Lecture 8 - Reasoning under Uncertainty (Part II)

Jesse Hoey
School of Computer Science
University of Waterloo

June 21, 2022

Readings: Poole \& Mackworth (2nd ed.)Chapt. 8.5-8.9

Probability and Time

- A node repeats over time
- explicit encoding of time
- chain has length = amount of time you want to model
- event-driven times or clock-driven times
- e.g. Markov chain

TIME:
1
2
3 4

Markov assumption

$$
P\left(S_{t+1} \mid S_{1}, \ldots, S_{t}\right)=P\left(S_{t+1} \mid S_{t}\right)
$$

This distribution gives the dynamics of the Markov chain

Hidden Markov Models (HMMs)

Add: observations O_{t} (always observed, so the node is square) and
observation function $P\left(O_{t} \mid S_{t}\right)$
Given a sequency of observations O_{1}, \ldots, O_{t}, can estimate filtering :

$$
P\left(S_{t} \mid O_{1}, \ldots, O_{t}\right)
$$

or smoothing, for $k<t$

$$
P\left(S_{k} \mid O_{1}, \ldots, O_{t}\right)
$$

Speech Recognition

- Most well known application of HMMs
- observations : audio features
- states: phonemes
- dynamics: models e.g. co-articulation
- HMMs: words
- Can build hierarchical models (e.g. sentences) the sun was

Belief Monitoring in HMMs

TIME:
23

filtering:

$$
\begin{aligned}
\alpha_{i} & =P\left(S_{i} \mid o_{0} \ldots, o_{i}\right) \\
& \propto P\left(S_{i}, o_{0}, \ldots, o_{i}\right) \\
& =P\left(o_{i} \mid S_{i}\right) \sum_{S_{i-1}} P\left(S_{i}, S_{i-1}, o_{0}, \ldots, o_{i-1}\right) \\
& =P\left(o_{i} \mid S_{i}\right) \sum_{s_{i-1}} P\left(S_{i} \mid S_{i-1}\right) P\left(S_{i-1}, o_{0}, \ldots, o_{i-1}\right) \\
& \propto P\left(o_{i} \mid S_{i}\right) \sum_{s_{i-1}} P\left(S_{i} \mid S_{i-1}\right) \alpha_{i-1}
\end{aligned}
$$

Belief Monitoring in HMMs

TIME:
23

smoothing:

$$
\begin{aligned}
\beta_{i+1} & =P\left(o_{i+1} \ldots, o_{T} \mid S_{i}\right) \\
& =\sum_{S_{i+1}} P\left(S_{i+1}, o_{i+1}, \ldots, o_{T} \mid S_{i}\right) \\
& =\sum_{S_{i+1}} P\left(o_{i+1} \mid S_{i+1}, o_{i+2}, \ldots, o_{T}, S_{i}\right) P\left(S_{i+1}, o_{i+2}, \ldots, o_{T} \mid S_{i}\right) \\
& =\sum_{S_{i+1}} P\left(o_{i+1} \mid S_{i+1}\right) P\left(o_{i+2}, \ldots, o_{T} \mid S_{i+1}, S_{i}\right) P\left(S_{i+1} \mid S_{i}\right) \\
& =\sum_{S_{i+1}} P\left(o_{i+1} \mid S_{i+1}\right) P\left(S_{i+1} \mid S_{i}\right) \beta_{i+2}
\end{aligned}
$$

Belief Monitoring in HMMs

TIME:

filtering and smoothing together :

$$
\alpha_{i} \beta_{i+1}=P\left(o_{i+1} \ldots, o_{T} \mid S_{i}\right) P\left(S_{i} \mid o_{0} \ldots, o_{i}\right) \propto P\left(S_{i} \mid O\right)
$$

Dynamic Bayesian Networks (DBNs)

- in general, any Bayesian network can repeat over time: DBN
- Many examples can be solved with variable elimination ,
- may become too complex with enough variables
- event-driven times or clock-driven times

Example: localization

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented HMM :

