
Why Aren’t All Predictive Coding Networks
Generative?

Jeff Orchard, Wei Sun, Neil Liu
Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, N2L 3G1

{jorchard,w55sun}@uwaterloo.ca

Abstract

Predictive coding (PC) networks are bidirectional networks that have been shown to
approximate backprop, and can be trained on discriminative tasks. But even though
“predictive” is in the name, PC classifier networks have not been convincingly
shown to generate input samples. Simply clamping the desired class vector and
running the network to an equilibrium state does not generate a sensible state in
the input layer. The problem is ill-posed; it has an infinite number of solutions.
However, we show that a linear network can reconstruct sensible inputs by imposing
a minimum-norm constraint, which can be done using simple weight decay. It also
works on nonlinear networks, as demonstrated on MNIST.

1 Introduction

Predictive coding (PC) is a processing strategy hypothesized to take place in cortical networks
[1, 2, 7, 9]. Inputs to the network are propagated up through a hierarchy of layers. Each layer
only communicates with its adjacent layers. In this way, the network creates a progression of
representations in its stacked layers, such that layers are linked together by a chain of feedback loops.
The feedback connections in predictive coding (PC) enable the architecture to approximate backprop
[3, 11].

But can the feedback connections enable the network to be generative? Classification PC networks
have not been demonstrated to have very remarkable generative capabilities. Some attempts have
been made, but with limited success. A convolutional PC network generated blurry versions of the
input images [10] after allowing the network state to settle to an equilibrium. The paper really only
demonstrated blurry deconvolution for one layer. In another study, a PC network that was trained
as an autoencoder, not as a classifier, was able to generate blurry reconstructions of the input [4].
However, since the network was not a classifier network, it remains to be seen how a classifier
network can be made generative.

An implementation of predictive coding was proposed and shown to approximate backpropagation
using local Hebbian-like learning rules, achieving learning performance comparable to backprop
[3, 11]. In this paper, we study the generative properties of their method.

2 Methods

A biologically plausible learning algorithm requires that changes in each synaptic weight depend
only on the local activity of pre-synaptic and post-synaptic neurons. The architecture proposed in
[11] solves the problem, describing a local learning rule that relies only on the activity of locally
connected neurons.
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Figure 1: Architecture of the Whittington and Bogacz PC network [11]. Note that ε(i) and x(i) each
represent the vector of activities of an array of nodes. Likewise for other layers.

Figure 1 shows a PC network. The state nodes and error nodes of layer i are updated according to,

τ
dε(i)

dt
= x(i) −M (i−1)σ(x(i−1))− ν(i)ε(i) (1)

τ
dx(i)

dt
= W (i)ε(i+1) � σ′(x(i))− ε(i) (2)

where x(i) is the (vector) state of layer i, ε(i) is the corresponding (vector) error for layer i, W (i) is
the backward weight matrix, M (i−1) is the forward weight matrix, ν(i) is a scalar variance parameter,
the � operator represents the Hadamard (element-wise) product, σ(·) is the activation function, and τ
is a time constant. Our method differs from that in [11] in that we do not include a bias in (1). Note
that we are also using the common convention in which the predictions are sent up the network, in
contrast to the original formulation of predictive coding [8].

For PC networks, the cost function, F , is proportional to the sum of the squares of the error nodes.
See [3] or [11] for an explanation of how F is the negative log-likelihood of the input conditioned
on the class (output). Gradient descent on F with respect to the connection weights, M and W ,
approximate the backprop algorithm, yielding the weight update dynamics,

γ
dM (i)

dt
= −ε(i+1) ⊗ σ(x(i)) (3)

where ⊗ is the outer product. A similar rule exists for W (i). The time constant γ is larger than τ so
that x and ε reach their equilibrium states much faster than M and W .

To allow the bottom and top inputs to be clamped or free, we have introduced the parameters α and
β which simply modulate (multiply) their corresponding connections. The parameter α controls
whether or not the input X has an influence on the bottom layer of the network. The parameter β
controls whether the value in the top layer is influenced by the penultimate layer (otherwise it is
constant).

Training: To train our PC network on a discriminative task, we simultaneously feed the input vector
X (eg. a digit from the MNIST dataset) into layer 1, and set the output layer x(n) = Y (eg. the
corresponding one-hot classification vector), as shown in Fig. 1. We set α = 1 and β = 0 to clamp
both inputs.

