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Lecture 9c - Unsupervised Learning under
Uncertainty

Jesse Hoey
School of Computer Science

University of Waterloo

June 30, 2022

Readings: Poole & Mackworth (2nd. Ed.) Chapt. 10.2,10.3,10.5
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Incomplete Data

So far:
I values of all attributes are known
I learning is easy

But many real-world problems have hidden variables (aka

latent variables)

I Incomplete data
I Values of some attributes missing

Incomplete data → unsupervised learning
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Maximum Likelihood learning

Recall: ML learning of Bayes net parameters for each variable V
with parents pa(V ), and each value those parents can take on
pa(V ) = v:

θV=true,pa(V )=v = P(V = true|pa(V ) = v)

so that the ML learning of θ is:

θV=true,pa(V )=v =
number with (V = true ∧ pa(V ) = v)

number with pa(V ) = v

Can add pseudocounts as priors
But what if some variable values are missing ?
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Complete vs. Missing Data

For Cancer diagnosis example:

Complete data (what we used to learn from in lecture 9a)
id Malfnction Cancer TestB TestA Report Database

1 false false true true false false
2 false true true true true true
3 false true true true true true
4 false false false true false false

...

Incomplete (missing) data (more realistic)
id Malfnction Cancer TestB TestA Report Database

1 ? ? ? true ? false
2 ? ? ? true ? false
3 true ? ? true ? false
4 ? true ? true ? false

...
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How to deal with missing data

1. Ignore hidden variables
number of parameters shown (variables have 3 values):

2. Ignore records with missing values
I does not work with true latent variables (e.g. always missing)
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Missing Data

You cannot ignore missing data unless you know it is

missing at random.

Often data is missing because of something
correlated with a variable of interest.

For example: data in a clinical trial to test a drug may be
missing because:
I the patient dies,
I the patient dropped out because of severe side effects,
I they dropped out because they were better, or
I the patient had to visit a sick relative.

— ignoring some of these may make the drug look better or
worse than it is.

In general you need to model why data is missing.
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Survivorship Bias

Bullet holes on planes returning from battle:
where should the extra armour be installed?

Abraham Wald (WWII)
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“Direct” maximum likelihood

3. maximize likelihood directly
Suppose Z is hidden and E is observable, with values e

hML = arg max
h

P(e|h)

= arg max
h

[∑
Z

P(e,Z|h)

]

= arg max
h

[∑
Z

n∏
i=1

P(Xi |parents(Xi ), h)E=e

]

= arg max
h

[
log

∑
Z

n∏
i=1

P(Xi |parents(Xi ), h)E=e

]

Problem: can’t push log inside the sum to linearize!



9/ 19

Expectation-Maximization Algorithm

4. If we knew the missing values, computing hML would be easy
again!
Expectation-Maximization (EM):

A). Guess hML

B). iterate:

I expectation : based on hML, compute expectation of missing

values P(Z|hML, e)
I maximization : based on expected missing values, compute

new estimate of hML

5. Really simple version (e.g. K-means algorithm):

I expectation : based on hML, compute most likely missing

values arg maxZ P(Z|hML, e)
I maximization : based on those missing values, you now have

complete data, so compute new estimate of hML using ML
learning as before
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k-means algorithm

k-means algorithm can be used for clustering :
dataset of observables with input features X generated by one of a
set of classes , C (e.g. Näıve Bayes, C → X )
Inputs:

training examples

the number of classes, k

Outputs:

a representative value for each input feature for each class

an assignment of examples to classes

Algorithm:

1. pick k means in X , one per class, C

2. iterate until means stop changing:

a assign examples to k classes (e.g. as closest to current means)
b re-estimate k means based on assignment
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Expectation Maximization

Approximate the maximum likelihood

Start with a guess h0

Iteratively compute:

hi+1 = arg max
h

∑
Z

P(Z|hi , e) logP(e,Z|h)

expectation : compute P(Z|hi , e) ( “fills in” missing data )

maximization : find new h that maximizes∑
Z P(Z|hi , e) logP(e,Z|h)

can show that P(e|hi+1) ≥ P(e|hi ) when computed like this
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Expectation Maximization

