Lecture 9b - Supervised Machine Learning II

Jesse Hoey
School of Computer Science
University of Waterloo

June 27, 2022

Readings: Poole \& Mackworth (2nd ed.)Chapt. 7.3.2,7.5-7.6

Linear Regression

Linear regression is a model in which the output is a linear function of the input features.

$$
\begin{aligned}
& \hat{Y}^{\vec{w}}(e)=w_{0}+w_{1} X_{1}(e)+\cdots+w_{n} X_{n}(e) \\
& \hat{Y}^{\vec{w}}(e)=\sum_{i=0}^{n} w_{i} X_{i}(e)
\end{aligned}
$$

where $\vec{w}=\left\langle w_{0}, w_{1}, w_{2} \ldots w_{n}\right\rangle$. We invent a new feature $X_{0} \equiv 1$, to make it not a special case.

Linear Regression

Linear regression is a model in which the output is a linear function of the input features.

$$
\begin{aligned}
& \hat{Y}^{\vec{w}}(e)=w_{0}+w_{1} X_{1}(e)+\cdots+w_{n} X_{n}(e) \\
& \hat{Y}^{\vec{w}}(e)=\sum_{i=0}^{n} w_{i} X_{i}(e)
\end{aligned}
$$

where $\vec{w}=\left\langle w_{0}, w_{1}, w_{2} \ldots w_{n}\right\rangle$. We invent a new feature $X_{0} \equiv 1$, to make it not a special case.
The sum of squares error on examples E for output Y is:

$$
\begin{aligned}
& \operatorname{Error}(E, \vec{w})=\sum_{e \in E}\left(Y(e)-\hat{Y}^{\vec{w}}(e)\right)^{2} \\
& =\sum_{e \in E}\left(Y(e)-\sum_{i=0}^{n} w_{i} X_{i}(e)\right)^{2}
\end{aligned}
$$

Goal: find weights that minimize $\operatorname{Error}(E, \vec{w})$.

Finding weights that minimize $\operatorname{Error}(E, \vec{w})$

Find the minimum analytically.
Effective when it can be done (e.g., for linear regression). If

- $\vec{y}=\left[Y\left(e_{1}\right), Y\left(e_{2}\right), \ldots Y\left(e_{M}\right)\right]$ is a vector of the output features for the M examples
- X is a matrix where the $j^{\text {th }}$ column is the values of the input features for the $j^{t h}$ example
- $\vec{w}=\left[w_{0}, w_{1}, \ldots, w_{n}\right]$ is a vector of the weights
then,

$$
\begin{aligned}
\vec{y}^{T} & =\vec{w} X \\
\vec{y}^{T} X^{T}\left(X X^{T}\right)^{-1} & =\vec{w}
\end{aligned}
$$

$\left(X X^{T}\right)^{-1}$ is the pseudo-inverse

Finding weights that minimize $\operatorname{Error}_{E}(\vec{w})$

Find the minimum iteratively.
Works for larger classes of problems (not just linear). Gradient descent :

$$
w_{i} \leftarrow w_{i}-\eta \frac{\partial \operatorname{Error}(E, \vec{w})}{\partial w_{i}}
$$

η is the gradient descent step size, the learning rate.
If

$$
\operatorname{Error}(E, \vec{w})=\sum_{e \in E}\left(Y(e)-\hat{Y}^{\vec{w}}(e)\right)^{2}=\sum_{e \in E}\left(Y(e)-\sum_{i=0}^{n} w_{i} X_{i}(e)\right)^{2}
$$

then update rule:

$$
w_{i} \leftarrow w_{i}+\eta \sum_{e \in E}\left(Y(e)-\sum_{i=0}^{n} w_{i} X_{i}(e)\right) X_{i}(e)
$$

where we have set $\eta \rightarrow 2 \eta$ (arbitrary scale)

Incremental Gradient Descent for Linear Regression

1: procedure LinearLearner (X, Y, E, η)

2:
3:
4:
5:
6: \quad initialize w_{0}, \ldots, w_{n} randomly
7:
8:
9:
10 :
11:
12:
13: Y : output feature
η : learning rate
repeat
for each example e in E do
for each $i \in[0, n]$ do
until some stopping criteria is true
return w_{0}, \ldots, w_{n}

Inputs X : set of input features, $X=\left\{X_{1}, \ldots, X_{n}\right\}$
E : set of examples from which to learn

$$
\delta \leftarrow Y(e)-\sum_{i=0}^{n} w_{i} X_{i}(e)
$$

$$
w_{i} \leftarrow w_{i}+\eta \delta X_{i}(e)
$$

Stochastic and Batched Gradient Descent

- Algorithm on the last slide is incremental gradient descent
- If examples are chosen randomly at line 8 then its stochastic gradient descent .
- Batched gradient descent:
- process a batch of size n before updating the weights
- if n is all the data, then its gradient descent
- if $n=1$, its incremental gradient descent
- Incremental can be more efficient than batch, but convergence not guaranteed

