
BayesACT Version 2: Technical User Manual

Jesse Hoey
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, N2L3G1

jhoey@bayesact.ca

Abstract

This paper gives is meant to serve as a technical guide to BayesAct (version 2,
currently 2.3.8). Software is available for download at bayesact.ca, along with
all relevant publications and links. Email the owner for access to the code at the
address under the title. An online version of BayesAct is accessible through this
link: https://cs.uwaterloo.ca/~jhoey/research/bayesact/code/index.html.
A longer version of this paper exists that includes basic background material on
POMDPs, planning, and affect control theory, also available by request to the author
(email above). Section 1 introduces the software and some basic simulation examples
are described in Section 2.

Working paper. DO NOT CITE. If you need to cite this paper,
contact the author directly.

1 BayesAct v2 software

This section gives a practical overview of the new BayesACT code. This information is
also found in the README. The code is available at bayesact.ca. Email the owner for
access at the address shown above. It comes with the following copyright disclaimer:

Use for research purposes only.

Do not re-distribute without written permission from the author

Any commerical uses strictly forbidden.

This program is distributed WITHOUT ANY WARRANTY;

without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1

bayesact.ca
https://cs.uwaterloo.ca/~jhoey/research/bayesact/code/index.html
bayesact.ca

1.1 Differences between BayesAct v2 and v1

BayesACT Version 2 makes some substantial changes over BayesACT Version 1. It is
written in C, not Python, so its now faster. A python wrapper is provided for convenience.
Other major changes are as follows.

• The “somatic transform” is used for all connotative-denotative links. This was pro-
posed in Neil MacKinnon and Jesse Hoey paper at the Identity conference. Its a
major advance over the original BayesACT as provides a conceptual and mathemat-
ically well defined linkage between connotative (sentiment/affective) meanings and
denotative (cognitive) states. See (Hoey et al., 2021; MacKinnon and Hoey, 2021)
for more details on the somatic transform.

• The denotative state (labels) are explicitly taken into account, so each sample is
weighted by its distance from the sentiment distribution of its denotative label
(using a somatic transform).

• Re-identification is done on a per sample basis, so each agent maintains a running
distribution over denotative labels. These are added as needed when the sample
weights get too small, so the set of labels describing an agent grows and shrinks
with the simulation (using a somatic transform). When sample weights get too
small, agents try to re-identify first client identity, then (optionally) agent identity,
then both simultaneously.

• Full variance information can be taken into account for dictionaries. The recent
2015 dataset is included with the zip file in which the full measured covariances are
computed for each identity label.

• All identities are specified denotatively for a simulation and a simulation is specified
using a simple language - see e.g.simtest-base.txt described further below.

• all parameters can be modified in this simple language

• Multiple agents can interact (see below Section 1.7).

• The planning engine is now a belief-state forward search. Actions and observations
are sampled and a belief state is propagated to each node. The idea is to do a fairly
shallow, precise, targetted search. The search goes for precision in a targetted (by
the affect control principle) area rather than depth in an expected (according to the
utility function) target area. The planning algorithm naturally trades off between
rational decision theoretic (individual utility maximization) and affective alignment.
This is work in progress, and has not been fully tested in version 2.3.8,
so use with caution.

2

1.2 Installation

Requires the following:

• gcc - on Mac you can download the XCode package. On Windows, I have no clue
- ask @BillGates. You will probably need some $. Linux, you probably will never
read this, but if you do, visit gnu.org.

• GSL - get it from www.gnu.org/software/gsl

• Python version 3 for the python wrapper (optional)

To install, open a terminal, find the file and

>unzip bayesact-master.zip

>cd bayesact-master/source

>make

You may need to edit the Makefile first. If you are on linux, then Makefile.linux may
work better for you. The default is Makefile.macos.

To use:

> ./bayesactsim -h

displays a usage message

A basic simulation can be run with:

> ./bayesactsim ../examples/simtest-base.txt

where simtest-base.txt is the simulation specification file to read from (see the files
themselves and Section 1.7 below for more information). You may need to adjust your
PATH or otherwise change the input file simgtest-base.txt so it points to the dictio-
naries (in the directory data).

The code comes with five applications, specified as a set of funtions in the files defaultAPP.c,
institutionAPP.c bayesactAPP.c, and pdAPP.c. The first, defaultAPP.c models ba-
sic ACT-like simulations with no additional reward function and no state Xx, while
the second (institutionAPP.c) adds the ability to specify institutions. The third,
(bayesactAPP.c) models a full bayesACT agent that maintains identity and takes insti-
tutions into account. Finally, (pdAPP.c) models a social dilemma and includes elements
of state Xx and reward. To swap one out for the other you need to

• change the Makefile so that the line APP=... reads the appropriate thing (pdAPP
or defaultAPP), and

3

gnu.org
www.gnu.org/software/gsl

• change the #include ... to read the same thing (pdAPP.h, bayesactAPP.h, or
defaultAPP.h).

On the to-do list is to normalize this so the elements of additional state and all the dynam-
ics are specified in a second text-based file, so the code does not have to be re-compiled
to switch applications. For now, interested users can define their own applications by
implementing the same functions as in those files. By default it uses the most general
bayesactAPP.c, which sould be sufficient for most purposes.

See the README for more information on a number of topics. In the following we go over
the basic elements.

1.3 Main Code Structure

The basic structures are found in fvarsample.h, the major functions in fvarsample.c.
The main program is in bayesactsim.c. There are the following major components, also
shown schematically in Figure 1.

