalua-
tion of the Riemannian SVD on all the above listed problems, in comparison to other
approaches (which are typically specific to the problem under consideration).
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