
1/ 27

Lecture 9b - Supervised Machine Learning II

Jesse Hoey
School of Computer Science

University of Waterloo

June 27, 2022

Readings: Poole & Mackworth (2nd ed.)Chapt. 7.3.2,7.5-7.6

2/ 27

Linear Regression

Linear regression is a model in which the output is a linear
function of the input features.

Ŷ ~w (e) = w0 + w1X1(e) + · · ·+ wnXn(e)

Ŷ ~w (e) =
n∑

i=0

wiXi (e)

where ~w = 〈w0,w1,w2....wn〉. We invent a new feature X0 ≡ 1 ,
to make it not a special case.

The sum of squares error on examples E for output Y is:

Error(E , ~w) =
∑
e∈E

(Y (e)− Ŷ ~w (e))2

=
∑
e∈E

(Y (e)−
n∑

i=0

wiXi (e))2

Goal: find weights that minimize Error(E , ~w).

2/ 27

Linear Regression

Linear regression is a model in which the output is a linear
function of the input features.

Ŷ ~w (e) = w0 + w1X1(e) + · · ·+ wnXn(e)

Ŷ ~w (e) =
n∑

i=0

wiXi (e)

where ~w = 〈w0,w1,w2....wn〉. We invent a new feature X0 ≡ 1 ,
to make it not a special case.
The sum of squares error on examples E for output Y is:

Error(E , ~w) =
∑
e∈E

(Y (e)− Ŷ ~w (e))2

=
∑
e∈E

(Y (e)−
n∑

i=0

wiXi (e))2

Goal: find weights that minimize Error(E , ~w).
3/ 27

Finding weights that minimize Error(E , ~w)

Find the minimum analytically .
Effective when it can be done (e.g., for linear regression). If

~y = [Y (e1),Y (e2), . . .Y (eM)] is a vector of the output
features for the M examples

X is a matrix where the j th column is the values of the input
features for the j th example

~w = [w0,w1, . . . ,wn] is a vector of the weights

then,

~yT = ~wX

~yTXT (XXT)−1 = ~w

(XXT)−1 is the pseudo-inverse

4/ 27

Finding weights that minimize ErrorE (~w)

Find the minimum iteratively .
Works for larger classes of problems (not just linear).
Gradient descent :

wi ← wi − η
∂Error(E , ~w)

∂wi

η is the gradient descent step size, the learning rate.
If

Error(E , ~w) =
∑
e∈E

(Y (e)−Ŷ ~w (e))2 =
∑
e∈E

(
Y (e)−

n∑
i=0

wiXi (e)

)2

then update rule:

wi ← wi + η
∑
e∈E

(
Y (e)−

n∑
i=0

wiXi (e)

)
Xi (e)

where we have set η → 2η (arbitrary scale)
5/ 27

Incremental Gradient Descent for Linear Regression

1: procedure LinearLearner(X ,Y ,E , η)
2: Inputs X : set of input features, X = {X1, . . . ,Xn}
3: Y : output feature
4: E : set of examples from which to learn
5: η: learning rate

6: initialize w0, . . . ,wn randomly
7: repeat
8: for each example e in E do
9: δ ← Y (e)−

∑n
i=0 wiXi (e)

10: for each i ∈ [0, n] do
11: wi ← wi + ηδXi (e)

12: until some stopping criteria is true
13: return w0, . . . ,wn

6/ 27

Stochastic and Batched Gradient Descent

Algorithm on the last slide is incremental gradient descent

If examples are chosen randomly at line 8 then its
stochastic gradient descent .

Batched gradient descent :
I process a batch of size n before updating the weights
I if n is all the data, then its gradient descent

I if n = 1, its incremental gradient descent

Incremental can be more efficient than batch, but convergence
not guaranteed

7/ 27

Linear Classifier

Assume we are doing binary classification , with classes {0, 1}
There is no point in making a prediction of less than 0 or
greater than 1.

A squashed linear function is of the form:

Ŷ ~w (e) = f (w0 + w1X1(e) + · · ·+ wnXn(e))

= f (
n∑

i=0

wiXi (e))

where f is an activation function .