1. there are a number of enums and other constants defined - see fvarsample.h for
details. Of note:

• SSD is the dimensionality of the emotion space (3 by default: EPA)

• NGT is the number of grammar terms - in case we want to add settings in later

2. agents are agentState objects which have a name, filenames for transient impression
and emotion dynamics parameters, parameters α, γ, δ a pointers to dictionaries for
identities, behaviours and modifiers

3. dictionaries represent sentiment dictionaries. These are not replicated, so more than
one agent can point to the same dictionary. They are used by the somaticTransform
to map between connotative and denotative state. Dictionaries can be of four types
(enum dict type)

(a) MEAN - a label followed by SSD double

(b) SD - a label followed by SSD doubles (the mean), followed by SSD doubles (the
std. devs. on the mean)

(c) COV - a label followed by SSD doubles (the mean), followed by SSD2 doubles
(the covariances on the mean)

(d) SAMPLE - (raw set of samples - not implemented yet)

(e) GAUSS MIX - (a label followed a number M - number of mixtures, followed by
M sets of weights + COV or SD parameters - not implemented yet)

4

dyadname
parameters
 𝛂,𝛄,𝛃,𝛅 etc.
flags do_resets, etc
dictionaries
dynamics
persona

samplerState
Index
mirror dyad index
agent id
client id
interact behaviour

all covariances 𝚺
ℋ𝒞𝒦 matrices
 (factorizations of M)
M
 (as dreq features)
dREQ
...

dyad
agent
client
behaviour
emotion
disrupt_flag
x_observation

f
tau
x
xx
theactor
Weight
reset_flag

sample

agent

dyad

event

samples
other parameters
random # generator
sentimentParams

𝛂𝛃𝛄𝛅 (copied from agent)

samplerState

sentimentParameters
num_items
gamma
dtype
fname
theDictionary
institutions

dictionary

label
epa (gls_vector)
var
variance
cholesky
...

sentiment

Group (bayesactsim)
agents
dyads
events
(in simfile)

Figure 1: This schematic shows how BayesACT 2.3.8 works. The “Group” is really the
bayesactsim simulator file at this point (but could be encapsulated). It consists of a set
of agents, a set of dyads, and a set of events. These are specified in a simulation file (see
below). The agent has a set of parameters (alpha, beta, gamma), a set of dictionaries,
an emotional dynamics matrix (impression formation equations) and a persona (a set
of weighted identities). A dyad has a samplerState that contains all it needs to run a
simulation, including copies of the key parameters from the primary agent for the parent
dyad. It also contains the parameters suitably set up (in matrices). Each sample has
a fundamental, transient, x, xx, a weight and two flags. Finally, an event has a dyad,
an agent, a client, a behaviour an emotion, potentially a noise term (disrupt flag) and
an x observation. The idea is that an agent would actually consist of a full actor that
encapsulates all this, and represents the groups it belongs to according to the structure I
am showing above. Labeling this structure “groupStruct”, then the fullActor would have
a groupStruct * array.

5

gender is handled by simply specifying a dictionary that has the correct sentiments
for that gender. so the old interact dictionaries (e.g. fidentities.dat) which had
male and then female means, the first three are used (male only). To use these for
female ratings of identities, they’d have to be split into two dictionaries

4. dyads represent an interaction, and are dyadIndex objects which have an index for
the dyad, and indices for agent and client in the interaction, an institution list if
available, and a random seed.

5. a samplerState represents the parameters and samples for each interaction.

• the parameters are sentimentParams which includes all the covariance matri-
ces for the updates and the parameters of impression formation equations (M)
and emotion equations (R,E,Q)

• the samples are an array of sample structures which have 2 double arrays (for
f and tau), and then integer indices for agent id, client id, agent behaviour id,
client behaviour id and finally a double weight

1.4 Main functions pseudocode

Algorithm 1: Full state update overview.
// Main update function (called from bayesactsim)

updateFullStateTwoActorsXX

compute average f ,τ
compute optimal interact mean for identities and behaviours (taking partial derivative and setting to zero)
weight→0
for each sample do

while weight < threshold do
sampleWeightNextSentimentWithEmotion

sampleNextState

if resetting then
shoehorn in the optimal interact mean for agent or client (depending on reset schedule)

select schedule by changing a line marked ‘‘RESET FLAG MARKER’’ in fvarsample.c

copy out the actual agent behaviour → fb
end
sampleNextSentiment

setUpSampleNextSentimentRaw

sampleASentiment // actually does the work of drawing the sample

updateXSample // update the denotative sample

if not resetting then
somaticTransform(WEIGHT,fa, xa) // apply Somatic Transforms for identity - this gives the

somaticTransform(WEIGHT,fc, xc) // for client identity - sample an initial weight

somaticTransform(WEIGHT,fb, xb) // does not occur if xb is chosen (reset or getNextAction)

else
somaticTransform(DENOTATIVE,fa, xa) // extract xa, xc from fa,fc - these are the reset

somaticTransform(DENOTATIVE,fc, xc) // for client identity - (possibly new) identities

end

end
computeSampleWeight // add to sample weights for client emotion and Xx observation if available

end

6

The pseudocode above shows the primary sampling update function and what is called
when this update is done. The main sampling update function is

updateFullStateTwoActorsXXX

which may include X observations and emotions as well, so there is a series of these
functions that can be called with different parameter sets, which would all be one function
if C allowed default parameters, which it doesn’t.

