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ABSTRACT

This paper describes an automated image restoration al-
gorithm. The technique is based on the Stockwell transform
(ST) and its discrete version, the discrete orthonormal Stock-
well transform (DOST). These mathematical transforms pro-
vide a multiresolution spatial-frequency representation of a
signal or image.

First, we give a brief introduction to the Stockwell trans-
form, and the DOST. Then we describe a restoration method
using the DOST based on the total variation (TV) minimiza-
tion model. The results show that the DOST restoration out-
performs the wavelet restoration by giving a higher Peak Sig-
nal to Noise Ratio (PSNR).

Index Terms— DOST, Stockwell transform, image
restoration, inpainting.

1. INTRODUCTION

Images have been compressed using the wavelets since the
1970s. When the compressed images are transferred over the
wired or wireless medias, the wavelet coefficients are trans-
ferred. Due to the transportation, the routers and many other
reasons, it is possible to get partially lost on the the coeffi-
cients. To restore the partially lost information we need to
use restoration algorithms to recover the images to the level
acceptable to human eyes.

Even though the wavelets have dominated image com-
pression for years, other competitive methods for compres-
sion are being worked on. In Ref. [1] , an compression al-
gorithm was described using the newly invented discrete or-
thonormal Stockwell transform (DOST) [2]. The DOST com-
pression outperformed the wavelet compression in the base
level and using the DOST, new technologies are expected to
be comparable to a higher level of wavelets compression. The
possibility to restore a DOST-compressed image with par-
tially lost information (coefficients) will make the reality of
DOST compression more convincing.

2. REVIEW OF THE ST AND THE DOST

The Stockwell transform (ST), proposed in 1996 [3, 4, 5, 6],
gives a full time-frequency decomposition of a signal. Con-
sider a one-dimensional function h(t). The Stockwell trans-
form of h(t) is defined as the Fourier transform (FT) of the
product between h(t) and a Gaussian window function,

S(τ, f) =
∫ ∞

−∞
h(t)

|f |√
2π

e−
(τ−t)2f2

2 e−i2πftdt, (1)

where f is the frequency, and t and τ are time variables. In
this way, the ST decomposes a signal into temporal (τ ) and
frequency (f ) components.

By the integral properties of the Gaussian function, the
relation between S(τ, f) and H(f) (the Fourier transform of
h(t)) is ∫ ∞

−∞
S(τ, f)dτ = H(f). (2)

That is, the accumulation of the Stockwell coefficients over
the time axis yields the FT of the signal, highlighting a spe-
cial feature of the ST. Hence, the original function h(t) can
be recovered by calculating the inverse Fourier transform of
H(f),

h(t) =
∫ ∞

−∞

{∫ ∞

−∞
S(τ, f)dτ

}
ei2πftdf. (3)

Using the equivalent frequency-domain definition of the
Stockwell transform, the Discrete Stockwell transform (DST)
[3] can be written

S[j, n] =
N−1∑
m=0

H [m + n]e−2π2m2/n2
ei2πmj/N , (4)

for n �= 0, where H [·] is the DFT of h[·]. For the n = 0 voice,
define

S[j, 0] =
1
N

N−1∑
m=0

h[m], (5)
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analogous to the DC value of the FT.
The DST has been used in various fields [2], but from

(4), it is obvious that the ST is an overcomplete representa-
tion. For a signal of length N , there are N 2 Stockwell coeffi-
cients, and each one takes O(N) to compute. Hence, comput-
ing all N 2 coefficients of the ST has computational complex-
ity O(N3). The ST gets exponentially more expensive for
higher-dimensional. A more efficient mathematical and com-
putation framework was needed to pursue this time-frequency
decomposition.

The DOST is a pared-down version of the fully redundant
ST [2]. Since lower frequencies have longer periods, it stands
to reason that lower frequencies can cope with lower sam-
pling rates. Hence, the DOST subsamples the low frequen-
cies. Similarly, high frequencies have higher sampling rates.
The DOST takes advantage of this sample spacing paradigm,
and distributes its coefficients accordingly. It does so by con-
structing a set of N orthogonal unit-length basis vectors, each
of which targets a particular region in the time-frequency do-
main. Which region is dictated by a set of parameters: ν spec-
ifies the center of each frequency band (voice), β is the width
of that band, and τ specifies the location in time. Using these
parameters, the kth basis vector is defined as

D[k][ν,β,τ ] =
1√
β

ν+β/2−1∑
f=ν−β/2

exp

(
−i2π

k

N
f

)

×exp

(
i2π

τ

β
f

)
exp (−iπτ) , (6)

for k = 0, · · · , N − 1, which can be summed analytically to

D[k][ν,β,τ ] = ie−iπτ e−i2α(ν−β/2−1/2) − e−i2α(ν+β/2−1/2)

2
√

β sin α
,

(7)
where α = π(k/N − τ/β) is the center of the temporal win-
dow.

To make the family of basis vectors in (7) orthogonal, the
parameters ν, β and τ have to be chosen suitably [1, 2]. For
real applications, it is helpful to order these N coefficients
into a 1-D vector. The ordering we use is shown in Fig. 1
for a signal of length 16. By convention, our time index (τ )
traverses the time axis in the negative direction for negative
frequencies. Doing so creates a symmetric correspondence
between the positive- and negative-frequency coefficients in
the 1-D representation. That is, for a given coefficient with
index i in the 1-D DOST vector, its negative-frequencyanalog
is at index N − i.

Based on (6), the DOST decomposition and reconstruc-
tion can be computed faster than the direct matrix multiplica-
tion. Though we do not report on it here, we have developed a
way to speed up the DOST calculation to achieve a complex-
ity ofO(N log N) for a signal of length N , andO(N 2 log N)
for an N × N image.