A simple activation function is the step function :

f (x) =

{
1 if x ≥ 0
0 if x < 0

8/ 27

Gradient Descent for Linear Classifiers

If the activation function is differentiable , we can use

gradient descent to update the weights. The sum of squares error:

Error(E , ~w) =
∑
e∈E

(
Y (e)− f

(
n∑

i=0

wi ∗ Xi (e)

))2

The partial derivative with respect to weight wi is:

∂Error(E , ~w)

∂wi
= −2 ∗ δ ∗ f ′

(∑
i

wi ∗ Xi (e)

)
∗ Xi (e)

where δ = (Y (e)− f (
∑n

i=0 wiXi (e))).
Thus, each example e updates each weight wi by

wi ← wi + η ∗ δ ∗ f ′
(∑

i

wi ∗ Xi (e)

)
∗ Xi (e)

9/ 27

The sigmoid or logistic activation function

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-10 -5 0 5 10

1

1 + e- x

f (x) =
1

1 + e−x

f ′(x) =
e−x

(1 + e−x)2
= f (x)(1− f (x))

so f ′(x) can be computed from f (x)

9/ 27

The sigmoid or logistic activation function

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-10 -5 0 5 10

1

1 + e- x

f (x) =
1

1 + e−x

f ′(x) =
e−x

(1 + e−x)2
= f (x)(1− f (x))

so f ′(x) can be computed from f (x)
10/ 27

Discussion Board Example

reads

thread

skips

length

long short

author

new follow up

unknownknown

skips

reads

R̂eads(e) = sigmoid(−8+7∗Short(e)+3∗New(e)+3∗Known(e))

Using the 18 training examples from lecture 4, this can be found in
about 3000 iterations with a learning rate of η = 0.05

11/ 27

Linearly Separable

A dataset is linearly separable if there is a hyperplane where
the classification is true on one side of the hyperplane and
false on the other side.

The hyperplane is defined by where the predicted value,
f ~w (X1, . . . ,Xn) = f (w0 + w1X1(e) + · · ·+ wnXn(e)) is 0.5.
For the sigmoid function, the hyperplane is defined by
w0 + w1X1(e) + · · ·+ wnXn(e) = 0.

Some data are not linearly separable

+ +

+-
0 1

0

1
or

- +

--
0 1

0

1
and

+ -

+-
0 1

0

1
xor

12/ 27

Kernel Trick

Some arbitrary data:

x
1 2 3 4

12/ 27

Kernel Trick

Data is not linearly separable:

x
1 2 3 4

12/ 27

Kernel Trick

Add another dimension, data is now linearly separable:

1 2 3 4

y

y = rem(x/2)

x

13/ 27

Kernel Trick: another example

φ(x1, x2)→ (x21 ,
√

2x1x2, x
2
2)

(x1
a

)2
+
(x2
b

)2
= 1→ z1

a2
+

z3
b2

= 1

14/ 27

Mercer’s Theorem

Key idea:

Mercer’s Theorem

A dot product in the new “lifted” space = function (kernel)
in old space

Means: never have to know what φ is!!

Only have to compute distances with the kernel .

15/ 27

Example

φ(x1, x2)→ (x21 ,
√

2x1x2, x
2
2)

dot product in old space:
< x ,w >= x1 ∗ w1 + x2 ∗ w2

dot product in new space:
kernel K (x ,w)

K (x ,w) =< φ(x), φ(w) >

= x21w
2
1 + 2x1x2w1w2 + x22w

2
2

= (x1w1 + x2w2)2

= (< x ,w >)2

Circle data is linearly separable if distance (dot product) is
computed using K (x ,w)

16/ 27

Support Vector Machines

find the classification boundary with the widest margin
o : ci = −1
x : ci = +1
minimize ||w ||2 subject to ci (w · xi − b) > 1
Quadratic Programming problem
Also: use Kernel trick

