Lecture 9b - Supervised Machine Learning II

Jesse Hoey School of Computer Science University of Waterloo

June 27, 2022

Linear Regression

Linear regression is a model in which the output is a linear function of the input features.

$$\hat{Y}^{\vec{w}}(e) = w_0 + w_1 X_1(e) + \dots + w_n X_n(e)$$

 $\hat{Y}^{\vec{w}}(e) = \sum_{i=0}^n w_i X_i(e)$

where $\vec{w} = \langle w_0, w_1, w_2..., w_n \rangle$. We invent a new feature $X_0 \equiv 1$, to make it not a special case.

Readings: Poole & Mackworth (2nd ed.)Chapt. 7.3.2,7.5-7.6

Linear Regression

Linear regression is a model in which the output is a linear function of the input features.

$$\hat{Y}^{\vec{w}}(e) = w_0 + w_1 X_1(e) + \dots + w_n X_n(e)$$

 $\hat{Y}^{\vec{w}}(e) = \sum_{i=0}^n w_i X_i(e)$

where $\vec{w} = \langle w_0, w_1, w_2, \dots, w_n \rangle$. We invent a new feature $X_0 \equiv 1$, to make it not a special case.

The sum of squares error on examples E for output Y is:

$$\begin{split} & \textit{Error}(E, \vec{w}) = \sum_{e \in E} (Y(e) - \hat{Y}^{\vec{w}}(e))^2 \\ & = \sum_{e \in E} (Y(e) - \sum_{i=0}^n w_i X_i(e))^2 \end{split}$$

Goal: find weights that minimize $Error(E, \vec{w})$.

Finding weights that minimize $Error(E, \vec{w})$

Find the minimum analytically .

Effective when it can be done (e.g., for linear regression). If

- $\vec{y} = [Y(e_1), Y(e_2), \dots Y(e_M)]$ is a vector of the output features for the *M* examples
- X is a matrix where the *j*th column is the values of the input features for the *j*th example

• $\vec{w} = [w_0, w_1, \dots, w_n]$ is a vector of the weights then,

$$\vec{y}^T = \vec{w}X$$

 $\vec{y}^T X^T (XX^T)^{-1} = \vec{w}$

 $(XX^{T})^{-1}$ is the pseudo-inverse

Finding weights that minimize $Error_E(\vec{w})$

Find the minimum iteratively

Works for larger classes of problems (not just linear). Gradient descent :

$$w_i \leftarrow w_i - \eta \frac{\partial Error(E, \vec{w})}{\partial w_i}$$

 η is the gradient descent step size, the $\ensuremath{\left| \ensuremath{\mathsf{learning rate.}} \right.}$ If

$$Error(E, \vec{w}) = \sum_{e \in E} (Y(e) - \hat{Y}^{\vec{w}}(e))^2 = \sum_{e \in E} \left(Y(e) - \sum_{i=0}^n w_i X_i(e) \right)^2$$

then update rule:

$$w_i \leftarrow w_i + \eta \sum_{e \in E} \left(Y(e) - \sum_{i=0}^n w_i X_i(e) \right) X_i(e)$$

where we have set $\eta
ightarrow 2\eta$ (arbitrary scale)

Stochastic and Batched Gradient Descent

- · Algorithm on the last slide is incremental gradient descent
- If examples are chosen randomly at line 8 then its stochastic gradient descent.
- Batched gradient descent :
 - process a batch of size n before updating the weights
 - ▶ if *n* is all the data, then its gradient descent
 - ▶ if *n* = 1, its incremental gradient descent
- Incremental can be more efficient than batch, but convergence not guaranteed

1:	procedure LinearLearner(X, Y, E, η)
2:	Inputs X: set of input features, $X = \{X_1, \dots, X_n\}$
3:	Y: output feature
4:	E: set of examples from which to learn
5:	η : learning rate
6:	initialize w_0, \ldots, w_n randomly
7:	repeat
8:	for each example e in E do
9:	$\delta \leftarrow Y(e) - \sum_{i=0}^{n} w_i X_i(e)$
10:	for each $i \in [0, n]$ do
11:	$w_i \leftarrow w_i + \eta \delta X_i(e)$
12:	until some stopping criteria is true
13:	return w_0, \ldots, w_n

Linear Classifier

- Assume we are doing binary classification, with classes {0,1}
- There is no point in making a prediction of less than 0 or greater than 1.
- A squashed linear function is of the form:

$$\hat{Y}^{\vec{w}}(e) = f(w_0 + w_1 X_1(e) + \dots + w_n X_n(e))$$

= $f(\sum_{i=0}^n w_i X_i(e))$

where f is an activation function.

