Lecture 9a - Bayesian Learning

Jesse Hoey
School of Computer Science University of Waterloo

June 27, 2022

Readings: Poole \& Mackworth (2nd Ed.) Chapt. 10.1, 10.4

Bayesian Learning

Basic premise:

- have a number of hypotheses or models
- don't know which one is correct
- Bayesians assume all are correct to a certain degree
- Have a distribution over the models
- Compute expected prediction given this average

Bayesian Learning

Suppose X is input features, and Y is target feature, $\mathrm{d}=\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{N}, y_{N}\right\}$ is evidence (data), x is a new input, and we want to know corresponding output y.
We sum over all models, $m \in M$

$$
\begin{aligned}
P(Y \mid x, \mathrm{~d}) & =\sum_{\mathrm{m} \in \mathrm{M}} P(Y, \mathrm{~m} \mid x, \mathrm{~d}) \\
& =\sum_{\mathrm{m} \in \mathrm{M}} P(Y \mid \mathrm{m}, x, \mathrm{~d}) P(\mathrm{~m} \mid x, \mathrm{~d}) \\
& =\sum_{\mathrm{m} \in \mathrm{M}} P(Y \mid \mathrm{m}, x) P(\mathrm{~m} \mid \mathrm{d})
\end{aligned}
$$

Candy Example

- Have a bag of Candy with 2 flavors (Lime, Cherry)
- Sold in bags with different ratios
- 100% cherry
- 75% cherry $+25 \%$ lime
- 50% cherry $+50 \%$ lime
- 25% cherry $+75 \%$ lime
- 100% lime
- With a random sample - what ratio is in the bag?
- see bayesian-learning.pdf

Statistical Learning

- Hypotheses H (or models M) : probabilistic theory about the world
- $h_{1}: 100 \%$ cherry
- $h_{2}: 75 \%$ cherry $+25 \%$ lime
- $h_{3}: 50 \%$ cherry $+50 \%$ lime
- $h_{4}: 25 \%$ cherry $+75 \%$ lime
- $h_{5}: 100 \%$ lime
- Data D : evidence about the world
- $d_{1}: 1^{\text {st }}$ candy is lime
- $d_{2}: 2^{\text {nd }}$ candy is lime
- $d_{3}: 3^{\text {rd }}$ candy is lime
- ...

We may have some prior distribution over the hypotheses:
Prior $P(H)=[0.1,0.2,0.4,0.2,0.1]$

Bayesian Learning

- Prior: $P(H)$
- Likelihood: $P(\mathrm{~d} \mid H)$
- Evidence: $\mathrm{d}=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$

Bayesian learning: update the posterior (Bayes' theorem)

$$
P(H \mid \mathrm{d}) \propto P(\mathrm{~d} \mid H) P(H)
$$

Bayesian Prediction

- want to predict X : (e.g. next candy)

$$
\begin{aligned}
P(X \mid \mathrm{d}) & =\sum_{i} P\left(X \mid \mathrm{d}, h_{i}\right) P\left(h_{i} \mid \mathrm{d}\right) \\
& =\sum_{i} P\left(X \mid h_{i}\right) P\left(h_{i} \mid \mathrm{d}\right)
\end{aligned}
$$

- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as intermediaries between raw data and prediction

Posterior

Posteriors given data generated from \mathbf{h}_{5}

Bayesian Prediction

Bayesian Learning

Bayesian learning properties:

- Optimal : given prior, no other prediction is correct more often than the Bayesian one
- No overfitting : prior/likelihood both penalise complex hypotheses
Price to pay:
- Bayesian learning may be intractable when hypothesis space is large
- sum over hypotheses space may be intractable

Solution: approximate Bayesian learning

Maximum a posteriori

- Idea: make prediction based on most probable hypothesis: $h_{M A P}$
- $h_{M A P}=\operatorname{argmax}_{h_{i}} P\left(h_{i} \mid d\right)$
- $P(X \mid d) \approx P\left(X \mid h_{M A P}\right)$
- Constrast with Bayesian learning where all hypotheses are used

Posterior

Posteriors given data generated from h_{5}

MAP properties

- MAP prediction less accurate than full Bayesian since it relies only on one hypothesis
- MAP and Bayesian predictions converge as data increases
- no overfitting (as in Bayesian learning)
- Finding $h_{M A P}$ may be intractable:

$$
\begin{aligned}
h_{M A P} & =\operatorname{argmax}_{h} P(h \mid \mathrm{d}) \\
& =\operatorname{argmax}_{h} P(h) P(\mathrm{~d} \mid h) \\
& =\operatorname{argmax}_{h} P(h) \prod_{i} P\left(d_{i} \mid h\right)
\end{aligned}
$$

product induces a non-linear optimisation

- can take the log to linearise

$$
h_{M A P}=\operatorname{argmax}_{h}\left[\log P(h)+\sum_{i} \log P\left(d_{i} \mid h\right)\right]
$$

Maximum Likelihood (ML)

- Idea: Simplify MAP by assuming uniform prior (i.e. $P\left(h_{i}\right)=P\left(h_{j}\right) \forall i, j$)

$$
\begin{aligned}
& h_{M A P}=\operatorname{argmax}_{h} P(h) P(\mathrm{~d} \mid h) \\
& h_{M L}=\operatorname{argmax}_{h} P(\mathrm{~d} \mid h)
\end{aligned}
$$

