Lecture 9c - Unsupervised Learning under Uncertainty

Jesse Hoey
School of Computer Science
University of Waterloo

June 30, 2022

- So far:
- values of all attributes are known
- learning is easy
- But many real-world problems have hidden variables (aka latent variables)
- Incomplete data
- Values of some attributes missing
- Incomplete data \rightarrow unsupervised learning

Maximum Likelihood learning

Complete vs. Missing Data

For Cancer diagnosis example:

- Complete data (what we used to learn from in lecture 9a)

id	Malfnction	Cancer	TestB	TestA	Report	Database
1	false	false	true	true	false	false
2	false	true	true	true	true	true
3	false	true	true	true	true	true
4	false	false	false	true	false	false

- Incomplete (missing) data (more realistic)

id	Malfnction	Cancer	TestB	TestA	Report	Database
1	$?$	$?$	$?$	true	$?$	false
2	$?$	$?$	$?$	true	$?$	false
3	true	$?$	$?$	true	$?$	false
4	$?$	true	$?$	true	$?$	false

1. Ignore hidden variables
number of parameters shown (variables have 3 values):

(a)

(b)
2. Ignore records with missing values

- does not work with true latent variables (e.g. always missing)
- You cannot ignore missing data unless you know it is missing at random.
- Often data is missing because of something correlated with a variable of interest.
- For example: data in a clinical trial to test a drug may be missing because:
- the patient dies,
the patient dropped out because of severe side effects,
- they dropped out because they were better, or
- the patient had to visit a sick relative.
- ignoring some of these may make the drug look better or worse than it is.
- In general you need to model why data is missing.

Survivorship Bias

"Direct" maximum likelihood

Bullet holes on planes returning from battle:
where should the extra armour be installed?

3. maximize likelihood directly

Suppose Z is hidden and E is observable, with values e

$$
\begin{aligned}
h_{M L} & =\arg \max _{h} P(\mathrm{e} \mid h) \\
& =\arg \max _{h}\left[\sum_{Z} P(\mathrm{e}, \mathrm{Z} \mid h)\right] \\
& =\arg \max _{h}\left[\sum_{Z} \prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right), h\right)_{\mathrm{E}=\mathrm{e}}\right] \\
& =\arg \max _{h}\left[\log \sum_{Z} \prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right), h\right)_{\mathrm{E}=\mathrm{e}}\right]
\end{aligned}
$$

4. If we knew the missing values, computing $h_{M L}$ would be easy again!
Expectation-Maximization (EM):
A). Guess $h_{M L}$
B). iterate:

- expectation : based on $h_{M L}$, compute expectation of missing values $P\left(\mathrm{Z} \mid h_{M L}, \mathrm{e}\right)$
- maximization: based on expected missing values, compute new estimate of $h_{M L}$

5. Really simple version (e.g. K-means algorithm):

- expectation : based on $h_{M L}$, compute most likely missing values arg max $P\left(Z \mid h_{M L}, \mathrm{e}\right)$
- maximization : based on those missing values, you now have complete data, so compute new estimate of $h_{M L}$ using ML learning as before
k-means algorithm can be used for clustering :
dataset of observables with input features X generated by one of a set of classes, C (e.g. Naïve Bayes, $C \rightarrow X$)
Inputs:
- training examples
- the number of classes, k

Outputs:

- a representative value for each input feature for each class
- an assignment of examples to classes

Algorithm:

1. pick k means in X, one per class, C
2. iterate until means stop changing:
a assign examples to k classes (e.g. as closest to current means)
b re-estimate k means based on assignment

Expectation Maximization

- Approximate the maximum likelihood
- Start with a guess h_{0}
- Iteratively compute:

$$
h_{i+1}=\arg \max _{h} \sum_{Z} P\left(Z \mid h_{i}, \mathrm{e}\right) \log P(\mathrm{e}, \mathrm{Z} \mid h)
$$

- expectation : compute $P\left(\mathrm{Z} \mid h_{i}, \mathrm{e}\right)$ ("fills in" missing data)
- maximization: find new h that maximizes $\sum_{Z} P\left(Z \mid h_{i}, \mathrm{e}\right) \log P(\mathrm{e}, \mathrm{Z} \mid h)$
- can show that $P\left(e \mid h_{i+1}\right) \geq P\left(e \mid h_{i}\right)$ when computed like this

Expectation Maximization

Can show that:

$$
\log P(\mathrm{e} \mid h) \geq \sum_{Z} P(\mathrm{Z} \mid \mathrm{e}, h) \log P(\mathrm{e}, \mathrm{Z} \mid h)
$$

EM finds a local maximum of right side: lower bound on left side \log inside sum can linearize the product

$$
\begin{aligned}
h_{i+1} & =\arg \max _{h} \sum_{Z} P\left(\mathrm{Z} \mid h_{i}, \mathrm{e}\right) \log P(\mathrm{e}, \mathrm{Z} \mid h) \\
& =\arg \max _{h} \sum_{Z} P\left(\mathrm{Z} \mid h_{i}, \mathrm{e}\right) \log \prod_{j=1}^{n} P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right), h\right)_{\mathrm{E}=\mathrm{e}} \\
& =\arg \max _{h} \sum_{Z} P\left(\mathrm{Z} \mid h_{i}, \mathrm{e}\right) \sum_{j=1}^{n} \log P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right), h\right)_{\mathrm{E}=\mathrm{e}}
\end{aligned}
$$