1.5 Simulation options

The following are the command line options for the BayesAct v2 test program bayesactsim,
which is invoked with:

bayesactsim [OPTIONS] simfile

where OPTIONS are detailed below, and simfile is the simulation description file, which
contains the description of the interactions you want to simulate. There are a few included
in the distribution, to be discussed in Section 1.7 below.

The possible OPTIONS are:

• -h : print usage

print the possible options listed here

• -e : use emotions (default no)

To use emotions, specify a -e flag after the function call

> ./testbayesact -e simtest-base.txt

Note that -e flag means that the emotion somatic potentials are not used in the be-
lief updates, but not that emotion values can’t be computed based on fundamentals
and transients. The -e flag is overruled by -m, since emotions are not used in IN-
TERACT in an update, although thye can be used to modify identities. Modifying
the BayesAct code so it can also do identity modification is something to look into.

• -ep: plan over emotions as well (default no)

Emotions will also be used in the plan tree.

• -x : use additional x state and observations (default no)

For applications that have additional state Xx, this flag must be specified.

• -o <filename >: output a CSV file

numerous elements of the state, including possibly the full sample set, are written
to a CSV file this can be processed by the script csvtolatex.py to get a readable
format.

7

• -s <num>: num is max number of raw samples to output

to the CSV file. If not specified, but -o used, assume none, if zero, assume all)

• -ga gamma value [0.0025]

γ value for MEAN type dictionaries - this overrides DTYPE MEAN VARIANCE

• -d : use default action only (default no)

Only the default action is used in the plan tree (if used - see -p below).

• -p <num> : use num samples for plan tree generation (default no plan

tree)

You may want to use a smaller number of samples when planning to get a more well
explored, but “rougher” plan tree.

• -t <num> : timeout (in seconds) for planning (default 0 or 1 rollout)

Planning will proceed for this many seconds.

1.6 Python3 wrapper

To use the Python3 wrapper, you have access to only the very basic functions right now,
and these have not been tested recently, so proceed at your own risk.

• to initialize, you provide the same arguments as to testbayesact in a python3 call:
initializeState(numsamples, num plan samples, timeout, simfile)

• to get the next action and emotion for the agent for dyad i: (agent action,agent emotion)
= getNextActionEmotion(i)

• to update the state with the xx observations, the client action and emotion and
agent action and emotion as specified (all strings) for dyad i

numnodes = updateState(i,xx obs,client play,client emotion,agent play,agent emotion)

returns the number of nodes in the plan tree - if < 0 this means this failed -
something was not in a dictionary (probably an emotion label)

1.7 Usage notes

See detailed explanations in Section 2 for how to specify a set of agents and interactions.
A simulation specification has three main sections as follows

• AGENT: specify a set of agents. Each agent is specified with a set of dictionaries
(for identities, emotions and behaviours), and two dynamics files (one for impression
formation and one for emotions). These are the standard “equations” as used in
ACT. Each agent also can have a set of parameters, αa, αc, βa, βc, δa, δc and the
number of samples used by the agent per interaction. The γ parameters are in the

8

dictionaries or specified on the command line with -ga or in fvarsample.h with
DTYPE MEAN VARIANCE

• INTERACTIONS: specify a set of interactions. Each interaction is a dyad (two
agents) specified with

interaction : A : B

this means that this interaction is the specification from agent A’s perspective when
interacting with agent B. To also model agent B’s perspective, you need to add a
second interaction

interaction: B : A

Each of the agent’s in the dyad is then specified with a probability distribution over
identities in the dictionary. Thus, for

interaction: A : B

A : i: p : j : q : k : r

B : l : s : m : t

endinteraction

means that, from agent A’s perspective, agent A is a distribution over identities
i,j and k with probabilities p,q and r, respectively, and agent B is a distribution
over identities l,m with probabilities s and t, respectively. If no identities and
probabilities are specified, then the distribution is even (equal probabilities) over all
identities in the corresponding dictionary.

• Institutions are specified per interaction with a single line listing the institutions.
These must be in the relevant dictionary.

institution: lay : business

• personas are specified per agent immediately following the agent’s name

agent Tom : mother : 0.8 : daughter : 0.2

means that Tom has a persona that is 80% mother and 20% daughter.

• finally, you can specify which “mode” to run the simulation in either “user” or
“events”. If “user”, then it is interactive and you should make sure you (at least) use
the -v flag on the command line, and possibly uncomment VERBOSE in fvarsample.h.
If “events”, then an events file needs to be specified:

events: ../examples/testsim4f.events

9

The events file describes a sequence of events across a set of interactions, and is described
further in Section 2.

A “user” mode simulation proceeds by

1. asking which dyad you want to simulate - type the index or ”enter” to use the same
as last time

2. printing out summary statistics for this dyad, including

• average sentiments (fundamentals and transients)

• average labels for those sentiments (distribution over denotative states)

• deflections (expected)

• deflections (from average state)

• emotions and labels

3. printing out best next actions for agent

4. asking for the agent’s action. “enter” here means that agent does not act.

5. asking for the agent’s emotion (if -e is specified). Best options are shown.

6. printing out best next actions for client (see (3))

7. asking for the client’s action. “enter” here means that client does not act -

8. asking for the client’s emotion (if -e is specified). A default option is specified.

9. actually doing the update - you have to select the same dyad again to see what
happened

10. go to (1)

1.8 Parameters

The parameters that can be changed in the simulation input file are shown in Table 1, and
discussed in more detail in Section 2. Here I remind users of the meanings of these parame-
ters, followed by the meanings of a few other settable constants (mostly in fvarsample.h).