Linear Classifier

- Assume we are doing binary classification, with classes $\{0,1\}$
- There is no point in making a prediction of less than 0 or greater than 1.
- A squashed linear function is of the form:

$$
\begin{aligned}
\hat{Y}^{\vec{w}}(e) & =f\left(w_{0}+w_{1} X_{1}(e)+\cdots+w_{n} X_{n}(e)\right) \\
& =f\left(\sum_{i=0}^{n} w_{i} X_{i}(e)\right)
\end{aligned}
$$

where f is an activation function.

- A simple activation function is the step function :

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Gradient Descent for Linear Classifiers

If the activation function is differentiable, we can use gradient descent to update the weights. The sum of squares error:

$$
\operatorname{Error}(E, \vec{w})=\sum_{e \in E}\left(Y(e)-f\left(\sum_{i=0}^{n} w_{i} * X_{i}(e)\right)\right)^{2}
$$

The partial derivative with respect to weight w_{i} is:

$$
\frac{\partial \operatorname{Error}(E, \vec{w})}{\partial w_{i}}=-2 * \delta * f^{\prime}\left(\sum_{i} w_{i} * X_{i}(e)\right) * X_{i}(e)
$$

where $\delta=\left(Y(e)-f\left(\sum_{i=0}^{n} w_{i} X_{i}(e)\right)\right)$.
Thus, each example e updates each weight w_{i} by

$$
w_{i} \leftarrow w_{i}+\eta * \delta * f^{\prime}\left(\sum_{i} w_{i} * X_{i}(e)\right) * X_{i}(e)
$$

The sigmoid or logistic activation function

The sigmoid or logistic activation function

Discussion Board Example

$$
\widehat{\operatorname{Reads}}(e)=\operatorname{sigmoid}(-8+7 * \operatorname{Short}(e)+3 * \operatorname{New}(e)+3 * \operatorname{Known}(e))
$$

Using the 18 training examples from lecture 4, this can be found in about 3000 iterations with a learning rate of $\eta=0.05$

Linearly Separable

- A dataset is linearly separable if there is a hyperplane where the classification is true on one side of the hyperplane and false on the other side.
- The hyperplane is defined by where the predicted value, $f^{\vec{w}}\left(X_{1}, \ldots, X_{n}\right)=f\left(w_{0}+w_{1} X_{1}(e)+\cdots+w_{n} X_{n}(e)\right)$ is 0.5.
For the sigmoid function, the hyperplane is defined by $w_{0}+w_{1} X_{1}(e)+\cdots+w_{n} X_{n}(e)=0$.
- Some data are not linearly separable

Kernel Trick

Some arbitrary data:

Kernel Trick

Data is not linearly separable:

Kernel Trick

Add another dimension, data is now linearly separable:

Kernel Trick: another example

$$
\left(\frac{x_{1}}{a}\right)^{2}+\left(\frac{x_{2}}{b}\right)^{2}=1 \rightarrow \frac{z_{1}}{a^{2}}+\frac{z_{3}}{b^{2}}=1
$$

Mercer's Theorem

Key idea:

- Mercer's Theorem
- A dot product in the new "lifted" space = function (kernel) in old space
- Means: never have to know what ϕ is!!
- Only have to compute distances with the kernel .

Example

(

$$
\phi\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

dot product in old space:
$<x, w>=x_{1} * w_{1}+x_{2} * w_{2}$ dot product in new space:
kernel $K(x, w)$

$$
\begin{aligned}
K(x, w) & =<\phi(x), \phi(w)> \\
& =x_{1}^{2} w_{1}^{2}+2 x_{1} x_{2} w_{1} w_{2}+x_{2}^{2} w_{2}^{2} \\
& =\left(x_{1} w_{1}+x_{2} w_{2}\right)^{2} \\
& =(<x, w>)^{2}
\end{aligned}
$$

Circle data is linearly separable if distance (dot product) is computed using $K(x, w)$

Support Vector Machines

find the classification boundary with the widest margin
0 : $c_{i}=-1$
x : $c_{i}=+1$
minimize $\|w\|^{2}$ subject to $c_{i}\left(w \cdot x_{i}-b\right)>1$
Quadratic Programming problem
Also: use Kernel trick

Neural Networks

- inspired by biological networks (brain)
- connect up many simple units
- simple neuron: threshold and fire
- can help gain understanding of how biological intelligence works

Neural Networks

- can learn the same things that a decision tree can
- imposes different learning bias (way of making new predictions)
- back-propagation learning: errors made are propagated backwards to change the weights
- often the linear and sigmoid layers are treated as a single layer

