Lecture 9a - Bayesian Learning

Jesse Hoey School of Computer Science University of Waterloo

June 27, 2022

Readings: Poole & Mackworth (2nd Ed.) Chapt. 10.1, 10.4

Basic premise:

- have a number of hypotheses or models
- don't know which one is correct
- Bayesians assume all are correct to a certain degree
- Have a distribution over the models
- Compute expected prediction given this average

Suppose X is input features, and Y is target feature, $d = \{x_1, y_1, x_2, y_2, \dots, x_N, y_N\}$ is evidence (data), x is a new input, and we want to know corresponding output y. We sum over all models, $m \in M$

$$P(Y|x,d) = \sum_{m \in M} P(Y,m|x,d)$$
$$= \sum_{m \in M} P(Y|m,x,d)P(m|x,d)$$
$$= \sum_{m \in M} P(Y|m,x)P(m|d)$$

- Have a bag of Candy with 2 flavors (Lime, Cherry)
- Sold in bags with different ratios
 - 100% cherry
 - ▶ 75% cherry+25% lime
 - ▶ 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime
- With a random sample what ratio is in the bag?
- see bayesian-learning.pdf

Statistical Learning

- Hypotheses *H* (or models *M*) : probabilistic theory about the world
 - ▶ *h*₁: 100% cherry
 - ▶ *h*₂: 75% cherry+25% lime
 - h_3 : 50% cherry + 50% lime
 - *h*₄: 25% cherry + 75% lime
 - h₅: 100% lime
- Data D : evidence about the world
 - ▶ *d*₁: 1st candy is lime
 - ▶ d₂: 2nd candy is lime
 - d_3 : 3rd candy is lime

...

We may have some prior distribution over the hypotheses: Prior P(H) = [0.1, 0.2, 0.4, 0.2, 0.1]

- Prior : P(H)
- Likelihood : P(d|H)
- Evidence : $d = \{d_1, d_2, ..., d_n\}$

Bayesian learning: update the posterior (Bayes' theorem)

 $P(H|d) \propto P(d|H)P(H)$

• want to predict X : (e.g. next candy)

$$egin{aligned} P(X|\mathsf{d}) &= \sum_i P(X|\mathsf{d},h_i)P(h_i|\mathsf{d}) \ &= \sum_i P(X|h_i)P(h_i|\mathsf{d}) \end{aligned}$$

- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as intermediaries between raw data and prediction

Posterior

▲ □ ▶ 8/26

Bayesian Prediction

▲ □ ▶ 9/ 26

Bayesian learning properties:

- Optimal : given prior, no other prediction is correct more often than the Bayesian one
- No overfitting: prior/likelihood both penalise complex hypotheses

Price to pay:

- Bayesian learning may be intractable when hypothesis space is large
- sum over hypotheses space may be intractable

Solution: approximate Bayesian learning

- Idea: make prediction based on most probable hypothesis : h_{MAP}
- $h_{MAP} = argmax_{h_i}P(h_i|d)$
- $P(X|d) \approx P(X|h_{MAP})$
- Constrast with Bayesian learning where all hypotheses are used

Posterior

▲ □ ▶ 12/26

MAP properties

- MAP prediction less accurate than full Bayesian since it relies only on one hypothesis
- MAP and Bayesian predictions converge as data increases
- no overfitting (as in Bayesian learning)
- Finding *h_{MAP}* may be intractable:

 $h_{MAP} = argmax_h P(h|d)$ = $argmax_h P(h)P(d|h)$ = $argmax_h P(h) \prod_i P(d_i|h)$

product induces a non-linear optimisation • can take the log to linearise $h_{MAP} = argmax_h \left[logP(h) + \sum_i logP(d_i|h) \right]$ Idea: Simplify MAP by assuming uniform prior (i.e. P(h_i) = P(h_j)∀i, j)

 $h_{MAP} = argmax_h P(h) P(d|h)$

 $h_{ML} = argmax_h P(d|h)$

• Make prediction based on h_{ML} only

 $P(X|d) \approx P(X|h_{ML})$

- ML prediction less accurate than Bayesian or MAP predictions since it ignores prior and relies on one hypothesis
- but ML, MAP and Bayesian converge as the amount of data increases
- more susceptible to overfitting : no prior
- h_{ML} is often easier to find than h_{MAP}

$$h_{ML} = argmax_h \sum_i log P(d_i|h)$$

• see bayesian-learning.pdf for worked examples

- Generalise the hypothesis space to a continuous quantity
- $P(Flavour = cherry) = \theta$ (like a "coin weight")