• αa, αb and αc: the strength of the affect control principle. If higher the ACP is
weaker.

• βa and βc: the identity sentiment inertia - how much do we expect sentiment to stay
the same over time.

10

• δa and δc: the denotative identity inertia - how much do we expect denotative
labels of identities to stay the same over time. If working a simulation close to
equilibrium (everything stays low deflection), then this can be set small (and possibly
the RESET THRESHOLD large. If working in off-equilibrium situations (e.g. something
surprising happens), then this must be larger (and possibly the RESET THRESHOLD

correspondingly smaller).

• n is the number of samples to be used by the agent for each of its interactions.

• γ is specified by default in DTYPE MEAN VARIANCE in fvarsample.h. You can also
specify it command line using -ga. However, these only work for dictionaries of
type MEAN. Dictionaries of type SD or COV will have the variances in the dictionary,
and these variances may be different for each dictionary item. Further, as the
dictionaries are specified for self and other, each agent can use two sets of variances:
for identities related to the self, and for identities related to the other.

The items settable in fvarsample.h are:

• RESET THRESHOLD: the threshold at which a reset is triggered. This threshold is on
the total weight of all samples. It can be as small as 10−307. Setting this number,
especially in relation to the setting of δ above, is important to how the denotative
identity distributions unfold over time.

• DO INTERACT: Whether to compute interact updates as you go - this is used for
resetting, so is normally on

• PERSONA FRACTION: how many samples are added from the persona at each step

• DO DENOTATIVE IDENTITY UPDATES: if 0, will keep denotative identities constant (ex-
cept for resets)

• VERBOSE and VERYVERBOSE: different settings for verbosity

Finally, two items settable in bayesactsim.h are:

• DISRUPT NOISE: the amount of noise added if a ‘‘+’’ is specified in the events file

• WRITE IMAGES: whether to write out small images showing the samples at each step.
Set image type according to which two dimensions of sentiment you want to see if
the images (default E and P).

• SPECIFY ALL FOUR: if 1 then when querying in “user” mode, all four actions are
queried for.Usually only one action is required, the others being none,none, and the
same action as taken, but noise can change this, so this option may be needed.

11

2 Example Simulations

In this section I run through a few simple simulations. First, in Section 2.1, one with a
single dyad with unimodal distributions that follow an equilibrium situation, as in interact.
Second, Section 2.2 with a single dyad that does some re-identification. Section 2.3 then
shows how we can closely imitate Interact, and Section 2.4 shows a more involved situation
involved three people. Finally, Section 2.5 shows the example that is covered in more detail
in (Hoey and Schöder, 2021).1

Throughout these simulations, we remind the reader that there are two methods for
computing somatic transforms. The averaged method is more suited to computations
that try to mimic INTERACT, while the expectation method is a more comprehensive
and “correct” method. We use the expectation method in the following.

Note that we will be simulating BayesAct without the addition of the additional denotative
state, Xx. Thus, there is no reward, and no point to using the planning capabilities of
BayesAct.

You can run a simulation in your browser now by heading to cs.uwaterloo.ca/~jhoey/

research/bayesact/code/index.html. The simulation corresponds to the one discussed
in Section 2.5. It also allows you to download the code and the simulation file you used.
We plan in future to open up the BayesAct server so simulation files and settings can be
submitted online.

2.1 Single Dyad, close to Interact

Simulation specification: simtest-base.txt

In this simulation, we use the Indiana 2002-2004 databases and dynamics equations.
These can be obtained from INTERACT (see below). We will be simulating two males,
“Hank” and “Tom”. Hank is Tom’s secretary, and Tom is Hank’s boss, and both share
the exact same representation of the situation.2 The simulation is done using the default
α, β parameters (specified in fvarsample.h) and the γ parameter is in the input identity
file or taken as DTYPE MEAN VARIANCE, also in fvarsample.h. The default values are as
follows In this first simulation, we set DTYPE MEAN VARIANCE to 0.01 in order to ensure
the sentiments are interpreted as they would be in Interact. However, as we will see
this causes problems for the sampler if the interaction leaves the equilibrium it is on (if
deflection goes too high).

We first specify our two agents in terms of their somatic potentials they will use (their sen-
timent dictionaries). We use dictionaries of type MEAN as the Indiana 2002-2004 database
does not have variance information.

1available from the author on request.
2We use the term “secretary” here in full recognition that it is outdated and no longer in common

use. We use the term here, and any genderedness of the proper names we are using (Hank and Tom),
without prejudice and these could be replaced by any names.

12

cs.uwaterloo.ca/~jhoey/research/bayesact/code/index.html
cs.uwaterloo.ca/~jhoey/research/bayesact/code/index.html

param. code name hard code com line sim file default value
α DEFAULT ALPHA fvarsample.h -ba,-bc alphas: [a or aa : ab : cc] 0.1
β DEFAULT BETA fvarsample.h -ba,-bc betas: [b or ba : bc] 0.01
δ DEFAULT AGENT DELTA fvarsample.h deltas: [d or da : dc] ... 0.1
γ DTYPE MEAN VARIANCE fvarsample.h -ga as SD/VAR in data files 0.1
n num samples 1000
rt RESET THRESHOLD 10−32

Table 1: Modifiable parameters in BayesAct.