Example localization domain

- Circular corridor, with 16 locations:

- Doors at positions: 2, 4, 7, 11.
- Noisy Sensors
- Stochastic Dynamics
- Robot starts at an unknown location and must determine where it is, known as the kidnapped robot problem.
- see handout robotloc.pdf

Example Sensor Model

- $P($ Observe Door \mid At Door $)=0.8$
- $P($ Observe Door \mid Not At Door $)=0.1$

Example Dynamics Model

- $P\left(\right.$ Loc $_{t+1}=I \mid$ Action $_{t}=$ goRight \wedge Loc $\left._{t}=I\right)=0.1$
- $P\left(\right.$ Loc $_{t+1}=I+1 \mid$ Action $_{t}=$ goRight $\left.\wedge L o c_{t}=I\right)=0.8$
- $P\left(\right.$ Loc $_{t+1}=I+2 \mid$ Action $_{t}=$ goRight \wedge Loc $\left._{t}=I\right)=0.074$
- $P\left(\right.$ Loc $_{t+1}=I^{\prime} \mid$ Action $_{t}=$ goRight \wedge Loc $\left._{t}=I\right)=0.002$ for any other location I^{\prime}.
- All location arithmetic is modulo 16.
- The action goLeft works the same but to the left.

Example sequence

observe door, go right, observe no door, go right, observe door where is the robot?

$$
P\left(L o c_{2}=4 \mid O_{0}=d, A_{0}=r, O_{1}=\neg d, A_{1}=r, O_{2}=d\right)=0.42
$$

Combining sensor information

- Example: we can combine information from a light sensor and the door sensor Sensor Fusion
- Key Point: Bayesian probability ensures that evidence is integrated proportionally to its precision.
- Sensors are precision weighted

Loc c_{t} robot location at time t
D_{t} door sensor value at time t
L_{t} light sensor value at time t

Probability Distribution and Monte Carlo

ENIAC 1949

Stanlislaw Ulam 1909-1984

Monte Carlo 1949

Stochastic Simulation

- Idea: probabilities \leftrightarrow samples
- Get probabilities from samples:

X	count			
x_{1}	n_{1}			
\vdots	\vdots			
x_{k}	n_{k}			
total	m	\leftrightarrow	X	probability
:---:	:---:			
x_{1}	n_{1} / m			
\vdots	\vdots			
x_{k}	n_{k} / m			

- If we could sample from a variable's (posterior) probability, we could estimate its (posterior) probability.

Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution:

$$
f(x)=P(X \leq x)
$$

- Select a value y uniformly in the range $[0,1]$.
- Select the x such that $f(x)=y$.

Hoeffding Bound

p is true probability, s is sample average, n is number of samples

- $P(|s-p|>\epsilon) \leq 2 e^{-2 n \epsilon^{2}}$
- if we want an error greater than ϵ in less than a fraction δ of the cases, solve for n :

$$
\begin{gathered}
2 e^{-2 n \epsilon^{2}}<\delta \\
n>\frac{-\ln \frac{\delta}{2}}{2 \epsilon^{2}}
\end{gathered}
$$

- we have

ϵ error	cases with error $>\epsilon$	samples needed
0.1	$1 / 20$	184
0.01	$1 / 20$	18,445
0.1	$1 / 100$	265

Forward sampling in a belief network

- Sample the variables one at a time;
- sample parents of X before you sample X.
- Given values for the parents of X, sample from the probability of X given its parents .
- for samples $s_{i}, i=1 \ldots N$:

$$
P\left(X=x_{i}\right) \propto \sum_{s_{i}} \delta\left(x_{i}\right)=N_{X=x_{i}}
$$

where

$$
\delta\left(x_{i}\right)=\left\{\begin{array}{lc}
1 & \text { if } X=x_{i} \text { in } s_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