Can show that:

logP(e|h) ≥
∑
Z

P(Z|e, h)logP(e,Z|h)

EM finds a local maximum of right side: lower bound on left side

log inside sum can linearize the product

hi+1 = arg max
h

∑
Z

P(Z|hi , e) logP(e,Z|h)

= arg max
h

∑
Z

P(Z|hi , e) log
n∏

j=1

P(Xi |parents(Xi ), h)E=e

= arg max
h

∑
Z

P(Z|hi , e)
n∑

j=1

logP(Xi |parents(Xi ), h)E=e

EM monotonically improves the likelihood

P(e|hi+1) ≥ P(e|hi )
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Naive Bayes with 4 input features

X1 X2 X3 X4

C

Suppose k = 3, and dom(C ) = {1, 2, 3}.
P(C |X1,X2,X3,X4) ∝ P(X1 . . .X4|C )P(C )

can be computed if we know P(C ) and P(Xi |C )

EM idea : based on current P(C ) and P(Xi |C ), compute
P(C |X1 . . .X4)∀C ∈ {1, 2, 3}
use P(C |X1 . . .X4) as partial data in ML learning
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Augmented Data Method — E step – Naive Bayes

P(C = 1|X1 = t,X2 = f ,X3 = t,X4 = t) = 0.4
P(C = 2|X1 = t,X2 = f ,X3 = t,X4 = t) = 0.1
P(C = 3|X1 = t,X2 = f ,X3 = t,X4 = t) = 0.5:

missing data (C) −→ filled in data

X1 X2 X3 X4
...

...
...

...
t f t t
...

...
...

...

−→

X1 X2 X3 X4 C val
...

...
...

...
...

...
t f t t 1 0.4
t f t t 2 0.1
t f t t 3 0.5
...

...
...

...
...

...

call this A[X1, . . . ,X4,C ]
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M step

Compute the statistics for each feature and class:

Mi [Xi ,C ] =
∑

X1,...,Xi−1,Xi+1,...,Xn

A[X1, . . . ,Xn,C ]

M[C ] =
∑
Xi

Mi [Xi ,C ]

M[C ] is unnormalized marginal.

Compute probabilities by normalizing:

P(Xi |C ) = Mi [Xi ,C ]/M[C ]

P(C ) = M[C ]/s

Pseudo-counts can also be added.
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General Bayes Network EM

Complete data : Bayes Net Maximum Likelihood

θV=true,pa(V )=v =
number in e with (V = true ∧ pa(V ) = v)

number in e with pa(V ) = v

Incomplete data : Bayes Net Expectation Maximization
observed variables X and missing variables Z
Start with some guess for θ,

E Step : Compute weights for each data xi and latent variable(s)
value(s) zj (using e.g. variable elimination)

wij = P(zj |θ, xi )

M Step : Update parameters:

θV=true,pa(V )=v =

∑
ij wij |V = true ∧ pa(V ) = v in {xi , zj}∑

ij wij |pa(V ) = v in {xi , zj}
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Belief network structure learning (I)

P(model |data) =
P(data|model)× P(model)

P(data).

A model here is a belief network.

A bigger network can always fit the data better.

P(model) lets us encode a preference for smaller networks
(e.g., using the description length).

You can search over network structure looking for the most
likely model.
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Belief network structure learning (II)

can do independence tests to determine which features
should be the parents

XOR problem : just because features do not give information
individually, does not mean they will not give information in
combination

ideal: Search over total orderings of variables
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Next:

Planning with uncertainty (Poole & Mackworth (2nd. Ed.)
chapter 9.1-9.3,9.5)

Reinforcement Learning (Poole & Mackworth (2nd. Ed.)
chapter 12.1,12.3-12.9)