Our first agent is Hank. His specification starts with the keyword agent: and his name
on a line, followed by four dictionaries and two equations files, followed by the keyword
endagent. All fields are separated by colons (:).

agent: hank

dictionary: AGENT : fidentities.dat : MEAN

dictionary: BEHAVIOUR : fbehaviours.dat : MEAN

dictionary: CLIENT : fidentities.dat : MEAN

dictionary: EMOTION : fmodifiers.dat : MEAN

dynamics: IMPRESSION : tdynamics-male.dat

dynamics: EMOTION : temotions-male.dat

endagent

The files fidentites.dat, fbehaviours.dat and fmodifiers.dat come with the BayesAct
package, and are the Indiana 2002-2004 ACT lexicons. They can be obtained from IN-
TERACT by going to the Import/Export tab, selecting Show current entries and then
cutting-and-pasting into the corresponding text file. Other dictionaries could be used
in the same fashion. The files tdynamics-male.dat and temotions-male.dat are the
impression formation and emotion formation equation parameters, obtained from INTER-
ACT by doing to the View equations tab, selecting USA 1978 and Male Actor-Behaviour-Object.

Our second agent is Tom, and he is using the same somatic potentials as Hank.

agent: tom

dictionary: AGENT : fidentities.dat : MEAN

dictionary: BEHAVIOUR : fbehaviours.dat : MEAN

dictionary: CLIENT : fidentities.dat : MEAN

dictionary: EMOTION : fmodifiers.dat : MEAN

dynamics: IMPRESSION : tdynamics-male.dat

dynamics: EMOTION : temotions-male.dat

endagent

Now, we specify the interactions between these two. Each starts with the keyword
interaction, followed by the names of the two agents in the dyad. The first agent
named is the one from whom’s perspective this interaction is modeled from. Thus,

13

interaction: hank: tom

means we are specifying how hank is viewing his interaction with tom.

rseed : 1621517535849

I am using specific random number seeds to the random number generators give the exact
output you see below. If you comment out these lines, you will get a slightly different
simulation. The more samples you add, the smaller the variation will be.

interaction: hank : tom

hank : secretary : 1.0

tom : boss : 1.0

endinteraction

In this case, hank sees himself as a secretary with probability 1.0, and he sees tom as his
boss with probability 1.0. Tom’s view of the situation is identical:

interaction: tom: hank

tom : boss: 1.0

hank : secretary : 1.0

endinteraction

The second interaction can be left out of the file, in which case only the first interaction
will be run. However, Interact cannot be used in this case, so DO INTERACT must be false.

Finally, the file shows two more things that can be set: the number of interations to
simulate for, and whether to query the user for the simulation simtype: query or to
run automatically simtype: bayesact.

To set this up in INTERACT, define two interactants (hank and tom), then define the situ-
ation as a secretary and boss, and then define single event hank[,secretary],dress,tom[,boss],
as dress is the most aligned behaviour for hank to take first. Go to select options and
get everything written out to the Java Console.

A BayesAct simulation can be run from the source/ directory as follows:

./bayesactsim testsim-interact.txt

You can edit fvarsample.h and modify some settings, such as the default number of
samples, etc. These can also be modified in the simulation file (e.g. simtest-base.txt).
You can also switch on VERBOSE to see even more output to the screen, or you can go
to bayesactsim.c and uncomment WRITE IMAGES to see a simple visualization of the
emotional state for each frame dumped to ../output/.

I will walk through this in USER mode. If you specify an “events” file, you can run this in
batch mode, see testsim.events, explained in the next simulation. First, the program

14

spits out a bunch of information about the different dictionaries (if VERBOSE is define-d
in fvarsample.h , then displays:

available dyads:

0: hank - tom

1: tom - hank

select dyad to simulate (enter for same as last time 0):

Press enter to select dyad 0, which means we’ll be doing a simulated step from Hank’s
perspective. This is like selecting Experiences of hank in the define events tab in
Interact. Now, the program outputs the current situation, including the fundamentals
and transients (which are the same as fundamentals since its the first step):

fundamental output average

ae ap aa be bp ba ce cp ca:

1.03 0.01 -0.18 0 0 0 0.48 2.16 0.94

transient output average

ae ap aa be bp ba ce cp ca:

1.03 0.01 -0.18 0 0 0 0.48 2.16 0.94

here each row shows agent, behaviour and client (actor, behavior and object in ACT)
values for E,P, and A (e.g. the “ce” term is the client’s “E” value). These are exactly
those from the dictionary (e.g. boss is 0.48, 2.16, 0.94) as it is the first step. Next,
the distribution over denotative identities corresponding to those are shown. These are
computed with the expectation method only, and in this case each agent has a single
identity with probability 1.0:

client identity average labels (probabilities):

boss (1)

agent identity average labels (probabilities):

secretary (1)

The deflections are all zero since transients are the same as fundamentals, and the emo-
tions are characteristic since transients and fundamentals are the same. The emotions
are shown using one of two methods, described as follows, and specified as ae method in
bayesactsim.c: either AVERAGED or EXPECTATION.

The (averaged method) works by computing the expected fundamental and transient senti-
ments (these are the same as those shown above), and then applying the emotion formation

15

equations to get the EPA for the emotion resulting from the averaged sentiments, and
then applying a somatic transform to find the closest label (this method is the one that
is in correspondence to INTERACT). In the second (expectation method) the expected
emotions are computed directly (applying the emotion formation equations and somatic
transform to each sample and gathering statistics on the labels that are found). I am using
the expectation method in the following simulation. Using this method, we find warm tak-
ing all the probability. In this case, the sentiments for warm are (EPA:{1.72, 0.57, 0.06}).
Compare to INTERACT’s computation of the characteristic emotion feeling effects

tab, which is (EPA:{1.61, 0.48, 0.38}).
The averaged emotion for tom is (EPA:{1.6, 2.7, 1.18}) is close the the characteristic
emotion (use the feeling effects tab in INTERACT) of (EPA:{1.61, 3.01, 1.21}), and
the expected emotion is a single one contented (with probability 1.0).