Sampling for a belief network: inference

Sample	Malfnction	Cancer	TestB	TestA	Report	Database
s_{1}	false	false	true	true	false	false
s_{2}	false	true	true	true	true	true
s_{3}	false	true	true	true	true	true
s_{4}	false	false	false	true	false	false
s_{5}	true	true	true	true	false	false
s_{6}	false	true	false	true	false	false
s_{7}	false	false	false	true	false	true
			\ldots			
s_{1000}	false	false	false	true	false	false

To get $P\left(H=h_{i} \mid E=e_{i}\right)$ simply

- count the number of samples that have $H=h_{i}$ and $E=e_{i}$, $N\left(h_{i}, e_{i}\right)$
- divide by the number of samples that have $E=e_{i}, N\left(e_{i}\right)$
- $P\left(H=h_{i} \mid E=e_{i}\right)=\frac{P\left(H=h_{i} \wedge E=e_{i}\right)}{P\left(E=e_{i}\right)}=\frac{N\left(h_{i}, e_{i}\right)}{N\left(e_{i}\right)}$
- $P(C=$ True \mid Database $=$ True $)$ based on first 7 samples?

Forward Sampling

Inference via sampling

Rejection Sampling

- To estimate a posterior probability given evidence $Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}:$
- If, for any i, a sample assigns Y_{i} to any value other than v_{i} reject that sample.
- The non-rejected samples are distributed according to the posterior probability.
- in the Hoeffding bound, n is the number of non-rejected samples

Example Network

$$
\frac{P(A=\text { true })}{0.4}
$$

If we draw N samples $s_{i=1 \ldots N}$ by

- sampling $A: a_{i=1 \ldots N}$
- sampling from E given $A: e_{i=1 \ldots N}$
then
- $\approx N_{t}=0.4 N$ of them will have $A=$ true, and of these $\approx 10 \%$ will have $E=$ true
- $\approx N_{f}=0.6 N$ of them will have $A=$ false, and of these $\approx 30 \%$ will have $E=$ true

Example Network

$\frac{P(A=\text { true })}{0.4}$

(A) \rightarrow| A | $P(E=$ true $)$ |
| :---: | :---: |
| true | 0.1 |
| false | 0.3 |

so we have

A	E	$N_{A E}$
true	false	$N_{t f}=0.4 \times 0.9 \times N$

true true $N_{t t}=0.4 \times 0.1 \times N$
false false $N_{f f}=0.6 \times 0.7 \times N$
false true $N_{f t}=0.6 \times 0.3 \times N$
We want to compute

$$
P(a \mid e)=P(A=\operatorname{true} \mid E=\operatorname{true}) \propto \sum_{s_{i}} \delta\left(a_{i}=\operatorname{true}\right) \delta\left(e_{i}=\text { true }\right)
$$

$$
\begin{aligned}
P(a \mid e) & =\frac{P(a \wedge e)}{P(e)} \approx \frac{N_{t t}}{N_{t t}+N_{f t}} \\
& =\frac{0.1 \times 0.4 \times N}{0.1 \times 0.4 \times N+0.3 \times 0.6 \times N} \quad=0.182
\end{aligned}
$$

Importance weights

$$
\frac{P(A=\text { true })}{0.4}
$$

$$
\text { A } \rightarrow \text { E } \begin{array}{cc}
A & P(E=\text { true }) \\
\begin{array}{cc}
\text { true } \\
\text { false }
\end{array} & 0.1 \\
\hline
\end{array}
$$

- we can do better since we can weight the samples
- weights = prob. that the evidence is observed
- N_{t} samples with $A=$ true have weight of $w_{t}=0.1$ this is $P(E=$ true $\mid A=$ true $)$
- N_{f} samples with $A=$ false have weight of $w_{f}=0.3$ this is $P(E=$ true $\mid A=$ false $)$
- can do better because we don't need to generate the 90% of samples (when $A=$ true) that don't agree with the evidence - we simply assign all samples a weight of 0.1
- thus, we are mixing exact inference (the 0.1) with sampling .

