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Lecture 10 - Planning under Uncertainty (I)

Jesse Hoey
School of Computer Science

University of Waterloo

July 3, 2022

Readings: Poole & Mackworth (2nd ed.)Chapter 9.1-9.3
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Recall from lecture 8a

expected value of a function on X , V (X ):

E(V ) =
∑

x∈Dom(X ) P(x)V (x)

where P(x) is the probability that X = x .

This is useful in decision making, where V (X ) is the utility of
situation X .
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Bayesian Decision Making

Bayesian decision making is then

E(V (decision)) =
∑

outcome P(outcome|decision)V (outcome)

Can also add context so V (decision, context) is the value of
decision in situation context

E(V (decision, context) =∑
outcome P(outcome|decision, context)V (outcome)

In this lecture, we will explore V , and then E(V )
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Preferences

Actions result in outcomes

Agents have preferences over outcomes

A (decision-theoretic) rational agent will do the action that
has the best outcome for them

Sometimes agents don’t know the outcomes of the actions,
but they still need to compare actions

Agents have to act (doing nothing is often a meaningful
action).
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Preferences Over Outcomes

If o1 and o2 are outcomes

o1 � o2 means o1 is at least as desirable as o2 (weak
preference)

o1 ∼ o2 means o1 � o2 and o2 � o1. indifference

o1 � o2 means o1 � o2 and o2 6� o1 strong preference
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Lotteries

An agent may not know the outcomes of their actions, but
only have a probability distribution of the outcomes.

A lottery is a probability distribution over outcomes. It is
written

[p1 : o1, p2 : o2, . . . , pk : ok ]

where the oi are outcomes and pi > 0 such that∑
i

pi = 1

The lottery specifies: outcome oi occurs with probability pi .

When we talk about outcomes, we will include lotteries.
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Properties of Preferences

Completeness: Agents have to act, so they must have
preferences:

∀o1∀o2 o1 � o2 or o2 � o1

Transitivity: Preferences must be transitive:

if o1 � o2 and o2 � o3 then o1 � o3

Monotonicity: An agent prefers a larger chance of getting a
better outcome than a smaller chance:
I If o1 � o2 and p > q then

[p : o1, 1− p : o2] � [q : o1, 1− q : o2]
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Properties of Preferences (cont.)

Continuity: Suppose o1 � o2 and o2 � o3, then there exists a
p ∈ [0, 1] such that

o2 ∼ [p : o1, 1− p : o3]

See worked example 1 video lecture10a-wx1

Decomposability: (no fun in gambling). An agent is indifferent
between lotteries that have same probabilities and outcomes.
Substitutability: if o1 ∼ o2 then the agent is indifferent between

lotteries that only differ by o1 and o2.
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Theorem

If preferences follow the preceding properties, then preferences can
be measured by a function

utility : outcomes → [0, 1]

such that

o1 � o2 if and only if utility(o1) ≥ utility(o2).

Utilities are linear with probabilities :

utility([p1 : o1, p2 : o2, . . . , pk : ok ])

=
k∑

i=1

pi × utility(oi )

(see proof in Book - proposition 9.3)
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Rationality and Irrationality

Rational agents act so as to maximize expected utility:

I Action a1 leads to outcome [o1, . . . , ok ] with probabilities
[p1, p2, . . . , pk ]

I Action a2 leads to outcome [o1, . . . , ok ] with probabilities
[q1, q2, . . . , qk ]

I if
∑k

i=1 pi × utility(oi ) >
∑k

i=1 qi × utility(oi )
then action a1 is the rational choice

Humans are n not rational... What would you prefer

$1, 000, 000 or [0.5 : $0, 0.5 : $2, 000, 000]?