Finally, the best action to take for hank is shown, again shown in the way as specified
by ae method. The (expectation method) computes the distribution over denotative la-
bels (the expectation of the denotative state), second (averaged method) computes the
best action based on the expected fundamentals and transients (the denotative state cor-
responding to the expected sentiments, again this is the one that should correspond to
INTERACT):

got 404 potential actions for hank (from perspective of hank), top 5 are

rank * cum. prob label (probability)

__

1 * 0.931 dress (0.931)

2 * 0.997 turn to (0.0658)

3 * 0.999 wait on (0.00209)

4 * 1 pet (0.000483)

5 * 1 watch (0.00032)

===

And we see that Hank would likely dress his boss, Tom. The program also shows that
Hank expects Tom to glorify 98%, or discipline (2%).

To get the same numbers from INTERACT, head to the feeling effects screen, select
secretary on the left and boss on the right, click characteristic emotion for both,
then click compute solution making sure that behaviour is selected. You’ll get an
expected value of 1.1 -0.35 -0.40, which is very close the value above, with the same
denotative label dress.

We enter dress for Hank’s action (to correspond to Interact), and then we see the best
actions to take for tom.

Now select dyad 1 and we can go and see what effect this dressing had on Hank’s boss,
Tom:

16

fundamental output average

ae ap aa be bp ba ce cp ca:

0.476 2.15 0.936 1.02 -0.0331 -0.341 1.03 0.0129 -0.18

transient output average

ae ap aa be bp ba ce cp ca:

0.375 1.35 0.567 0.568 -0.0327 -0.0962 0.809 -0.165 -0.0877

client identity average labels (probabilities):

secretary (0.998) homemaker (0.002)

agent identity average labels (probabilities):

boss (1)

Indeed, he certainly still feels like a boss and thinks Hank is his secretary. In Interact, we
run the interaction and get the following output for fundamentals (in the same order as
shown for Tom above:

0.48 2.16 0.94 0.95 0.07 -0.33 1.03 0.01 -0.18

And for transients:

0.36 1.31 0.57 0.53 0.05 -0.09 0.77 -0.12 -0.08

The correspondence is close. BayesAct then outputs the deflections, again computed in
two ways as the expected deflection (average deflection computed per sample - expectation
method):

deflection AGENT: 0.13

deflection BEHAVIOUR: 0.314

deflection CLIENT: 0.87

total deflection: 1.14

showing numbers that are very similar to INTERACT:

Deflection: 1.19, Actor: 0.09, Object: 0.87.

Emotion and action information is shown next. I will focus here only on action distribu-
tions as the emotion model is still a work in progress. The emotions are printed to the
screen for your viewing, but do not play a role in the simulation unless you add the -e

flag when running bayesactsim

The best actions to take for Tom are

17

===

got 397 potential actions for tom (from perspective of tom), top 5 are

rank * cum. prob label (probability)

__

1 * 0.996 discipline (0.996)

2 * 1 examine (0.00362)

3 * 1 face (3.25e-09)

4 * 1 employ (1.59e-09)

5 * 1 march with (1.58e-09)

===

which is again in close correspondence to INTERACT (discipline): 0.93, 2.3, 0.54 Now we
can select a behaviour for Tom and then continue from here. Let us see, however, what
happens if things go off the rails and Tom does something unusual and unexepected, like
“punch” Hank. The following tragic information shows up:

number of reset attempts: 1000 successes: 0

number of resets for agent: 0 client: 0 both: 0

total weight of all samples in update 0

total weight of all samples for agent in update 0

total weight of all samples for client in update 0

followed by this very subtle and self-effacing error-like message:

----reset failed: weight 0 threshold 1e-32.

This message is devastating in its simplicity, and may lead to dispair and discouragment
on your part, but I urge you to take heart, for it only means that the sampler broke. What
should you do? First, you should probably not trust your results as the distribution is
essentially just copied over from the previous time step, such that all intervening evidence
(suck as the “punch” above) is ignored. Second, you should read the next section.

2.2 Why did this happen and how can we fix it?

sim filename: simtest-flex.txt

The default parameters expect things to be roughly close to equilibrium. Thus, “punching”
is just too far away from any reasonable definition of a boss-secretary relationship, that
the sampler just can’t handle it. You have two options here. The first is to increase the
number of samples by adding this to each agent definition in the simulation file:

numsamples: 10000000000 // or whatever you want

18

However, I cannot make any guarantees on how big this number will need to be for your
specific situation, and therefore how long a simulation will take for your case. I have tried
the above with a million samples (instead of 1000) and not done any better. Luckily, you
have a second option, which is to make the agent more flexible in what it defines as its
possible identities. This makes use of the “RESET” mechanism in BayesAct, which works
as follows.

When the sampler breaks (as above), BayesAct will attempt to re-identify the client,
followed by the both agent and client. It does this by first finding the zero-point of the
partial derivative of the deflection, as Interact does, and then setting the sentiments for
the BayesAct agent to a distribution centered on that point for the identity in question.
It is only when these two attempts fail that BayesAct complains with the ----reset

failed message.