Importance weights

$$
\begin{gathered}
P(A=\text { true }) \\
0.4
\end{gathered} \mathrm{~A} \quad \begin{array}{cc}
A & P(E=\text { true }) \\
\hline \text { true } & 0.1 \\
\text { false } & 0.3 \\
\hline
\end{array}
$$

- Compute sum of all weights of the samples with $A=$ true

$$
W_{t}=\sum_{i} w_{t} \delta\left(a_{i}=t r u e\right)=N_{t} \times 0.1
$$

- Compute sum of all weights of the samples with $A=$ false

$$
W_{f}=\sum_{i} w_{f} \delta\left(a_{i}=f a l s e\right)=N_{f} \times 0.3
$$

- finally, compute

$$
P(a \mid e)=\frac{W_{t}}{W_{t}+W_{f}}=\frac{0.1 \times 0.4 \times N}{0.1 \times 0.4 \times N+0.3 \times 0.6 \times N}
$$

Importance weights

$$
\frac{P(A=\text { true })}{0.4}
$$

$$
A \rightarrow \begin{array}{cc}
A & P(E=\text { true }) \\
\hline \text { true } & 0.1 \\
\text { false } & 0.3 \\
\hline
\end{array}
$$

- In fact, the As don't need to even be sampled from $P(A)$
- Can be sampled from some $q(A)$, say $q(A=$ true $)=0.5$
- and each sample will have a new weight $P(a) / q(a)$
- $q(A)$ is a proposal distribution.
- helps when it is hard to sample from $P(A)$, but we can evaluate $P^{*}(A) \propto P(A)$ given a sample (see slide 24)

Importance weights

$$
\frac{P(A=\text { true })}{0.4}
$$

$$
\text { A } \rightarrow \mathrm{E} \begin{array}{cc}
A & P(E=\text { true }) \\
\hline \text { true } & 0.1 \\
\text { false } & 0.3 \\
\hline
\end{array}
$$

- rejection sampling uses $q=P$
- rejection sampling uses all variables including observed ones, and all weights on samples are set to 1.0
- $N_{t}^{\prime}=q(a) N$ samples with $A=$ true have weight of $0.1 \times \frac{P^{*}(a)}{q(a)}=0.1 \times \frac{\alpha 0.4}{0.5}$
- $N_{f}^{\prime}=q(\bar{a}) N$ samples with $A=$ false have weight of $0.3 \times \frac{P^{*}(\bar{a})}{q(\bar{a})}=0.3 \times \frac{\alpha 0.6}{0.5}$

Importance weights

$$
\begin{gathered}
P(A=\text { true }) \\
0.4
\end{gathered} \mathrm{~A} \quad \begin{array}{cc}
A & P(E=\text { true }) \\
\hline \text { true } & 0.1 \\
\text { false } & 0.3 \\
\hline
\end{array}
$$

- total weight of all samples with $A=$ true

$$
\begin{aligned}
W_{t}^{\prime} & =\sum_{i} w_{i} \delta\left(a_{i}=\text { true }\right)=N_{t}^{\prime} \times 0.1 \times \frac{\alpha 0.4}{0.5} \\
& =0.5 N \times 0.1 \times \frac{\alpha 0.4}{0.5}=0.1 \times \alpha \times 0.4 \times N
\end{aligned}
$$

- total weight of all samples with $A=$ false

$$
\begin{aligned}
W_{f}^{\prime} & =\sum_{i} w_{i} \delta\left(a_{i}=\text { true }\right)=N_{f}^{\prime} \times 0.3 \times \frac{\alpha 0.6}{0.5} \\
& =0.5 \mathrm{~N} \times 0.3 \times \frac{\alpha 0.6}{0.5}=0.3 \times \alpha \times 0.6 \times \mathrm{N}
\end{aligned}
$$

Importance weights

$$
\begin{gathered}
P(A=\text { true }) \\
0.4
\end{gathered} \mathrm{~A} \quad \begin{array}{cc}
A & P(E=\text { true }) \\
\hline \text { true } & 0.1 \\
\text { false } & 0.3 \\
\hline
\end{array}
$$