Neural Networks Basics

- Each node j has a set of weights $w_{j 0}, w_{j 1}, \ldots, w_{j N}$
- Each node j receives inputs $v_{0}, v_{1}, \ldots v_{N}$
- number of weights $=$ number of parents +1

$$
\left(v_{0}=1 \text { constant bias term }\right)
$$

- output is the activation function output

$$
o_{j}=f\left(\sum_{i} w_{j i} v_{i}\right)
$$

necessarily non-linear because
A linear function of a linear function is a ...
linear function

Neural Networks Basics

- activation functions:
- step function $=$ integrate-and-fire (biological)

$$
f(z)= \begin{cases}c & \text { if } z \geq 0 \\ 1 & \text { if } z<0\end{cases}
$$

- sigmoid function $f(z)=1 /\left(1+e^{-z}\right)$
- rectified linear (ReLU): $g(z)=\max \{0, z\}$
- output of entire network is the classification result

Deep Neural Networks

output features
complete linear function
hidden layer
activation function
hidden layer
complete linear function
hidden layer
activation function
hidden layer
complete linear function
input features
Fiqure 7.16: A deep neural network

Learning weights

back-propagation implements stochastic gradient descent Recall:

$$
w_{i} \leftarrow w_{i}-\eta \frac{\partial E \operatorname{Error}(E, \vec{w})}{\partial w_{i}}
$$

η : learning rate.
Linear unit:

$$
\frac{\partial(a w+b)}{\partial w}=a
$$

Sigmoid unit (chain rule):

$$
\frac{\partial f(g(w))}{\partial w}=f^{\prime}(g(w)) \frac{\partial g(w)}{\partial w}
$$

Learning weights

Using the chain rule, this can be extended throughout the network e.g. taking a derivative of the $L^{\text {th }}$ layer w.r.t a weight in the $R^{t h}$ layer:

$$
\begin{aligned}
\frac{\partial \text { output }_{L}}{\partial w^{R}} & =\frac{\partial f\left(\text { output }_{L-1}\right)}{\partial w^{R}} \\
& =f^{\prime}\left(\text { output }_{L-1}\right) \frac{\partial \sum_{i} w_{j i}^{L-1} \text { input }_{L-1}}{\partial w^{R}} \\
& =f^{\prime}\left(\text { output }_{L-1}\right) \sum_{i} w_{j i} \frac{\partial f\left(\text { output }_{L-2}\right)}{\partial w^{R}} \\
& =f^{\prime}\left(\text { output }_{L-1}\right) \sum_{i} w_{j i} f^{\prime}\left(\text { output }_{L-2}\right) \ldots \frac{\partial \sum_{k} w_{l k}^{R} \text { input }_{R}}{\partial w^{R}} \\
& =f^{\prime}\left(\text { output }_{L-1}\right) \sum_{i} w_{j i} f^{\prime}\left(\text { output }_{L-2}\right) \ldots \text { input }_{R}
\end{aligned}
$$

Backpropagation

back-propagation implements stochastic gradient descent

- each layer $i=1 \ldots L$ has:
- N_{i} input units with input $[j], j=1 \ldots N_{i}$
- M_{i} output units with output $[j], j=1 \ldots M_{i}$
- $Y[j]$ is the data output/labels (output [L])
- $X[i]$ is the data input (input[1])
- error on output layer unit j : error $[j]=(Y[j]-$ output $[j])$
- for each other layer:

1. weight update (linear layer) $w_{j i} \leftarrow w_{j i}+\eta * \operatorname{input}[i] * \operatorname{error}[j]$
2. back-propagated error (linear layer) input_error $[i]=\sum_{j} w_{j i}$ error $[j]$
3. back-propagated error (activation layer) input_error $[i]=f^{\prime}($ output $[i]) * \operatorname{error}[i]$

Backpropagation

1: repeat

2:
3:
4:
5:
6:
7:
8: until some stopping criteria is reached

Regularization

Regularized Neural nets: prevent overfitting, increased bias for reduced variance

- parameter norm penalties added to objective function
- dataset augmentation
- early stopping
- dropout
- parameter tying
- Convolutional Neural nets: used for images
- Recurrent Neural nets: used for sequences

Composite models

- Random Forests
- Each decision tree in the forest is different
- different features, splitting criteria, training sets
- average or majority vote determines output
- Ensemble Learning : combination of base-level algorithms
- Boosting
- sequence of learners
- each learner is trained to fit the examples the previous learner did not fit well
- learners progressively biased towards higher precision
- early learners: lots of false positives, but reject all the clear negatives
- later learners: problem is more difficult, but the set of examples is more focussed around the challenging boundary

Next:

- Unsupervised Learning with Uncertainty (Poole \& Mackworth (2nd ed.)chapter 10.2,10.3,10.5)

