
1/ 34

Lecture 10 - Planning under Uncertainty (III)

Jesse Hoey
School of Computer Science

University of Waterloo

July 21, 2022

Readings: Poole & Mackworth (2nd ed.)Chapter 12.1,12.3-12.9

2/ 34

Reinforcement Learning

What should an agent do given:

Prior knowledge possible states of the world
possible actions

Observations current state of world
immediate reward / punishment

Goal act to maximize accumulated reward

Like decision-theoretic planning, except model of dynamics and
model of reward not given.

3/ 34

Experiences

We assume there is a sequence of experiences :

state, action, reward , state, action, reward ,

What should the agent do next?

It must decide whether to:
I explore to gain more knowledge

I exploit the knowledge it has already discovered

4/ 34

Reinforcement Learning: “Bandit” problem

Each machine has a Pr(win) ... but you don’t know what it is...
Which machine should you play?

5/ 34

Why is reinforcement learning hard?

What actions are responsible for the reward may have
occurred a long time before the reward was received.

The long-term effect of an action of the robot depends on
what it will do in the future.

The explore-exploit dilemma : at each time should the robot
be greedy or inquisitive?

6/ 34

Reinforcement learning: main approaches

search through a space of policies (controllers)

Model Based RL : learn a model consisting of state
transition function P(s ′|a, s) and reward function R(s, a, s ′);
solve this as an MDP.

Model-Free RL learn Q∗(s, a) , use this to guide action.

7/ 34

Temporal Differences

Suppose we have a sequence of values:

v1, v2, v3, . . .

And want a running estimate of the average of the first k
values:

Ak =
v1 + · · ·+ vk

k

8/ 34

Temporal Differences (cont)

When a new value vk arrives:

Ak =
v1 + · · ·+ vk−1 + vk

k
kAk = v1 + · · ·+ vk−1 + vk

= (k − 1)Ak−1 + vk

Ak =
k − 1

k
Ak−1 +

1

k
vk

Let α = 1
k , then

Ak = (1− α)Ak−1 + αvk

= Ak−1 + α(vk − Ak−1)

“TD formula”

Often we use this update with α fixed.

9/ 34

Q-learning

Idea: store Q[State,Action]; update this as in

asynchronous value iteration , but using experience (empirical
probabilities and rewards).

Suppose the agent has an experience 〈s, a, r , s ′〉
This provides one piece of data to update Q[s, a].

The experience 〈s, a, r , s ′〉 provides the data point:

r + γmax
a′

Q[s ′, a′]

which can be used in the TD formula giving:

Q[s, a]← Q[s, a] + α

(
r + γmax

a′
Q[s ′, a′]− Q[s, a]

)

10/ 34

Q-learning

begin
initialize Q[S ,A] arbitrarily
observe current state s
repeat forever:

select and carry out an action a
observe reward r and state s ′

Q[s, a]← Q[s, a] + α (r + γmaxa′ Q[s ′, a′]− Q[s, a])
s ← s ′;

end-repeat
end

11/ 34

Properties of Q-learning

Q-learning converges to the optimal policy , no matter what
the agent does, as long as it
tries each action in each state enough (infinitely often).

But what should the agent do?
I exploit : when in state s, select the action that maximizes

Q[s, a]
I explore : select another action

12/ 34

Exploration Strategies

The ε-greedy strategy: choose a random action with
probability ε and choose a best action with probability 1− ε.
Softmax action selection: in state s, choose action a with

probability

eQ[s,a]/τ∑
a e

Q[s,a]/τ

where τ > 0 is the temperature . Good actions are chosen
more often than bad actions; τ defines how often good
actions are chosen. For τ →∞, all actions are equiprobable.
For τ → 0, only the best is chosen.

13/ 34

Exploration Strategies

optimism in the face of uncertainty : initialize Q to values
that encourage exploration.