Would you prefer

lose $100 or [0.5 : lose $0, 0.5 : lose $200]?
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Prospect Theory - Tversky and Kahneman

Humans weight value differently for gains vs losses ,

$

psychological
value
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Prospect Theory - Tversky and Kahneman

Humans weight value differently for gains vs losses ,
$1, 000, 000 or [0.5 : $0, 0.5 : $2, 000, 000]?
g1: psychological value of sure thing
0.5× g2: psychological value of lottery

$

psychological
value

$1m

g2

prefer sure thing
0.5xg2 < g1 g1

$2m
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Prospect Theory - Tversky and Kahneman

Humans weight value differently for gains vs losses ,
lose $100 or [0.5 : lose $0, 0.5 : lose $200]
l1: psychological value of sure thing
0.5× l2: psychological value of lottery

$

psychological
value

$1m

g2

prefer sure thing
0.5xg2 < g1 g1

$2m

prefer lottery

−200 −100

l2

l1 0.5xl2 > l1
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Ultimatum Game

Two-player game : agents A and B

A gets $10

A can offer B any amount x = $[0− 10]

B can
I accept : B gets x , A gets 10− x

I reject : A and B both get 0

rational choice: A offers B ε→ 0, B accepts

Humans: x ≈ $4
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Making Decisions Under Uncertainty

What an agent should do depends on:

The agent’s ability — what options are available to it.

The agent’s beliefs — the ways the world could be, given the
agent’s knowledge. Sensing the world updates the agent’s
beliefs.

The agent’s preferences — what the agent actually wants
and the tradeoffs when there are risks.

Decision theory specifies how to trade off the desirability and
probabilities of the possible outcomes for competing actions.
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Single decisions

Decision variables are like random variables that an agent
gets to choose the value of.

In a single decision variable, the agent can choose D = di for
any di ∈ dom(D).

Expected utility of decision D = di leading to outcomes ω
for utility function u
E(u|D = di ) =

∑
P(ω|D = di )u(ω).

An optimal single decision is the decision D = dmax whose
expected utility is maximal:

E(u|D = dmax) = max
di∈dom(D)

E(u|D = di ).
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Delivery Robot

To get to its
goal, a robot
can go one of
two ways: a
long,
safe route

and a
shortcut .

The robot can
put on a set of
pads before

setting off.

GOAL

+100

long

way

−20

shortcut

Goal is worth 100, taking the long route costs 20, and putting
on pads costs 5.

Accidents are costly, but less so if pads are worn.

Accidents are more likely on the shortcut.
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Decision Tree for Delivery Robot

The robot can choose to wear pads to protect itself or not.

The robot can choose to go the short way past the stairs or a
long way that reduces the chance of an accident. Thus, the robot
has two decision variables : Wear Pads and Which Way

There is one random variable of whether there is an accident.

wear pads

don’t 
wear 
pads

short way

long way

short way

long way

accident

no accident

accident

no accident

accident

no accident
accident

no accident

w0 - moderate damage

w2 - moderate damage

w4 - severe damage

w6 - severe damage

w1 - quick, extra weight

w3 - slow, extra weight

w5 - quick, no weight

w7 - slow, no weight
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Example Quantification

Which Way Accident Prob.

long true 0.01
long false 0.99
short true 0.2
short false 0.8

Which Way Accident Wear Pads Value

long true true 30
long false true 75
long true false 0
long false false 80
short true true 35
short false true 95
short true false 3
short false false 100
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Decision Networks

A decision network is a graphical representation of a finite
sequential decision problem.

Decision networks extend belief networks to include
decision variables and utility .

A decision network specifies what information is available
when the agent has to act .

A decision network specifies which variables the utility
depends on.
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Decision Networks

A random variable is drawn as an
ellipse. Arcs into the node represent
probabilistic dependence.

A decision variable is drawn as an
rectangle. Arcs into the node
represent information available when
the decision is made.

A utility node is drawn as a diamond.
Arcs into the node represent variables
that the utility depends on.
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Single-stage decision networks: Robot Pads

Which Way
Accident

Utility

Wear Pads

E(which way ,wear pads) =∑
accident P(accident|which way)U(which way , accident,wear pads)
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Finding the optimal decision

Suppose the random variables are X1, . . . ,Xn, decision
variables are D, and utility depends on Xi1 , . . . ,Xik and D:

E(u|D) =
∑

X1,...,Xn

P(X1, . . . ,Xn|D)× u(Xi1 , . . . ,Xik ,D)

=
∑

X1,...,Xn

 n∏
j=1

P(Xj |parents(Xj))

× u(Xi1 , . . . ,Xik ,D)

To find the optimal decision:
I Create a factor for each conditional probability and for the

utility
I Multiply together and sum out all of the random variables
I This creates a factor on D that gives the expected utility for

each D
I Choose the D with the maximum value in the factor.
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Sequential Decisions

An intelligent agent doesn’t make a multi-step decision and
carry it out without considering revising it based on future
information.