- Make prediction based on $h_{M L}$ only

$$
P(X \mid \mathrm{d}) \approx P\left(X \mid h_{M L}\right)
$$

ML Properties

- ML prediction less accurate than Bayesian or MAP predictions since it ignores prior and relies on one hypothesis
- but ML, MAP and Bayesian converge as the amount of data increases
- more susceptible to overfitting: no prior
- $h_{M L}$ is often easier to find than $h_{M A P}$

$$
h_{M L}=\operatorname{argmax}_{h} \sum_{i} \log P\left(d_{i} \mid h\right)
$$

- see bayesian-learning.pdf for worked examples

Binomial Distribution

- Generalise the hypothesis space to a continuous quantity
- $P($ Flavour $=$ cherry $)=\theta$ (like a "coin weight")
- $P($ Flavour $=$ lime $)=(1-\theta)$
- $P(k$ lime,n cherry $)=\theta^{n}(1-\theta)^{k}$ (one order)
- $P(k$ lime, n cherry $)=\binom{n+k}{k} \theta^{n}(1-\theta)^{k}$ (any order)
- see bayesian-learning.pdf for worked examples

Priors on Binomials

The Beta distribution $B(\theta, a, b)=\theta^{a-1}(1-\theta)^{b-1}$

Bayesian classifiers

- Idea: if you knew the classification you could predict the values of features.

$$
P\left(\text { Class } \mid X_{1} \ldots X_{n}\right) \propto P\left(X_{1}, \ldots, X_{n} \mid \text { Class }\right) P(\text { Class })
$$

- Naïve Bayesian classifier: X_{i} are independent of each other given the class.
Requires: $P($ Class $)$ and $P\left(X_{i} \mid\right.$ Class $)$ for each X_{i}.

$$
P\left(\text { Class } \mid X_{1} \ldots X_{n}\right) \propto\left[\prod_{i} P\left(X_{i} \mid \text { Class }\right)\right] P(\text { Class })
$$

Naïve Bayes classifier

- Predict class C based on attributes A_{i}
- Parameters:

$$
\begin{aligned}
\theta & =P(C=\text { true }) \\
\theta_{i 1} & =P\left(A_{i}=\text { true } \mid C=\text { true }\right) \\
\theta_{i 0} & =P\left(A_{i}=\text { true } \mid C=\text { false }\right)
\end{aligned}
$$

- Assumption: $A_{i} \mathrm{~s}$ are independent given C.

Naïve Bayes classifier

ML sets

- θ to relative frequency of reads, skips
- $\theta_{i 1}$ to relative frequency of A_{i} given reads, skips

$$
\begin{gathered}
\theta_{i 1}=\frac{\text { number of articles that are read and have } A_{i}=\text { true }}{\text { number of articles that are read }} \\
\theta_{i 0}=\frac{\text { number of articles that are skipped and have } A_{i}=\text { true }}{\text { number of articles that are skipped }}
\end{gathered}
$$

Laplace correction

- If a feature never occurs in the training set, but does in the test set,
- ML may assign zero probability to a high likelihood class.
- add 1 to the numerator, and add d (arity of variable) to the denominator
- assign:

$$
\begin{aligned}
& \theta_{i 1}=\frac{\left(\text { number of articles that are read and have } A_{i}=\text { true }\right)+1}{\text { number of articles that are read }+2} \\
& \theta_{i 0}=\frac{\left(\text { number of articles that are skipped and have } A_{i}=\text { true }\right)+1}{\text { number of articles that are skipped }+2}
\end{aligned}
$$

- like a pseudocount
- see naivebayesml.pdf

Bayesian Network Parameter Learning (ML)

For fully observed data

- Parameters $\theta_{V, p a(V)=v^{i}}$
- CPTs $\theta_{V, p a}(V)=v=P(V \mid P a(V)=v)$
- Data d:

$$
\begin{aligned}
& d_{1}=<V_{1}=v_{1,1}, V_{2}=v_{2,1}, \ldots, V_{n}=v_{n, 1}> \\
& d_{2}=<V_{2}=v_{1,2}, V_{2}=v_{2,2}, \ldots, V_{n}=v_{n, 2}>
\end{aligned}
$$

- Maximum likelihood: Set $\theta_{V, p a(V)=v}$ to the relative frequency of values of V given the the values v of the parents of V

Occam's Razor

e.g. from MacKay
www.inference.phy.cam.ac.uk/mackay/itila/book.html

Occam's Razor

Figure 28.2. How many boxes are behind the tree?
e.g. from MacKay
www.inference.phy.cam.ac.uk/mackay/itila/book.html

Occam's Razor

- Simplicity is encouraged in the likelihood function:
- H_{2} is more complex (lower bias) than H_{1},
- so can explain more datasets D,
- but each with lower probability (higher variance)

Overfitting

Test set errors caused by:

- bias: the error due to the algorithm finding an imperfect model.
- representation bias: model is too simple
- search bias : not enough search
- variance : the error due to lack of data.
- noise : the error due to the data depending on features not modeled or because the process generating the data is inherently stochastic.
- bias-variance trade-off:
- Complicated model, not enough data (low bias, high variance)
- Simple model, lots of data (high bias, low variance)
- see handout biasvariance.pdf

Minimum Description Length

Bayesian learning: update the posterior (Bayes' theorem)

$$
P(H \mid \mathrm{d})=k P(\mathrm{~d} \mid H) P(H)
$$

So

$$
-\log P(H \mid \mathrm{d})=-\log P(\mathrm{~d} \mid H)-\log P(H)
$$

- first term : number of bits to encode the data given the model
- second term : number of bits to encode the model
- MDL principle is to choose the model that minimizes the number of bits it takes to describe both the model and the data given the model.
- MDL is equivalent to Bayesian model selection

Next:

- Supervised Learning under Uncertainty (Poole \& Mackworth (2nd Ed.) chapter 7.3.2,7.5-7.6)