17/ 27

Neural Networks

inspired by biological networks (brain)

connect up many simple units

simple neuron: threshold and fire

can help gain understanding of how biological intelligence
works

17/ 27

Neural Networks

can learn the same things

that a decision tree can

imposes different

learning bias (way of
making new predictions)

back-propagation learning:
errors made are propagated
backwards to change the
weights

often the linear and sigmoid
layers are treated as a single
layer

hidden

1

short homeknown new

1

linear

layer

input

layer

sigmoid

layer

linear

layer

sigmoid

layer

output

reads

units

18/ 27

Neural Networks Basics

Each node j has a set of weights wj0,wj1, . . . ,wjN

Each node j receives inputs v0, v1, . . . vN

number of weights = number of parents + 1
(v0 = 1 constant bias term)

output is the activation function output

oj = f

(∑
i

wjivi

)

necessarily non-linear because
A linear function of a linear function is a ...

linear function

19/ 27

Neural Networks Basics

activation functions:
I step function = integrate-and-fire (biological)

f (z) =

{
c if z ≥ 0
1 if z < 0

I sigmoid function f (z) = 1/(1 + e−z)

I rectified linear (ReLU) : g(z) = max{0, z}
output of entire network is the classification result

20/ 27

Deep Neural Networks

21/ 27

Learning weights

back-propagation implements stochastic gradient descent
Recall:

wi ← wi − η
∂Error(E , ~w)

∂wi

η: learning rate.
Linear unit:

∂(aw + b)

∂w
= a

Sigmoid unit (chain rule):

∂f (g(w))

∂w
= f ′(g(w))

∂g(w)

∂w

22/ 27

Learning weights

Using the chain rule , this can be extended throughout the network
e.g. taking a derivative of the Lth layer w.r.t a weight in the Rth

layer:

∂outputL
∂wR

=
∂f (outputL−1)

∂wR

= f ′(outputL−1)
∂
∑

i w
L−1
ji inputL−1

∂wR

= f ′(outputL−1)
∑
i

wji
∂f (outputL−2)

∂wR

= f ′(outputL−1)
∑
i

wji f
′(outputL−2) . . .

∂
∑

k w
R
lk inputR

∂wR

= f ′(outputL−1)
∑
i

wji f
′(outputL−2) . . . inputR

23/ 27

Backpropagation

back-propagation implements stochastic gradient descent

each layer i = 1 . . . L has:
I Ni input units with input[j], j = 1 . . .Ni

I Mi output units with output[j], j = 1 . . .Mi

Y [j] is the data output/labels (output[L])

X [i] is the data input (input[1])

error on output layer unit j : error [j] = (Y [j]− output[j])

for each other layer:

1. weight update (linear layer) wji ← wji + η ∗ input[i] ∗ error [j]
2. back-propagated error (linear layer)

input error [i] =
∑

j wjierror [j]
3. back-propagated error (activation layer)

input error [i] = f ′(output[i]) ∗ error [i]

24/ 27

Backpropagation

1: repeat
2: for each example e in E in random order do
3: for each layer i = 1 . . . L do (forwards)
4: outputi = f (inputi)

5: for each layer j = L . . . 1 do (backwards)
6: compute back-propagated error
7: update weights

8: until some stopping criteria is reached

25/ 27

Regularization

Regularized Neural nets: prevent overfitting , increased bias for

reduced variance

parameter norm penalties added to objective function

dataset augmentation

early stopping

dropout

parameter tying
I Convolutional Neural nets: used for images
I Recurrent Neural nets: used for sequences

26/ 27

Composite models

Random Forests
I Each decision tree in the forest is different
I different features, splitting criteria, training sets
I average or majority vote determines output

Ensemble Learning : combination of base-level algorithms

Boosting
I sequence of learners
I each learner is trained to fit the examples the previous learner

did not fit well
I learners progressively biased towards higher precision
I early learners: lots of false positives, but reject all the clear

negatives
I later learners: problem is more difficult, but the set of

examples is more focussed around the challenging boundary

27/ 27

Next:

Unsupervised Learning with Uncertainty (Poole & Mackworth
(2nd ed.)chapter 10.2,10.3,10.5)