Upper Confidence Bound (UCB) : Also store N[s, a] (number

of times that state-action pair has been tried) and use

arg max
a

[
Q(s, a) + k

√
N[s]

N[s, a]

]

where N[s] =
∑

a N[s, a]

14/ 34

Example: studentbot

studentbot

state variables:

tired: studentbot is tired (no/a bit/very)

passtest: studentbot passes test (no/yes)

knows: studentbot’s state of knowledge (nothing/a bit/a
lot/everything)

goodtime: studentbot has a good time (no/yes)

14/ 34

Example: studentbot

studentbot

studentbot actions:

study: studentbot’s knowledge increases, studentbot gets
tired

sleep: studentbot gets less tired

party: studentbot has a good time, but gets tired and loses
knowledge

take test: studentbot takes a test (can take test anytime)

14/ 34

Example: studentbot

studentbot

studentbot rewards:

+20 if studentbot passes the test

+2 if studentbot has a good time when not very tired

basic tradeoff: short term vs. long-term rewards

15/ 34

Studentbot Policy

tired

knows

no

knows

verya_bit

party

nothing

study

a_bit

take_test

a_lot everything nothinga_bit

sleep

a_lot everything

16/ 34

Model-based Reinforcement Learning

Model-based reinforcement learning uses the experiences in a
more effective manner.

It is used when collecting experiences is expensive (e.g., in a
robot or an online game), and you can do lots of computation
between each experience.

Idea : learn the MDP and interleave acting and planning.

After each experience, update probabilities and the reward,
then do some steps of asynchronous value iteration.

17/ 34

Model-based Reinforcement Learning

Model-based reinforcement learning uses the experiences in a
more effective manner.

It is used when collecting experiences is expensive (e.g., in a
robot or an online game), and you can do lots of computation
between each experience.

Idea: learn the MDP and interleave acting and planning.

After each experience, update probabilities and the reward,
then do some steps of asynchronous value iteration.

18/ 34

Model-based learner

Data Structures: Q[S ,A], T [S ,A,S], R[S ,A]
Assign Q, R arbitrarily, T = prior counts
α is learning rate
observe current state s
repeat forever:

select and carry out action a
observe reward r and state s ′

T [s, a, s ′]← T [s, a, s ′] + 1
R[s, a]← α× r + (1− α)× R[s, a]
repeat for a while (asynchronous VI):

select state s1, action a1
let P =

∑
s2
T [s1, a1, s2]

Q[s1, a1]←
∑
s2

T [s1, a1, s2]

P

(
R[s1, a1] + γmax

a2
Q[s2, a2]

)
s ← s ′

19/ 34

Off/On-policy Learning

Q-learning does off-policy learning: it learns the value of the
optimal policy, no matter what it does.

This could be bad if the exploration policy is dangerous.

On-policy learning learns the value of the policy being
followed.
e.g., act greedily 80% of the time and act randomly 20% of
the time

If the agent is actually going to explore, it may be better to
optimize the actual policy it is going to do.

SARSA uses the experience 〈s, a, r , s ′, a′〉 to update Q[s, a].

20/ 34

SARSA

begin
initialize Q[S ,A] arbitrarily
observe current state s
select action a using a policy based on Q
repeat forever:

carry out an action a
observe reward r and state s ′

select action a′ using a policy based on Q
Q[s, a]← Q[s, a] + α (r + γQ[s ′, a′]− Q[s, a])
s ← s ′;
a← a′;

end-repeat
end

21/ 34

Large State Spaces

Computer Go : 3361states

Atari Games 210× 160× 3 dimensions (pixels)

22/ 34

Q-function Approximations

Let s = (x1, x2, . . . , xN)T

Linear

Qw(s, a) ≈
∑
i

waixi

Non-linear (e.g. neural network)

Qw(s, a) ≈ g(x; w)

23/ 34

Recall: Logistic Regression

Logistic function of linear weighted inputs:

Ŷ w (e) = f (w0+w1X1(e)+ · · ·+wnXn(e)) = f

(
n∑

i=0

wiXi (e)

)
The sum of squares error is:

Error(E ,w) =
∑
e∈E

[
Y (e)− f

(
n∑

i=0

wi ∗ Xi (e)

)]2
The partial derivative with respect to weight wi is:

∂Error(E ,w)