Simulating the network in continuous time while holding each input for a few simulation seconds
causes the states of the nodes to converge to their corresponding equilibrium values rather quickly,
thereby delivering the error gradients to the error nodes, where they are used to update the connection
weights.

Discriminative Mode: When we test the discriminative capabilities of our network, we present the
input X to the bottom layer, and set α = 1 and β = 1, thereby enabling information to flow up the
network. The resulting equilibrium value of x(n) is the network’s output. It is fairly simple to show
that all the error nodes will converge to zero in this case.

Our version of the PC network performs as well as that reported in [11], achieving 98% test accuracy
on MNIST using two fully-connected hidden layers of 600 nodes each, after 10 training epochs.

Generative Mode: To run the network in generative mode, we set x(n) to the desired class vector
(denoted Y in Fig. 1), and set β = 0 so that x(n) does not change. At the same time, we unclamp
x(1) from by setting α = 0.

Figure 2 shows the ten images generated by the network trained on MNIST. Unfortunately, the
generated images do not look like MNIST digits. Why is that? To get a better understanding of what
is happening, we will study a much simpler network.
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Figure 2: Images generated by the network trained on MNIST. The top row shows a sample of each
digit class. The middle row shows the images generated by a trained PC network. These generated
images do not resemble actual digits. The bottom row shows images generated by a PC network
trained with weight decay and value-node decay.

Analysis of the Network: Consider a simple 2-layer discriminative network in which the input layer
has m nodes, the output layer has n nodes, and the dataset has r different classes, with r ≤ n < m.
The forward weight matrix, M (1), has dimensions n×m.

During learning, we clamp the bottom and top layers to their respective inputs, X and Y . Then, once
the system reaches equilibrium (including M (1) and W (1)), equation (1) gives

Y = M (1)σ(X) . (4)

After training, running the network in discriminative mode (α = 1 and β = 1, which clamps only the
bottom layer), it is easy to show that the equilibrium solution yields ε(2) = 0, and ε(1) = 0, and thus
x(1) = X , and hence

x(2) = M (1)σ(X) ,

which then implies that x(2) = Y , the desired target. In this way, the network has learned to solve the
discriminative task; given the input X , the output matches the target Y . This works even with deeper
networks, as demonstrated in [11].

Now consider the generative mode of the network. In that case, we set x(2) = Y , and α = β = 0. At
equilibrium, one can show that,

M (1)σ(x(1)) = Y . (5)
We know that x(1) = X is a solution, but is it the only solution? Even though the network quickly
converges to an equilibrium, and its error nodes report very small values, usually x(1) is not very
close to X .

To understand what is happening here, we will further simplify the problem.

Linear Network: Let us suppose, for the sake of simplicity, that σ(x) ≡ x. Thus, (5) becomes

M (1)x(1) = Y . (6)

This system is under-determined, since M (1) is n×m, with n < m. Thus, if x̄ is a solution to (6),
then so is x̄+ cx̂ for any scalar c, as long as x̂ ∈ null(M (1)).

How can we get a unique solution? And can we hope to generate samples that are close to the vectors
in the training dataset?

Theorem 1 Given a matrix of r linearly-independent m-vectors, X = [X1| · · · |Xr] ∈ Rm×r,
and a corresponding matrix of n-vectors, Y = [Y1| · · · |Yr] ∈ Rn×r, with r ≤ n < m, there
is an n ×m matrix, A, such that the minimum 2-norm solution x∗ to Ax = Yi is x∗ = Xi.
Moreover, the jth row of A is the minimum 2-norm solution to aX = Y for a ∈ R1×m.

(See the Appendix for a proof.) The theorem tells us that we can find unique solutions for the
connection weights and network states that match our data, as long as we additionally seek their
minimum-norm solutions.

3



1 0 1 2 3

x(1)
0

3

2

1

0

1

x(1
)

1

1 0 1 2 3

x(1)
0

3

2

1

0

1

x(1
)

1

Figure 3: Generative output without decay (left), and with decay (right). The left plot also shows
the corresponding solution space. Note that the plots depict a 2-D projection of a 3-D space. The
generated samples fall within the data cluster when weight- and value-decay is used (right).