•
$$P(Flavour = lime) = (1 - \theta)$$

- $P(k \text{ lime, } n \text{ cherry}) = \theta^n (1 \theta)^k$ (one order)
- $P(k \text{ lime, } n \text{ cherry}) = {n+k \choose k} \theta^n (1-\theta)^k$ (any order)
- see bayesian-learning.pdf for worked examples

Priors on Binomials

The Beta distribution $B(\theta, a, b) = \theta^{a-1}(1-\theta)^{b-1}$

Beta distribution

Bayesian classifiers

• Idea: if you knew the classification you could predict the values of features.

 $P(Class|X_1...X_n) \propto P(X_1,...,X_n|Class)P(Class)$

Naïve Bayesian classifier: X_i are independent of each other given the class.
 Requires: P(Class) and P(X_i|Class) for each X_i.

Naïve Bayes classifier

- Predict class C based on attributes A_i
- Parameters:

$$\theta = P(C = true)$$

$$\theta_{i1} = P(A_i = true | C = true)$$

$$\theta_{i0} = P(A_i = true | C = false)$$

• Assumption: A_i s are independent given C.

Naïve Bayes classifier

UserAction					
	uthor	Thread	Length	$>$ \leq	nere Read
	Action	Author	Thread	Length	Where
e1	skips	known	new	long	home
e2	reads	unknown	new	short	work
e3	skips	unknown	old	long	work

ML sets

- $\bullet~\theta$ to relative frequency of reads, skips
- θ_{i1} to relative frequency of A_i given reads, skips

 $\theta_{i1} = \frac{\text{number of articles that are read and have } A_i = true}{\text{number of articles that are read}}$ $\theta_{i0} = \frac{\text{number of articles that are skipped and have } A_i = true}{\text{number of articles that are skipped}}$

- If a feature never occurs in the training set , but does in the test set,
- ML may assign zero probability to a high likelihood class.
- add 1 to the numerator, and add *d* (arity of variable) to the denominator
- assign:

 $\theta_{i1} = \frac{(\text{number of articles that are read and have } A_i = true) + 1}{\text{number of articles that are read} + 2}$

 $\theta_{i0} = \frac{(\text{number of articles that are skipped and have } A_i = true) + 1}{\text{number of articles that are skipped} + 2}$

- like a pseudocount
- see naivebayesml.pdf

Bayesian Network Parameter Learning (ML)

For fully observed data

. . .

- Parameters $\theta_{V,pa(V)=v^i}$
- CPTs $\theta_{V,pa(V)=v} = P(V|Pa(V)=v)$

• Data d:

$$d_1 = \langle V_1 = v_{1,1}, V_2 = v_{2,1}, \dots, V_n = v_{n,1} \rangle$$

$$d_2 = \langle V_2 = v_{1,2}, V_2 = v_{2,2}, \dots, V_n = v_{n,2} \rangle$$

 Maximum likelihood: Set θ_{V,pa(V)=v} to the relative frequency of values of V given the the values v of the parents of V

e.g. from MacKay www.inference.phy.cam.ac.uk/mackay/itila/book.html

e.g. from MacKay www.inference.phy.cam.ac.uk/mackay/itila/book.html

Occam's Razor

- Simplicity is encouraged in the likelihood function:
- H_2 is more complex (lower bias) than H_1 ,
- so can explain more datasets D,
- but each with lower probability (higher variance)

Test set errors caused by:

- bias : the error due to the algorithm finding an imperfect model.
 - representation bias : model is too simple
 - search bias : not enough search
- variance : the error due to lack of data.
- noise : the error due to the data depending on features not modeled or because the process generating the data is inherently stochastic.
- bias-variance trade-off :
 - Complicated model, not enough data (low bias, high variance)
 - Simple model, lots of data (high bias, low variance)
- see handout biasvariance.pdf

Minimum Description Length

Bayesian learning: update the posterior (Bayes' theorem)

P(H|d) = kP(d|H)P(H)

So

$$-logP(H|d) = -logP(d|H) - logP(H)$$

- first term : number of bits to encode the data given the model
- second term : number of bits to encode the model
- MDL principle is to choose the model that minimizes the number of bits it takes to describe both the model and the data given the model.
- MDL is equivalent to Bayesian model selection

• Supervised Learning under Uncertainty (Poole & Mackworth (2nd Ed.) chapter 7.3.2,7.5-7.6)