EM monotonically improves the likelihood

$$
P\left(e \mid h_{i+1}\right) \geq P\left(e \mid h_{i}\right)
$$

- Suppose $k=3$, and $\operatorname{dom}(C)=\{1,2,3\}$.
- $P\left(C \mid X_{1}, X_{2}, X_{3}, X_{4}\right) \propto P\left(X_{1} \ldots X_{4} \mid C\right) P(C)$
- can be computed if we know $P(C)$ and $P\left(X_{i} \mid C\right)$
- EM idea: based on current $P(C)$ and $P\left(X_{i} \mid C\right)$, compute $P\left(C \mid X_{1} \ldots X_{4}\right) \forall C \in\{1,2,3\}$
- use $P\left(C \mid X_{1} \ldots X_{4}\right)$ as partial data in ML learning

$$
\begin{aligned}
& P\left(C=1 \mid X_{1}=t, X_{2}=f, X_{3}=t, X_{4}=t\right)=0.4 \\
& P\left(C=2 \mid X_{1}=t, X_{2}=f, X_{3}=t, X_{4}=t\right)=0.1 \\
& P\left(C=3 \mid X_{1}=t, X_{2}=f, X_{3}=t, X_{4}=t\right)=0.5:
\end{aligned}
$$

missing data (C) \longrightarrow filled in data

X_{1}	X_{2}	X_{3}	X_{4}
\vdots	\vdots	\vdots	\vdots
t	f	t	t
\vdots	\vdots	\vdots	\vdots

X_{1}	X_{2}	X_{3}	X_{4}	C	val
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
t	f	t	t	1	0.4
t	f	t	t	2	0.1
t	f	t	t	3	0.5
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

call this $A\left[X_{1}, \ldots, X_{4}, C\right]$

M step

M step

Compute the statistics for each feature and class:

$$
\begin{aligned}
& M_{i}\left[X_{i}, C\right]=\sum_{X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}} A\left[X_{1}, \ldots, X_{n}, C\right] \\
& M[C]=\sum_{X_{i}} M_{i}\left[X_{i}, C\right]
\end{aligned}
$$

$M[C]$ is unnormalized marginal.

Compute the statistics for each feature and class:

$$
\begin{aligned}
& \quad M_{i}\left[X_{i}, C\right]=\sum_{X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}} A\left[X_{1}, \ldots, X_{n}, C\right] \\
& \quad M[C]=\sum_{X_{i}} M_{i}\left[X_{i}, C\right] \\
& M[C] \text { is unnormalized marginal. } \\
& \text { Compute probabilities by normalizing: }
\end{aligned}
$$

$$
\begin{aligned}
& P\left(X_{i} \mid C\right)=M_{i}\left[X_{i}, C\right] / M[C] \\
& P(C)=M[C] / s
\end{aligned}
$$

Pseudo-counts can also be added.

Complete data: Bayes Net Maximum Likelihood

$$
\theta_{V=\text { true }, p a(V)=v}=\frac{\text { number in e with }(V=\operatorname{true} \wedge p a(V)=v)}{\text { number in e with } p a(V)=v}
$$

Incomplete data: Bayes Net Expectation Maximization observed variables X and missing variables Z
Start with some guess for θ,
E Step: Compute weights for each data x_{i} and latent variable(s) value(s) z_{j} (using e.g. variable elimination)

$$
w_{i j}=P\left(\mathrm{z}_{j} \mid \theta, \mathrm{x}_{i}\right)
$$

M Step: Update parameters:

$$
\theta_{V=\text { true }, p a(V)=v}=\frac{\sum_{i j} w_{i j} \mid V=\text { true } \wedge p a(V)=v \text { in }\left\{x_{i}, z_{j}\right\}}{\sum_{i j} w_{i j} \mid p a(V)=v \text { in }\left\{x_{i}, \mathrm{z}_{j}\right\}}
$$

$$
P(\text { mode } \mid \text { data })=\frac{P(\text { data } \mid \text { mode } l) \times P(\text { mode } l)}{P(\text { data })}
$$

- A model here is a belief network.
- A bigger network can always fit the data better.
- P (model) lets us encode a preference for smaller networks (e.g., using the description length).
- You can search over network structure looking for the most likely model.

Belief network structure learning (II) Next:

- can do independence tests to determine which features should be the parents
- XOR problem : just because features do not give information individually, does not mean they will not give information in combination
- ideal: Search over total orderings of variables
- Planning with uncertainty (Poole \& Mackworth (2nd. Ed.) chapter 9.1-9.3.9.5)
- Reinforcement Learning (Poole \& Mackworth (2nd. Ed.) chapter 12.1,12.3-12.9)