• A simple activation function is the step function :

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Gradient Descent for Linear Classifiers

The sigmoid or logistic activation function

If the activation function is differentiable, we can use gradient descent to update the weights. The sum of squares error:

$$Error(E, \vec{w}) = \sum_{e \in E} \left(Y(e) - f\left(\sum_{i=0}^{n} w_i * X_i(e)\right) \right)^2$$

The partial derivative with respect to weight wi is:

$$\frac{\partial Error(E, \vec{w})}{\partial w_i} = -2 * \delta * f'\left(\sum_i w_i * X_i(e)\right) * X_i(e)$$

where $\delta = (Y(e) - f(\sum_{i=0}^{n} w_i X_i(e)))$. Thus, each example *e* updates each weight w_i by

$$w_i \leftarrow w_i + \eta * \delta * f'\left(\sum_i w_i * X_i(e)\right) * X_i(e)$$

The sigmoid or logistic activation function

Discussion Board Example

 $\widehat{Reads}(e) = sigmoid(-8+7*Short(e)+3*New(e)+3*Known(e))$

Using the 18 training examples from lecture 4, this can be found in about 3000 iterations with a learning rate of $\eta=0.05$

Linearly Separable

Kernel Trick

- A dataset is linearly separable if there is a hyperplane where the classification is true on one side of the hyperplane and false on the other side.
- The hyperplane is defined by where the predicted value, $f^{i\delta}(x_1, \ldots, x_n) = f(w_0 + w_1 X_1(e) + \cdots + w_n X_n(e)) \text{ is 0.5.}$ For the sigmoid function, the hyperplane is defined by $w_0 + w_1 X_1(e) + \cdots + w_n X_n(e) = 0.$
- · Some data are not linearly separable

Some arbitrary data:

12/27

Kernel Trick

Data is not linearly separable:

Add another dimension, data is now linearly separable:

0

Kernel Trick: another example

ϕ z_3 x_2 × × × × × z_1 z_2

 $\phi(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

$$\left(\frac{x_1}{a}\right)^2 + \left(\frac{x_2}{b}\right)^2 = 1 \rightarrow \frac{z_1}{a^2} + \frac{z_3}{b^2} = 1$$

Key idea:

Mercer's Theorem

- Mercer's Theorem
- A dot product in the new "lifted" space = function (kernel) in old space
- Means: never have to know what φ is!!
- Only have to compute distances with the kernel .

$$\begin{split} \mathcal{K}(x,w) = & <\phi(x), \phi(w) > \\ & = x_1^2 w_1^2 + 2 x_1 x_2 w_1 w_2 + x_2^2 w_2^2 \\ & = (x_1 w_1 + x_2 w_2)^2 \\ & = (< x, w >)^2 \end{split}$$

Circle data is linearly separable if distance (dot product) is computed using K(x, w)

Support Vector Machines

find the classification boundary with the widest margin $o: c_i = -1$ $x : c_i = +1$ minimize $||w||^2$ subject to $c_i(w \cdot x_i - b) > 1$ Quadratic Programming problem Also: use Kernel trick

Neural Networks

Neural Networks

- inspired by biological networks (brain)
- connect up many simple units
- simple neuron: threshold and fire
- can help gain understanding of how biological intelligence works

- can learn the same things that a decision tree can
 imposes different
- learning bias (way of making new predictions)
- back-propagation learning: errors made are propagated backwards to change the weights
- often the linear and sigmoid layers are treated as a single layer

