Lecture 10 - Planning under Uncertainty (II)

Jesse Hoey School of Computer Science University of Waterloo Agents carry out actions:

- forever infinite horizon
- until some stopping criteria is met indefinite horizon
- finite and fixed number of steps finite horizon

July 4, 2022

Readings: Poole & Mackworth (2nd ed.)Chapter 9.5

World State

What should an agent do when

Decision-theoretic Planning

- it gets rewards (and punishments) and tries to maximize its rewards received
- actions can be noisy; the outcome of an action can't be fully predicted
- there is a model that specifies the probabilistic outcome of actions
- the world is fully observable : the current state is always fully in evidence

for the various planning horizons?

- The world state is the information such that if you knew the world state, no information about the past is relevant to the future. Markovian assumption.
- Let S_i, A_i be the state, action at time i

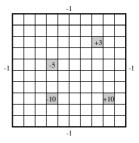
 $P(S_{t+1}|S_0, A_0, \ldots, S_t, A_t) = P(S_{t+1}|S_t, A_t)$

P(s'|s, a) is the probability that the agent will be in state s' immediately after doing action a in state s.

• The dynamics is stationary if the distribution is the same for each time point.

Example: Simple Grid World

Grid World Model



• Actions : up, down, left, right.

- 100 states corresponding to the positions of the robot.
- Robot goes in the commanded direction with probability 0.7, and one of the other directions with probability 0.1.
- If it crashes into an outside wall, it remains in its current position and has a reward of -1.
- Four special rewarding states; the agent gets the reward when leaving the state.

43

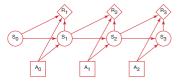
Planning Horizons

Decision Processes

The planning horizon is how far ahead the planner looks to make a decision.

- The robot gets flung to one of the corners at random after leaving a positive (+10 or +3) reward state.
 - the process never halts
 - infinite horizon
- The robot gets +10 or +3 entering the state, then it stays there getting no reward. These are absorbing states.
 - The robot will eventually reach the absorbing state.
 - indefinite horizon

• A Markov decision process augments a Markov chain with actions and values (information arcs not shown).



For an MDP you specify:

- set S of states.
- set A of actions.
- P(S_{t+1}|S_t, A_t) specifies the dynamics.
- R(S_t, A_t, S_{t+1}) specifies the <u>reward</u>. The agent gets a reward at each time step (rather than just a final reward).
 R(s, a, s') is the expected reward received when the agent is in state s, does action a and ends up in state s'.

What information is available when the agent decides what to do?

- fully-observable MDP the agent gets to observe S_t when deciding on action A_t .
- partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It needs to remember its sensing and acting history. It can do this by maintaining a sufficiently complex belief state.

Rewards and Values Policies

Suppose the agent receives the sequence of rewards $r_1, r_2, r_3, r_4, \dots$ What value should be assigned?

• total reward
$$V = \sum_{i=1}^{\infty} r_i$$

- average reward $V = \lim_{n \to \infty} (r_1 + \dots + r_n)/n$
- discounted reward $V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$ γ is the discount factor $0 \le \gamma \le 1$.

• A stationary policy is a function:

 $\pi: S \to A$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

- An optimal policy is one with maximum expected discounted reward.
- For a fully-observable MDP with stationary dynamics and rewards with infinite or indefinite horizon, there is always an optimal stationary policy.

- Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- V^π(s), where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$\begin{array}{lll} Q^{\pi}(s,a) &=& \sum_{s'} P(s'|a,s) \left(r(s,a,s') + \gamma V^{\pi}(s') \right) \\ V^{\pi}(s) &=& Q^{\pi}(s,\pi(s)) \end{array}$$

- Q^{*}(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $\pi^*(s)$ is the optimal action to take in state s
- V*(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q* and V* can be defined mutually recursively:

$$\begin{array}{lll} Q^{*}(s,a) & = & \sum_{s'} P(s'|a,s) \left(r(s,a,s') + \gamma V^{*}(s') \right) \\ V^{*}(s) & = & \max_{a} Q^{*}(s,a) \\ \pi^{*}(s) & = & \operatorname{argmax}_{a} Q^{*}(s,a) \end{array}$$

< III > 13/4

1 14/43

Value Iteration

Value Iteration

- Set V^0 arbitrarily, t = 1
- Compute Q^t, V^t from V^{t-1}.

$$Q^{t}(s,a) = \left[R(s) + \gamma \sum_{s'} Pr(s'|s,a) V^{t-1}(s')\right]$$

$$V^t(s) = \max_a Q^t(s, a)$$

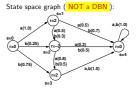
• The policy with *t* stages to go is simply the actions that maximizes this

$$\pi^{t}(s) = \arg \max_{a} \left[R(s) + \gamma \sum_{s'} \Pr(s'|s, a) V^{t-1}(s') \right]$$

- This is dynamic programming
- This converges exponentially fast (in *t*) to the optimal value function.
- Convergence when $||V^t(s) V^{t-1}(s)|| < \epsilon^{(1-\gamma)}$ ensures V^t is within ϵ of optimal $(||X|| = max\{|x|, x \in X\})$

- The *t*-step lookahead value function, *V*^t is the expected value with *t* steps to go
- \bullet Idea: Given an estimate of the $t\mbox{-step}$ lookahead value function, determine the $t+1\mbox{-step}$ lookahead value function.