Fig. 1. The order of the 2-D DOST coefficients into an 1-D
N-vector.

Fig. 2. Lena and the logarithm of its DOST coefficients.

Figure 2 shows the logarithm of the magnitude of the 2-D
DOST coefficients for one of the most popular example im-
ages, Lena. The ST and the DOST are both separable trans-
forms, so can be applied in higher dimensions trivially. As we
can see, the coefficients decay very quickly, which makes the
DOST a powerful tool for image compression. Moreover, the
self-similarity over the decomposed spatial-frequencydomain
makes the DOST excellent for image inpainting and restora-
tion.

3. METHOD AND ALGORITHM

The total variation (TV) minimization model has been used
in denoising to get promising quality [7] and has started to
benefit the image restoration. In Ref. [8], Chan et al. pre-
sented a method to restore a wavelet-compressed image by
minimizing TV. Here, we follow their strategies and replace
the wavelet coefficients with DOST coefficients.

Assume the original image is u0(x) and has the following
DOST decomposition,

u0(d, x) =
∑
i,j

fi,jD[x1]iD[x2]j , (8)

where fi,j is the (i, j)th DOST coefficient (for simplic-
ity of notation, the DOST coefficients for an image have
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two indices, hence form a 2-D matrix as a whole) and
x = (x1, x2) ∈ R2 is the 2-D spatial coordinate.

Model:
Define the total variation of the image as [8] [9]

F (u; d) =
∫
R2

|∇xu(d, x)|dx = TV(u(d, x)), (9)

where u(d, x) is the damaged image and has the DOST de-
composition:

u(d, x) =
∑
i,j

di,jD[x1]iD[x2]j , i, j ∈ Z, (10)

with the constraint di,j = fi,j , (i, j) /∈ I, where I is the
inpainting index region.

To minimize the cost function F (u; d), we let the first
derivative of F (u; d) – with respect to the coefficients di,j

– equal zero.

Algorithm:

1. Start with n = 0 and initial guess dnew
i,j = di,j . Set

dold
i,j = 0, and the initial error E = ||dnew − dold||2.

2. while n < N or E > δ, do

• Set dold = dnew ,

• Calculate dTV as described after the main pseudo-
code here.

• For all (i,j), update

dnew
i,j = dold

i,j +
Δt

Δx
λi,j , (11)

where λi,j = dTV
i,j χi,j , and

χi,j =
{

1 if (i, j) ∈ I
0 if (i, j) /∈ I

• Compute error E = ||dnew − dold||2, and set n =
n + 1.

Inside the algorithm above the dTV , which corresponds to
the non-linear integral inside the minimization process can be
calculated using u = IDOST(d), where IDOST is the inverse
DOST transform. For all (i, j), compute

curvi,j = D−1

⎛
⎝ D+

1 ui,j√
|D+

1 ui,j |2 + |D+
2 ui,j |2 + ε

⎞
⎠

+D−2

⎛
⎝ D+

2 ui,j√
|D+

1 ui,j |2 + |D+
2 ui,j|2 + ε

⎞
⎠ .(12)

where D+
1 ui,j = ui+1,j−ui,j , D

+
2 ui,j = ui,j+1−ui,j are the

forward differences, and D−
1 ui,j = ui,j − ui−1,j ,D−2 ui,j =

ui,j − ui,j−1 are the backward differences, and ε is a small
positive number that is used to prevent the numerical blow-
up.

Then the projection of the curvature on the DOST basis
can be calculated by dTV = DOST(curv).

4. RESULTS

Fig. 3. The original synthetic image for restoration test.

For our tests, we used the synthetic image shown in
Fig. 3. To gain a valuable comparison, we also implemented
the wavelet restoration method for wavelet-compressed im-
ages. The results from the numerical calculation are shown
in Fig. 4 and Fig. 5.

As we can observe from Fig. 4 and Fig. 5, the DOST
restoration has successfully restored more information than
the wavelet restoration by offering a higher PSNR and more
visible features and edges of the image. In the extreme case
of randomly losing 90% of the coefficients, even though the
original damaged image can hardly be recognized, the DOST
restoration method still recovers some of the features and
edges.

Based on the above experiment, another fact can also
get confirmed. When the two methods are faced with
equivalently-degraded images (having lost the same coef-
ficients), the DOST-compressed image recovers more infor-
mation than the wavelet-compressed image, suggesting that
DOST compression is more resilient to packet loss.

5. CONCLUSION AND FUTUREWORK

The DOST restoration algorithm has outperformed the wavelet
restoration over the corresponding compression techniques.
We conjecture that even better performance can be realized
using a more sophisticated restoration method that utilizes
the self-similarity in the DOST coefficients.
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(a) DOST (b) DOST restored (c) Wavelets (d) Wavelets restored

Fig. 4. Image restoration test for randomly losing 50% of the DOST and wavelet coefficients. (a) is the damaged DOST
compressed image with PSNR=11.17 and (c) is the damaged wavelet compressed image with PSNR=10.15. (b) (PSNR=28.94)
is restored using the DOST. (d) (PSNR=26.28) is restored using the wavelets. As we can see, the DOST-restored image is also
sharper and clearer than the wavelet restored image.

(a) DOST (b) DOST restored (c) Wavelets (d)Wavelets restored

Fig. 5. Image restoration test for randomly losing 90% of the DOST and wavelet coefficients. (a) is the damaged DOST
compressed image with PSNR=8.83 and (c) is the damaged wavelet compressed image with PSNR=8.75. (b) (PSNR=9.06) is
restored using the DOST. (d) (PSNR=8.93) is restored using the wavelets. This is an extreme test of the restoration, with heavy
loss of information in both images. Even though neither method can restore all the features and edges, the DOST restoration
method restores more visible image characteristics than the wavelet restoration.
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