The simulation we did above did not “make use of” the reset capabilities of BayesAct
because α and δ are too small. These control the spread of the agent’s distribution in
both connotative (α) and denotative (δ) spaces. We will also increase β (which is normally
1/10 of α).

We therefore write:

agent: hank

alphas: 1.0 : 1.0 : 1.0

betas: 0.1 : 0.1

deltas: 0.5

...

and similary for Tom. Note the alphas and betas are specified for agent, behaviour (for
alphas) and client, but if they are all the same, they can be specified as just as single
number as deltas are.

Running the same simulation as above (Hank dresses Tom, and then Tom punches

Hank, we no longer run into the terrible -----reset failed message, and we get the
following

19

tom is updating and perceives him/herself doing [punch] to hank,

who is doing [[doesn’t act]] back

number of reset attempts: 751 successes: 291

number of resets for agent: 0 client: 20 both: 271

total weight of all samples in update 0.00877612

hank is updating and perceives him/herself doing [[doesn’t act]] to tom,

who is doing [punch] back

number of reset attempts: 740 successes: 622

number of resets for agent: 0 client: 596 both: 26

total weight of all samples in update 0.000294339

total weight of all samples for agent in update 0

total weight of all samples for client in update 0.000294339

Now we see that of 1000 samples for Tom, 751 of them attempted a reset, of which 291
succeeded. Of these 291, 20 succeeded after only re-identifying the client, while 271 of
them required a reset of both agent and client. For Hank, the split was 596/620 successful
resets for client only, meaning Hank had an easier time reconciling the punch with his own
identity of self, secretary. Thus, we expect Hank remains secretary, but re-identifies
Tom, while Tom is going to re-identify both.

Selecting dyad 0 this time, we see how Hank is handling all this

ae ap aa be bp ba ce cp ca:

1.05 0.166 -0.253 -1.45 0.192 1.44 0.307 2.31 1.03

transient output average

ae ap aa be bp ba ce cp ca:

0.113 -0.877 -0.048 -1.25 0.595 1.04 -1.08 0.919 0.952

client identity average labels (probabilities):

VIP (0.992) boss (0.006) hunk (0.001) celebrity (0.001)

agent identity average labels (probabilities):

homemaker (0.992) woman (0.005) egghead (0.001)

stuffed shirt (0.001) questioner (0.001)

Now we see Hank has re-identified Tom as a VIP, and himself as a homemaker (which is
close to secretary in this dataset. Tom on the other hand has re-identified himself as
perhaps a bouncer and Hank as a foster child or a tenant. Hank’s optimal action
would now be to reproach Tom, and the simulation can continue from here.

20

2.3 Interact: closing in

simulation file: simtest-interact.txt

In this simulation we attempt to get BayesAct to reproduce what Interact produces. We
will see how this can also break the simulation and how to resolve it.

There are a few things to note about this exercise. First, BayesAct is fundamentally
computing a different posterior update based on the total derivative of the deflection,
while Interact is computing partial derivatives. Therefore, BayesAct really is computing
a different solution than Interact, and we should not expect the same results. Nevertheless,
we can produce a version of BayesAct that is as deterministic as possible by using the
following parameter settings:

• α = 0.01 set in simtest-interact.txt

• β = 0.001 set in simtest-interact.txt

• δ = 0.01 set in simtest-interact.txt

• γ = 0.01 set using DTYPE MEAN VARIANCE in fvarsample.h

• RESET THRESHOLD: 10−307 set in fvarsample.h

• num samples: 10000 set in simtest-interact.txt

re-running the same simulation as above again, we see largely the same results as with the
default parameters. When the deflecting action of punch happens, however, the samplers
again complain that ---reset failed.

Once again, the ability to handle the deflection action requires the agent to be somewhat
more flexible in its choices of identities at the denotative level. This can be fixed by
setting DO DENOTATIVE IDENTITY UPDATES to 0 in fvarsample.h, or by increasing δ in
the simulation file. if we set δ to be 1.0 in simteset-interact.txt, the simulation can
once again proceed with some degree of accuracy. However, note that BayesAct would be
better off running this simulation with the default parameters shown at the start of this
section, as these constricted versions we are using here pose too many constraints for the
BayesAct model to handle properly.

2.4 Threesome

Simulation specification: testsim-threesome.txt

In this simulation, we see a variety of other possibilities. First, look at the bottom of the
file, you see

events : ../examples/testsim-threesome.events

simtype : events

21

This indicates the simulation will proceed according to the script in the file shown. This
file looks like this

tom : * : : sally : : :

sally : * : : tom : : :

sally : * : : dave : : :

dave : * : : sally : : :

It indicates a series of events with the actor in the event first, following by the actor’s action
(“*”=optimal, “!”=Interact,” “=none,”[label]”=dictionary word). Thus this events file
says that tom and sally each exchange optimal actions, followed by sally and dave.

Returning to the start of the file, we now see that each agent can specify its values fof
α, β and δ (γ is in the dictionaries or is specified as DTYPE MEAN VARIANCE).

There are a number of new elements in the interaction specification. First, should institu-
tional labels be in the dictionaries, you can write a set here. Within this interaction, the
acting agent will only maintain indentites/behaviours that agree with these instiutional
labels. Further, each agent can have a distribution over identities for self and other, as
shown. Thus, in this example, dave is sally’s husband, and part-time father when in-
teracting with his children, but he also feels she is a lady and that he is sometimes a
loser.

interaction: dave: sally

institution : family :lay

dave : husband : 0.8 : father : 0.1 : loser : 0.1

sally : wife : 0.5 : lady : 0.5

endinteraction

You can track and see what each dyad is doing in the simulation. I will not go through
this in detail here, but will note that you can change this to “user” mode and do it
interactively.