A more typical scenario is where the agent:
observes, acts, observes, acts, . . .

Subsequent actions can depend on what is observed.
What is observed depends on previous actions.

Often the sole reason for carrying out an action is to provide
information for future actions.
For example: diagnostic tests, spying.
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Sequential decision problems

A sequential decision problem consists of a sequence of
decision variables D1, . . . ,Dn.

Each Di has an information set of variables parents(Di ),
whose value will be known at the time decision Di is made.
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Policies

A policy specifies what an agent should do under each
circumstance.

A policy is a sequence δ1, . . . , δn of decision functions

δi : dom(parents(Di ))→ dom(Di ).

This policy means that when the agent has observed
O ∈ dom(parents(Di )), it will do δi (O).
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Expected Utility of a Policy

Possible world ω satisfies policy δ, written ω |= δ if the
decisions of the policy are those the world assigns to the
decision variables. That is, each world assigns values to the
decision nodes that are the same as in the policy.

The expected utility of policy δ is

E(u|δ) =
∑
ω|=δ

u(ω)× P(ω),

An optimal policy is one with the highest expected utility.
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Finding the optimal policy

1. Create a factor for each conditional probability table and a
factor for the utility.

2. Set remaining decision nodes ← all decision nodes

3. Mutiply factors and sum out variables that are not parents of
a remaining decision node.

4. Select and remove a decision variable D from list of
remaining decision nodes:

pick one that is in a factor with only itself
and some of its parents (no children).

5. Eliminate D by maximizing. This returns:
I the optimal decision function for D, arg maxD f

I a new factor to use, maxD f

6. Repeat 3-5 till there are no more remaining decision nodes.

7. Eliminate the remaining random variables. Multiply the

factors: this is the expected utility of the optimal policy.

8. If any nodes were in evidence, divide by the P(evidence)



27/ 32

Umbrella Decision Network

Umbrella

Weather

UtilityForecast

You don’t get to observe the weather when you have to decide
whether to take your umbrella. You do get to observe the forecast.
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Initial factors for the Umbrella Decision

Weather Value

norain 0.7
rain 0.3

Weather Fcast Value

norain sunny 0.7
norain cloudy 0.2
norain rainy 0.1
rain sunny 0.15
rain cloudy 0.25
rain rainy 0.6

Weather Umb Value

norain take 20
norain leave 100
rain take 70
rain leave 0
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Eliminating By Maximizing

f :

Fcast Umb Val

sunny take 12.95
sunny leave 49.0
cloudy take 8.05
cloudy leave 14.0
rainy take 14.0
rainy leave 7.0

maxUmb f :

Fcast Val

sunny 49.0
cloudy 14.0
rainy 14.0

arg maxUmb f :

Fcast Umb

sunny leave
cloudy leave
rainy take
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Decision Network for the Alarm Problem

Tampering Fire

Alarm

Leaving

Report

Smoke

SeeSmokeCheck
Smoke

Call

Utility
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Decision Network for the Cancer Problem

M

Malfunction

C

Cancer

A
Test A

B

Test B

R
Report

D
Database

DA

Do Test A

DBDo Test B

DC
Diagnose Cancer

U

Utility

P(M = true) = 0.08 P(C = true) = 0.32

C DA P(A = true|C ,DA)

t t 0.80
f t 0.15
− f 0.5

P(A|C,DA)

M C DB P(B = true|M,C ,DB)

t t t 0.61
t f t 0.52
f t t 0.78
f f t 0.044
− − f 0.5

P(B|M,C,DB)

B P(R = true|B)

t 0.98
f 0.01

P(R|B)

R P(D = true|R)

t 0.96
f 0.001

P(D|R)

C DB DC U(U,DB ,DC )

t t t 18
t t f 0
t f t 20
t f f 2
f t t 2
f t f 18
f f t 4
f f f 20

U(C,DB,DC)
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Next:

Planning with uncertainty (Poole & Mackworth (2nd
ed.)chapter 9.5)

Reinforcement Learning (Poole & Mackworth (2nd
ed.)chapter 12.1,12.3-12.9)