∂wi
= −2 ∗ δ ∗ f ′

(∑
i

wi ∗ Xi (e)

)
∗ Xi (e)

where δ = (Y (e)− f (
∑n

i=0 wiXi (e))).
Thus, each example e updates each weight wi by

wi ← wi + η ∗ δ ∗ f ′
(∑

i

wi ∗ Xi (e)

)
∗ Xi (e)

24/ 34

Approximating the Q-function

for experience tuple s, a, r , s ′ we have:
I target Q-function: R(s) + γmaxa′ Qw(s ′, a′) or

R(s) + γQw(s ′, a′)
I current Q-function: Qw(s, a)

Squared error:

Err(w) =
1

2

[
Qw(s, a)− R(s)− γmax

a′
Qw(s ′, a′)

]2
Gradient:

∂Err

∂w
=

[
Qw(s, a)− R(s)− γmax

a′
Qw(s ′, a′)

]
∂Qw(s,a)

∂w

25/ 34

SARSA with linear function approximation

Given γ:discount factor; α:learning rate
Assign weights w = 〈w0, . . . ,wn〉 arbitrarily
begin

observe current state s
select action a
repeat forever:

carry out action a
observe reward r and state s ′

select action a′ (using a policy based on Qw)
let δ = r + γQw(s ′, a′)− Qw(s, a)
For i = 0 to n

wi ← wi + α× δ × ∂Qw(s,a)

∂w
s ← s ′; a← a′;

end-repeat
end

26/ 34

Convergence

Linear Q-learning (Qw(s, a) ≈
∑

i waixi) converges under
same conditions as Q-learning

wi ← wi + α
[
Qw(s, a)− R(s)− γQw(s ′, a′)

]
xi

Non-linear Q-learning (e.g. neural network,
Qw(s, a) ≈ g(x; w)) may diverge
I Adjusting w to increase Q at (s, a) might introduce errors at

nearby state-action pairs.

27/ 34

Mitigating Divergence

Two tricks used in practice:

1. Experience Replay

2. Use two Q function (two networks):
I Q network (currently being updated)
I Target network (occasionally updated)

28/ 34

Experience Replay

Idea: Store previous experiences (s, a, r , s ′, a′) in a buffer and
sample a mini-batch of previous experiences at each step to
learn by Q-learning

Breaks correlations between successive updates (more stable
learning)

Few interactions with environment needed to converge
(greater data efficiency)

29/ 34

Target Network

Idea : use a separate target network that is

updated only periodically

target network has weights w and computes Qw(s, a)

repeat for each (s, a, r , s ′, a′) in mini-batch :

w← w + α
[
Qw(s, a)− R(s)− γQw(s ′, a′)

] ∂Qw(s, a)

∂w

w← w

30/ 34

Deep Q-Network

Assign weights w = 〈w0, . . . ,wn〉 at random in [−1, 1]
begin

observe current state s
select action a
repeat forever:

carry out action a
observe reward r and state s ′

select action a′ (using a policy based on Qw)
add (s, a, r , s ′, a′) to experience buffer
Sample mini-batch of experiences from buffer
For each experience (ŝ, â, r̂ , ŝ ′, â′) in mini-batch:

let δ = r̂ + γQw(ŝ ′, â′)− Qw(ŝ, â)

w← w + α× δ × ∂Qw(ŝ,â)
∂w

s ← s ′; a← a′;
every c steps, update target w← w

end-repeat
end

31/ 34

Deep Q-Network for Atari

from: Mnih et. al. Human-level control through deep reinforcement learning.

Nature 18(7540):529–533 2015.

32/ 34

Deep Q-Network vs. Linear Approx.

from: Mnih et al.. Human-level control through deep reinforcement learning. Nature 18(7540):529–533 2015.

33/ 34

Bayesian Reinforcement Learning

Include the parameters (transition function and observation
function) in the state space

Model-based learning though inference (belief state)

State space is now continuous,
belief space is a space of continuous functions

Can mitigate complexity by modeling reachable beliefs

optimal exploration-exploitation tradeoff.

34/ 34

Next:

Recap