2.5 Multiple Identities

Simulation specification: testsim4f.txt

This is the simulation from the paper (Hoey and Schöder, 2021) describing an environ-
mentalist who thinks a coal miner may be somewhat to blame for a climate crisis, and the
coal miner can feel the environmentalist is prosecuting them. However, they can settle on
a joint, shared, identity of citizen, should they be able to align properly. The simulation
file uses a set of dictionaries of type SD, meaning the variances of the denotative ele-
ments in the dictionary are specified therein. The events file also contains a new symbol
“+” which means to disrupt the incoming observation to the action in question by an
amount DISRUPT NOISE (in bayesactsim.c).

22

hank : *+ : * : tom : + : *:

tom : *+ :* : hank :+ :* :

In this case, both agents have their observations of the other’s action disrupted by some
noise. The disruptive noise is implemented at this point as follows. Clearly, it could be
implemented in many different ways depending on the noise level and domain (e.g. in
a real robot, in might be real nenvironmental noise). First, we translate the behaviour
that was taken by the other agent into EPA space, then we add noise as a draw from a
random Gaussian with standard deviation DISRUPT NOISE, and then translate back to a
denotative label using a somatic transform. The result may be the same as without the
noise.

In this case, we will simulate the complete set of interactions in testsim4fne.events

which are 9 mutual exchanges bewteen the two actors, each acting optimally, each with
DISRUPT NOISE=0.1. We output the result to a csv file using

./bayesactsim -o ../output/testout4f.csv ../examples/testim4f.txt

which we can convert to a readable latex table using the script output/csvtolatex.py

in from the output/ directory, we can then do:

python3 csvtolatex.py ./testout4f.csv ./colstolatex ./colstolatexi

>& coalminer2.tex

Which gives the data shown in Table 2. We see in this case that the two agents have
difficulty aligning. The parameters can be set in such a way as to make them more likely
to align. See (Hoey and Schöder, 2021) for more details.

References

Hoey, J., MacKinnon, N., and Schröder, T. (2021). Denotative and connotative control
of uncertainty: A computational dual-process model. Judgment and Decision Making,
16(2).

Hoey, J. and Schöder, T. (2021). Disruption of status orders in societal transitions as
affective control of uncertainty. under review.

MacKinnon, N. J. and Hoey, J. (2021). On the inextricability and complementarity of
cognition and affect: A review and model. To appear, Emotion Review.

23

Hank Tom
d hank tom behav. tom hank

id p id p ↔ id p id p d ∆f

0.0
0.5
0.5

citizen
environmentalist

0.5
0.5

citizen
culprit

inspect
→

0.5
0.5

citizen
coal miner

0.5
0.5

citizen
prosecutor

0.0 3.9

3.0
0.7
0.1

environmentalist
peer

0.8 culprit
confer with
←

0.3
0.2
0.1
0.1
0.1

miner
coal miner
laborer
citizen
colleague

0.6
0.1
0.1

prosecutor
citizen
colleague

1.1 3.7

5.7 1.0 environmentalist 0.9 malcontent
test
→

0.3
0.3
0.1
0.1

citizen
colleague
peer
wage earner

0.3
0.2
0.2
0.1

citizen
colleague
wage earner
peer

1.5 3.7

7.4
0.7
0.1

environmentalist
peer

0.6
0.3

malcontent
culprit

confer with
←

0.3
0.3
0.1
0.1

citizen
colleague
peer
wage earner

0.3
0.3
0.1
0.1

citizen
colleague
wage earner
peer

1.9 3.7

8.1
0.6
0.2

worker
peer

0.7
0.2

sinner
malcontent

pacify
→

0.3
0.3
0.2
0.1

citizen
colleague
wage earner
peer

0.3
0.3
0.1
0.1

colleague
citizen
wage earner
peer

2.0 3.6

8.3
0.4
0.2
0.2

environmentalist
worker
peer

0.5
0.3
0.2

malcontent
sinner
culprit

confer with
←

0.3
0.3
0.1
0.1

colleague
citizen
wage earner
peer

0.4
0.3
0.1

colleague
citizen
wage earner

2.0 3.6

. . .

7.3 0.9 environmentalist 0.9 malcontent
pacify
→

0.3
0.3
0.1
0.1

colleague
citizen
wage earner
peer

0.4
0.3
0.1
0.1

citizen
colleague
wage earner
peer

1.9 3.3

7.0
0.6
0.2
0.2

environmentalist
peer
worker

0.7
0.2

malcontent
sinner

confer with
←

0.4
0.3
0.1
0.1

citizen
colleague
wage earner
peer

0.4
0.3
0.1
0.1

citizen
colleague
peer
wage earner

1.9 3.3

Table 2: The distributions over denotative labels are cut off when the cumulative prob-
ability exceeds 0.6. d= deflection, ∆f fundamental difference (smaller is better). There
are 10 iterations in the middle left out. Here the agents have default parameters and to
not align well. See the ABS paper for details.

24

	BayesAct v2 software
	Differences between BayesAct v2 and v1
	Installation
	Main Code Structure
	Main functions pseudocode
	Simulation options
	Python3 wrapper
	Usage notes
	Parameters

	Example Simulations
	Single Dyad, close to Interact
	Why did this happen and how can we fix it?
	Interact: closing in
	Threesome
	Multiple Identities