One way to implement the min-norm constraint is to add a term to the objective function that penalizes
for the square of the L2 norm. The gradient of that penalty term turns into a linear decay term in the
gradient. Hence, the min-norm constraint can easily be implemented in the PC network dynamics
as an additional linear decay. For example, equation (2), governing the activity of x(i), will include
a term of the form −λxx(1), and equation (3), governing the update of M (i), will include a term
−λMM (i), where λx and λM are positive scalars. We use −λM

2 W (1) for W ’s update rule.

3 Experiments

To demonstrate this effect, we created a dataset {Xn, Yn} with Xn ∈ R3 and Yn ∈ R2. The samples
in X were drawn from just two classes, each represented by a Gaussian distribution around a fixed
centroid. The target for one class is [1, 0], and [0, 1] for the other class. The full dataset consists
of 300 samples, with 150 samples of each class. A linear network was trained for 4 epochs, and
achieved 100% training accuracy.

In generative mode, we set the class vector to either [1, 0] or [0, 1] and run the network to equilibrium
with α = β = 0. The values in x and ε are zero at the beginning of each simulation. Each class
vector generates a different sample, which we will denote x̄[1,0] and x̄[0,1], respectively. A sample
result is shown in Fig. 3(a). The generated samples (black squares in the Figure) do not fall within
the clusters, even though the equilibrium network state yields very small values in the error nodes,
ε(2) (around 10−6). The solution spaces are shown as dotted lines; they pass through the generated
points, as well as the cluster centres. Every point in the solution space is a solution to (6) and yields
very small (or zero) errors.

However, introducing decay (λx = λM = 0.05) to x and M yields a network that generates the black
squares in Fig. 3(b). The generated samples fall neatly inside the cluster of training samples.

We also tried training a 4-layer PC network (784-600-600-10) on MNIST using decay. The bottom
row of Fig. 2 shows the generated samples for each of the 10 digit classes. Note that this was not a
linear network, but used tanh activation functions.

4 Conclusions

Running a PC classifier network with its output class clamped tends not to generate meaningful input
samples. This is likely because the generative problem is ill-posed. We analyzed a linear version of
the problem, and confirmed that it is under-determined.

However, we showed that regularizing using decay on the network value nodes (x) and the forward
connection weights (M ) yield a unique solution for the linear network. We proposed (and proved) a
theorem that guarantees that our solution will be similar to the training inputs.

While the theorem technically only applies to linear networks, adding the decay to our nonlinear
(tanh) PC network made it generate far more sensible sample MNIST images.
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Appendix

Proof of Theorem 1: Consider the system XTAT = Y T, with r equations with m unknowns. Let the j row
of A be denoted Aj , so that

A =

 A1

...
An

 .

Let yj be the jth row of Y . Then XTAT
j = yT

j . This system is under-determined, since r < m. Thus, there
are infinitely many solutions (since the columns of X are linearly independent). However, we can seek the
minimum-norm solution for AT

j using the SVD [5].

Let UΣV T = XT, where U is an r × r orthogonal matrix, V T is r ×m with orthonormal rows, and Σ is a
diagonal r × r matrix containing the r non-zero singular values. The minimum-norm solution of XTAT

j = yT
j

is
AT

j = V Σ−1UTyT
j

We can construct all n columns of AT using AT = V Σ−1UTY T.

Now we show that X is a solution of AX = Y . Substituting the above expression for A, as well as the SVD for
XT, we get

AX = Y UΣ−1V TX

= Y UΣ−1V T
(
V ΣUT

)
= Y UUT since V TV = I and Σ−1Σ = I

= Y since UUT = I

Thus, X is a solution of AX = Y .
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Now, we want to show that each column of X is the minimum-norm solution. Consider the ith column of X ,
and suppose we find a different solution, Xi + x̃, where x̃ 6= 0. Then,

A (Xi + x̃) = Yi

AXi + Ax̃ = Yi

Yi + Ax̃ = Yi

Ax̃ = 0

Thus, x̃ ∈ null(A), which tells us that V Tx̃ = 0. But XT = UΣV T, so x̃ ∈ null(XT) too. Thus, Xi ⊥ x̃.

Consider ‖Xi + x̃‖. Since Xi ⊥ x̃, we can use Pythagoras, and conclude that

‖Xi + x̃‖2 = ‖Xi‖2 + ‖x̃‖2

‖Xi + x̃‖2 > ‖Xi‖2 since x̃ 6= 0

=⇒ ‖Xi + x̃‖ > ‖Xi‖

Therefore, Xi is the minimum-norm solution to Ax = Yi. �
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