Value Iteration: Simple Example



This same graph, represented as a decision network, would have the following factors, where the (row, col) = (i, j) entry in each probability table is P(S' = j|S = i, A)

	0.0	1.0	0.0	0.0	0.0]		
P(S' S, A = a) =	0.0	0.0	0.5	0.0	0.5		
	0.0	0.0	0.0	0.8	0.2		
	0.0	0.0	0.0	0.0	1.0		
	0.0	0.0	0.0	0.0	1.0		
P(S' S,A=b) =	0.0	0.0	0.25	0.75	0.0]		Γο]
	0.0	0.0	0.3	0.0	0.7		2
	0.0	0.0	0.0	0.5	0.5	R(S)	= -2
	0.0	0.0	0.0	0.0	1.0		2
	0.0	0.0	0.0	0.0	1.0		[o]

17/4

□ ► 18/47

Value Iteration: Simple Example

 $Q^{1}(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) V^{0}(s')$ $= \begin{bmatrix} 1.8 & 1.1 & -0.56 & 2.0 & 0\\ 0.9 & 1.46 & -1.1 & 2.0 & 0 \end{bmatrix}$

 $= \begin{bmatrix} 1.8 & 1.46 & -0.56 & 2.0 & 0 \end{bmatrix}$

 $V^1(s) = max_a(Q^1(s, a))$

 $\pi^1(s) = \begin{bmatrix} a & b & a & a \end{bmatrix}$

first iteration, using $\gamma = 0.9$ $V^{0}(s') = R(s')$

Value Iteration: Simple Example

second iteration

$$\begin{split} Q^2(s,a) &= R(s) + \gamma \sum_{s'} P(s'|s,a) V^1(s') \\ &= \begin{bmatrix} 1.31 & 1.75 & -0.56 & 2.0 & 0 \\ 1.22 & 1.85 & -1.1 & 2.0 & 0 \end{bmatrix} \\ V^2(s) &= \max_a (Q^2(s,a)) \\ &= \begin{bmatrix} 1.31 & 1.84 & -0.56 & 2.0 & 0 \end{bmatrix} \\ \pi^2(s) &= \begin{bmatrix} a & b & a & a & a \end{bmatrix} \end{split}$$

on convergence, optimal value function is

$$V^*(s) = \begin{bmatrix} 1.66 & 1.85 & -0.56 & 2.0 & 0 \end{bmatrix}$$

policy is

$$\pi^*(s) = \begin{bmatrix} a & b & a & a \end{bmatrix}$$

IP 19/43

20/43

- You don't need to sweep through all the states, but can update the value function for each state individually.
- This converges to the optimal value function, if each state and action is visited infinitely often in the limit.
- You can either store V[s] or Q[s, a].

• Repeat forever: • Select state s: • $V[s] \leftarrow \max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V[s'] \right);$

22/43

Asynchronous VI: storing Q[s, a]

Markov Decision Processes: Factored State

- Represent $S = \{X_1, X_2, \dots, X_n\}$
- X_i are random variables
- for each X_i, and each action a ∈ A, we have P(X'_i|S, A)
- Reward $R(X_1, X_2, ..., X_N)$ may be additive:

$$R(X_1, X_2, \ldots, X_N) = \sum_i R(X_i)$$

• Value iteration proceeds as usual but can do one variable at a time (e.g. variable elimination)

Select state s, action a;

$$\blacktriangleright \quad Q[s, a] \leftarrow \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma \max_{a'} Q[s', a'] \right);$$

Example: studentbot

Example: studentbot

state variables (3x2x4x2=48 states):

- tired : studentbot is tired (no/a bit/very)
- passtest : studentbot passes test (no/yes)
- knows: studentbot's state of knowledge (nothing/a bit/a lot/everything)
- goodtime : studentbot has a good time (no/yes)

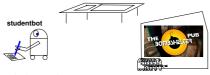
studentbot

studentbot actions:

- study: studentbot's knowledge increases, studentbot gets tired
- sleep : studentbot gets less tired
- party : studentbot has a good time if he's not tired, but gets tired and loses knowledge
- take test : studentbot takes a test (can take test anytime)

25/43

Example: studentbot



studentbot rewards:

- +20 if studentbot passes the test
- +2 if studentbot has a good time

basic tradeoff: short term vs. long-term rewards

Studentbot

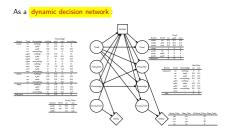
State-based:

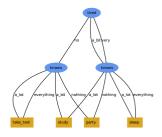
$$P(s'|s,a) = [48 \times 48]$$

$$R(s) = [48 \times 1]$$

Studentbot

Studentbot Policy





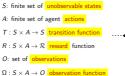
□ ≥ 27/4

< □ > 28/43

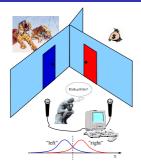
Partially Observable Markov Decision Processes (POMDPs)

A **POMDP** is like an MDP, but some variables are **not observed**. It is

a tuple (S, A, T, R, O, Ω)



e.g. 1-D Tiger problem



Partially Observable Markov Decision Processes (POMDPs)

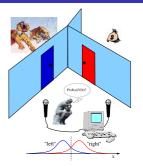
A POMDP is like an MDP, but some variables are not observed. It is

a tuple $\langle S, A, T, R, O, \Omega \rangle$

- S: finite set of unobservable states
- A: finite set of agent actions
- $T: S \times A \rightarrow S$ transition function
- $R: S \times A \rightarrow \mathcal{R}$ reward function
- O: set of observations
- $\Omega: S \times A \rightarrow O$ observation function

31/4

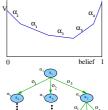
e.g. 1-D Tiger problem



Value Functions and Conditional Plans

$$V^{k+1}(b) = \max_{a} R^{a}(b) + \gamma \sum_{o} Pr(o|b, a) V^{k}(b_{o}^{a})$$

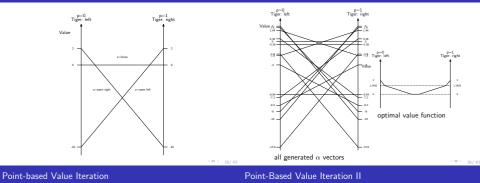
V(b) can be represented with a piecewise linear function over the belief space - pieces are called α vectors



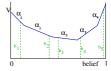
< ID > 34/43

e.g. Tiger problem, after zero iterations

e.g. Tiger problem, after one iteration



1. Generate belief samples to make belief set belief set \mathcal{B}



2. compute forward-propagated belief states

$$b_o^a(s') = \sum_{s \in S} T(s'|a,s) \Omega(o|s',a) b(s) \ \forall b \in \mathcal{B}$$

- 1. start with one alpha vector: $\alpha_0 = R(s, a)$
- 2. repeat until converged:
 - 2.1 for each belief sample, b:

$$\Gamma^{a}_{b} = R(s, a) + \sum_{s' \in S} \sum_{o \in O} T(s'|a, s) \Omega(o|s', a) \arg \max_{\alpha_{j}} \alpha_{j}(s') \cdot b^{a}_{o}(s') \ \forall \ a \in A, b \in B$$

2.2 Maximize over actions at each b:

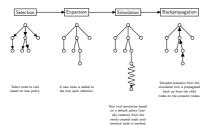
$$\alpha^{\dagger} = \bigcup_{b \in B} \{ \arg \max_{\Gamma_b^a} (\Gamma_b^a \cdot b_j) \}$$

Policies

MCTS

Policy: maps beliefs states into actions	$\pi(b(s))$	$\rightarrow a$
Two ways to compute a policy		

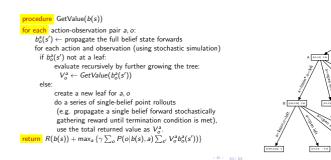
- 1. Backwards search
 - Dynamic programming (Variable Elimination)
 - in MDP:
 - $Q_t(s, a) = R(s, a) + \gamma \sum_{s'} Pr(s'|s, a) \max_{a'} Q_{t-1}(s', a')$
 - in POMDP: Q_t(b(s), a)
 - Point-based backups make this efficient
- 2. Forwards search : Monte Carlo Tree Search (MCTS)
 - Expand the search tree
 - Expand more deeply in promising directions
 - Ensure exploration using e.g. UCB



< => 39/4

Forward Monte-Carlo Search for POMDPs

e.g. Tiger problem, two steps expanded



< □ > 40/43

02.68 0

- Reinforcement Learning Poole & Mackworth (2nd ed.)Chapter 12.1,12.3-12.9
- Deep Reinforcement Learning