Neural Networks Basics

Neural Networks Basics

- Each node j has a set of weights w_{j0}, w_{j1},..., w_{jN}
- Each node j receives inputs v₀, v₁, ... v_N
- number of weights = number of parents + 1 ($v_0 = 1$ constant bias term)
- · output is the activation function output

$$o_j = f\left(\sum_i w_{ji}v_i\right)$$

necessarily non-linear because A linear function of a linear function is a ...

linear function

- activation functions:
 - **step function** = integrate-and-fire (biological) $(c \text{ if } z \ge 0)$

$$f(z) = \begin{cases} -z \\ 1 & \text{if } z < 0 \end{cases}$$

- sigmoid function $f(z) = 1/(1 + e^{-z})$
- rectified linear (ReLU): g(z) = max{0, z}
- output of entire network is the classification result

Deep Neural Networks

under features complete lines function hidden layer activation function hidden layer

Learning weights

back-propagation implements stochastic gradient descent Recall:

$$w_i \leftarrow w_i - \eta \frac{\partial Error(E, \vec{w})}{\partial w_i}$$

η: <mark>learning rate.</mark> Linear unit:

 $\frac{\partial(aw+b)}{\partial w} = a$

Sigmoid unit (chain rule):

$$\frac{\partial f(g(w))}{\partial w} = f'(g(w))\frac{\partial g(w)}{\partial w}$$

□ ≥ 20/2

21/27

Learning weights

Using the chain rule, this can be extended throughout the network e.g. taking a derivative of the L^{th} layer w.r.t a weight in the R^{th} layer:

$$\begin{split} \frac{\partial output_{L}}{\partial w^{R}} &= \frac{\partial f(output_{L-1})}{\partial w^{R}} \\ &= f'(output_{L-1}) \frac{\partial \sum_{i} w_{\mu}^{i} - 1input_{L-1}}{\partial w^{R}} \\ &= f'(output_{L-1}) \sum_{i} w_{\mu} \frac{\partial f(output_{L-2})}{\partial w^{R}} \\ &= f'(output_{L-1}) \sum_{i} w_{\mu} f'(output_{L-2}) \dots \frac{\partial \sum_{k} w_{k}^{R}input_{R}}{\partial w^{R}} \\ &= f'(output_{L-1}) \sum_{i} w_{\mu} f'(output_{L-2}) \dots \frac{\partial \sum_{k} w_{k}^{R}input_{R}}{\partial w^{R}} \end{split}$$

Backpropagation

back-propagation implements stochastic gradient descent

- each layer $i = 1 \dots L$ has:
 - N_i input units with input[j], j = 1...N_i
 - M_i output units with output[j], j = 1...M_i
- Y[j] is the data output/labels (output[L])
- X[i] is the data input (input[1])
- error on output layer unit j: error[j] = (Y[j] output[j])
- for each other layer:
 - 1. weight update (linear layer) $w_{ji} \leftarrow w_{ji} + \eta * input[i] * error[j]$
 - back-propagated error (linear layer) input_error[i] = ∑_i w_{ji} error[j]
 - back-propagated error (activation layer) input_error[i] = f'(output[i]) * error[i]

1:	repeat
2:	for each example e in E in random order do
3:	for each layer $i = 1 \dots L$ do (forwards)
4:	$output_i = f(input_i)$
5:	for each layer $j = L \dots 1$ do (backwards)
6:	compute back-propagated error
7:	update weights
8:	until some stopping criteria is reached

Regularized Neural nets: prevent overfitting, increased bias for reduced variance

- parameter norm penalties added to objective function
- dataset augmentation
- early stopping
- dropout
- parameter tying
 - Convolutional Neural nets: used for images
 - Recurrent Neural nets: used for sequences

Composite models Next:	

10 1 04/07

Random Forests

- Each decision tree in the forest is different
- different features, splitting criteria, training sets
- average or majority vote determines output
- Ensemble Learning : combination of base-level algorithms

Boosting

- sequence of learners
- each learner is trained to fit the examples the previous learner did not fit well
- learners progressively biased towards higher precision
- early learners: lots of false positives, but reject all the clear negatives
- later learners: problem is more difficult, but the set of examples is more focussed around the challenging boundary

 Unsupervised Learning with Uncertainty (Poole & Mackworth (2nd ed.)chapter 10.2,10.3,10.5)