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Lecture 9a - Bayesian Learning

Jesse Hoey
School of Computer Science

University of Waterloo

June 27, 2022

Readings: Poole & Mackworth (2nd Ed.) Chapt. 10.1, 10.4
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Bayesian Learning

Basic premise:

have a number of hypotheses or models

don’t know which one is correct

Bayesians assume all are correct to a certain degree

Have a distribution over the models

Compute expected prediction given this average
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Bayesian Learning

Suppose X is input features , and Y is target feature,
d = {x1, y1, x2, y2, . . . , xN , yN} is evidence (data), x is a new input,
and we want to know corresponding output y .
We sum over all models , m ∈ M

P(Y |x , d) =
∑
m∈M

P(Y ,m|x , d)

=
∑
m∈M

P(Y |m, x , d)P(m|x , d)

=
∑
m∈M

P(Y |m, x)P(m|d)
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Candy Example

Have a bag of Candy with 2 flavors (Lime, Cherry)

Sold in bags with different ratios
I 100% cherry
I 75% cherry+25% lime
I 50% cherry + 50% lime
I 25% cherry + 75% lime
I 100% lime

With a random sample - what ratio is in the bag?

see bayesian-learning.pdf
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Statistical Learning

Hypotheses H (or models M) : probabilistic theory about the

world
I h1: 100% cherry
I h2: 75% cherry+25% lime
I h3: 50% cherry + 50% lime
I h4: 25% cherry + 75% lime
I h5: 100% lime

Data D : evidence about the world
I d1: 1st candy is lime
I d2: 2nd candy is lime
I d3: 3rd candy is lime
I ...

We may have some prior distribution over the hypotheses:
Prior P(H) = [0.1, 0.2, 0.4, 0.2, 0.1]
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Bayesian Learning

Prior : P(H)

Likelihood : P(d|H)

Evidence : d = {d1, d2, . . . , dn}
Bayesian learning: update the posterior (Bayes’ theorem)

P(H|d) ∝ P(d|H)P(H)



7/ 26

Bayesian Prediction

want to predict X : (e.g. next candy)

P(X |d) =
∑
i

P(X |d, hi )P(hi |d)

=
∑
i

P(X |hi )P(hi |d)

Predictions are weighted averages of the predictions of the
individual hypotheses

Hypotheses serve as intermediaries between raw data and
prediction
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Posterior
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Bayesian Prediction
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Bayesian Learning

Bayesian learning properties:

Optimal : given prior, no other prediction is correct more
often than the Bayesian one

No overfitting : prior/likelihood both penalise complex
hypotheses

Price to pay:

Bayesian learning may be intractable when hypothesis space
is large

sum over hypotheses space may be intractable

Solution: approximate Bayesian learning
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Maximum a posteriori

Idea: make prediction based on most probable hypothesis :
hMAP

hMAP = argmaxhiP(hi |d)

P(X |d) ≈ P(X |hMAP)

Constrast with Bayesian learning where all hypotheses are
used
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MAP properties

MAP prediction less accurate than full Bayesian since it
relies only on one hypothesis
MAP and Bayesian predictions converge as data increases

no overfitting (as in Bayesian learning)
Finding hMAP may be intractable:

hMAP = argmaxhP(h|d)

= argmaxhP(h)P(d|h)

= argmaxhP(h)
∏
i

P(di |h)

product induces a non-linear optimisation

can take the log to linearise

hMAP = argmaxh

[
logP(h) +

∑
i

logP(di |h)

]
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Maximum Likelihood (ML)

Idea: Simplify MAP by assuming uniform prior
(i.e. P(hi ) = P(hj)∀i , j)

hMAP = argmaxhP(h)P(d|h)

hML = argmaxhP(d|h)

Make prediction based on hML only

P(X |d) ≈ P(X |hML)
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ML Properties

ML prediction less accurate than Bayesian or MAP
predictions since it ignores prior and relies on one hypothesis

but ML, MAP and Bayesian converge as the amount of data
increases

more susceptible to overfitting : no prior

hML is often easier to find than hMAP

hML = argmaxh
∑
i

logP(di |h)

see bayesian-learning.pdf for worked examples
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Binomial Distribution

Generalise the hypothesis space to a continuous quantity

P(Flavour = cherry) = θ (like a “coin weight”)

P(Flavour = lime) = (1− θ)

P(k lime, n cherry) = θn(1− θ)k (one order)

P(k lime, n cherry) =

(
n + k
k

)
θn(1− θ)k (any order)

see bayesian-learning.pdf for worked examples
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Priors on Binomials

The Beta distribution B(θ, a, b) = θa−1(1− θ)b−1
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Bayesian classifiers

Idea: if you knew the classification you could predict the
values of features.