- finally, compute

$$
P(a \mid e)=\frac{W_{t}^{\prime}}{W_{t}^{\prime}+W_{f}^{\prime}}=\frac{0.1 \times \alpha \times 0.4 \times N}{0.1 \times \alpha \times 0.4 \times N+0.3 \times \alpha \times 0.6 \times N}
$$

When drawing samples gets hard

- Why is it hard to sample from $P(A)$?
- because you need to know $P^{*}(A) \propto P(A)$ for all values of A (to normalize properly)
- in high dimensional spaces, there can be a lot
- consider the task of measuring the average (or maximum) depth of this lake - how do you draw samples? You cannot miss the canyons!

Example Proposal Distributions

- Sometimes we may want to choose a proposal distribution that is different than the actual probability distribution
- We may want to skew the proposal - because we may have some additional knowlege about the data, for example
- or, we can generate proposals from the data itself using some procedural knowledge that is not directly encoded in the BN
- Can be important in multiple/many dimensions,

Stochastic sampling for Bayesian Networks

Recall variable elimination: To compute
$P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$, we sum out the other variables,
$Z_{1}, \ldots, Z_{k}=\left\{X_{1}, \ldots, X_{n}\right\}-\{Z\}-\left\{Y_{1}, \ldots, Y_{j}\right\}$.

$$
\begin{aligned}
& P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& \quad=\sum_{z_{k}} \cdots \sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right) Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}
\end{aligned}
$$

Now, we sample Z_{l+1}, \ldots, Z_{k} and sum Z_{1}, \ldots, Z_{l},

$$
=\sum_{s_{i}=\left\{z_{\mid+1, i}, \ldots, z_{k, i}\right\}}\left[\sum_{z_{1} \ldots z_{l}} \prod_{i=1}^{\prime} P\left(Z_{i} \mid \text { parents }\left(Z_{i}\right)\right)_{r_{1}=v_{1}, \ldots, r_{j}=v_{j}}\right] \frac{P\left(Z_{l+1, i}, \ldots, z_{k, i}\right)}{q\left(z_{l+1, i}, \ldots, z_{k, i}\right)}
$$

Importance Sampling example

Compute $P(B \mid D=$ true, $A=$ false $)$ by sampling C and M.

- use $q(C=$ true $)=P(C=$ true $)=0.32$
and $q(M=$ true $)=P(M=$ true $)=0.08$
- use $q(C=$ true $)=0.5$
and $q(M=$ true $)=P(M=$ true $)=0.08$
- use $q(C=$ true $)=q(M=$ true $)=0.5$

$$
P(B \mid D=\text { true }, A=\text { false }) \propto \sum_{s_{i}=\left\{c_{i}, m_{i}\right\}} P\left(B, D=\text { true, } A=\text { false } \mid c_{i}, m_{i}\right)
$$

see sampling-inference.pdf

Stochastic Sampling for HMMs (and other DBNS)

TIME:
1
2
3 4

Sequential Monte Carlo or Particle Filter

- sequential stochastic sampling
- keep track of $P\left(S_{t}\right)$ at the current time t
- represent $P\left(S_{t}\right)$ with a set of samples
- update as new observations o_{t+1} arrive

1. predict $P\left(S_{t+1}\right) \propto P\left(S_{t+1} \mid S_{t}\right)$
2. compute weights as $P\left(o_{t+1} \mid S_{t+1}\right)$
3. resample according to weights

Particle Filtering

sample $\mathrm{i}:\left\{\mathrm{X}_{\mathrm{i}}\right\}$

Particle Filtering

Particle Filtering

sample $\mathrm{i}:\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right\}$

Particle Filtering

Particle Filtering

sample $\mathrm{i}:\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right\}$

Particle Filtering

sample i: $\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right\}$

Bayesian Sequential Updates

Resampling

O - avoids degeneracies in the samples

- all importance weights $\rightarrow 0$ except one
- performance of the algorithm depends on the resampling method

Next:

- Supervised Learning under Uncertainty (Poole \& Mackworth (2nd ed.)10.1,10.4)