P(Class|X1 . . .Xn) ∝ P(X1, . . . ,Xn|Class)P(Class)

Näıve Bayesian classifier: Xi are independent of each other
given the class.
Requires: P(Class) and P(Xi |Class) for each Xi .

P(Class|X1 . . .Xn) ∝

[∏
i

P(Xi |Class)

]
P(Class)

UserAction

Author Thread Length Where Read
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Näıve Bayes classifier

Predict class C based on attributes Ai

Parameters:

θ = P(C = true)

θi1 = P(Ai = true|C = true)

θi0 = P(Ai = true|C = false)

Assumption: Ai s are independent given C .
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Näıve Bayes classifier

UserAction

Author Thread Length Where Read

Action Author Thread Length Where

e1 skips known new long home
e2 reads unknown new short work
e3 skips unknown old long work
... ... ... ... ... ...

ML sets

θ to relative frequency of reads, skips
θi1 to relative frequency of Ai given reads, skips

θi1 =
number of articles that are read and have Ai = true

number of articles that are read

θi0 =
number of articles that are skipped and have Ai = true

number of articles that are skipped
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Laplace correction

If a feature never occurs in the training set , but does in the
test set,

ML may assign zero probability to a high likelihood class.

add 1 to the numerator, and add d (arity of variable) to the
denominator

assign:

θi1 =
(number of articles that are read and have Ai = true) + 1

number of articles that are read+2

θi0 =
(number of articles that are skipped and have Ai = true) + 1

number of articles that are skipped+2

like a pseudocount

see naivebayesml.pdf
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Bayesian Network Parameter Learning (ML)

For fully observed data

Parameters θV ,pa(V )=vi

CPTs θV ,pa(V )=v = P(V |Pa(V ) = v)

Data d:

d1 =< V1 = v1,1,V2 = v2,1, . . . ,Vn = vn,1 >

d2 =< V2 = v1,2,V2 = v2,2, . . . ,Vn = vn,2 >

. . .

Maximum likelihood: Set θV ,pa(V )=v to the relative frequency
of values of V given the the values v of the parents of V
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Occam’s Razor

e.g. from MacKay
www.inference.phy.cam.ac.uk/mackay/itila/book.html
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Occam’s Razor

e.g. from MacKay
www.inference.phy.cam.ac.uk/mackay/itila/book.html
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Occam’s Razor

Simplicity is encouraged in the likelihood function:

H2 is more complex (lower bias) than H1,

so can explain more datasets D,

but each with lower probability (higher variance)
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Overfitting

Test set errors caused by:

bias : the error due to the algorithm finding an imperfect
model.
I representation bias : model is too simple

I search bias : not enough search

variance : the error due to lack of data.

noise : the error due to the data depending on features not
modeled or because the process generating the data is
inherently stochastic.

bias-variance trade-off :
I Complicated model, not enough data (low bias, high variance)
I Simple model, lots of data (high bias, low variance)

see handout biasvariance.pdf



26/ 26

Minimum Description Length

Bayesian learning: update the posterior (Bayes’ theorem)

P(H|d) = kP(d|H)P(H)

So

−logP(H|d) = − logP(d|H)− logP(H)

first term : number of bits to encode the data given the model

second term : number of bits to encode the model

MDL principle is to choose the model that minimizes the
number of bits it takes to describe both the model and the
data given the model.

MDL is equivalent to Bayesian model selection
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Next:

Supervised Learning under Uncertainty (Poole & Mackworth
(2nd Ed.) chapter 7.3.2,7.5-7.6)


