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Abstract
In this paper the approach of using a partially
observable Markov model for games with dy-
namical difficulty adjustment is introduced. This
approach leads implicitly to a strategy which
balances gathering information about the player
through his or her behavior with adjusting the
game to the estimated player’s abilities and pref-
erences. We will show how this approach can be
used in a stroke rehabilitation system, where a
person plays a game in which the controller is a
rehabilitation device. We show that the parame-
ters of the model have a clear influence on the
behavior of the system and that aspects of the
player’s abilities and characteristics can be mea-
sured by observing the behavior.

1 Introduction

Games which adapt themselves so as to maximize the en-
joyment of the user are currently the topic of much re-
search. The difficulty, the rules or specifications of items
in the game could be changed, giving every user a person-
alized experience. A taxonomy for such games has recently
been suggested by Togelius et al. (2010). In the ideal case,
the game would measure the characteristics of the user dur-
ing play and adapt dynamically.

There are many other domains where characteristics of a
task can be adapted dynamically to the user. For example,
in the work by Patricia Kan, Jesse Hoey, Alex Mihailidis
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(2008) the difficulty of a rehabilitation exercise is dynami-
cally adapted to the estimated abilities and fatigue level of
the person, while in the work by Boger et al. (2005) the
user is a person suffering from dementia and the task is
washing hands, with different types of aid from the system;
here the choice of actions needs to be tuned to the actual
cognitive capacities. In these specific instances, the whole
of user, system and task was modeled as a partially ob-
servable Markov decision process or POMDP, a model for
sequential decision making where certain aspects (e.g. abil-
ities, fatigue) are not directly observable but only indirectly
through the person’s behavior. This approach of modeling
the user and system as one POMDP and then solving it,
which gives a strategy to dynamically find the user’s abil-
ities and the optimal behavior of the system, could also
be used in the setting of adaptive games, where the abil-
ity level and specific interests of the player are not directly
observable. This is the approach we will present in this
paper. More specifically we will investigate the stroke re-
habilitation system, where the rehabilitation is achieved by
letting the person play a computer game, using a controller
which has adaptable resistance. We will show some results
of simulations using this system where the behavior of the
system and the estimates of the capabilities of the person
are measured for different settings.

The rest of the paper is structured as follows. In Section 2
related work in games with dynamic difficulty adjustment
is discussed. Section 3 introduces the POMDP approach to
dynamically adjusting systems (with some examples from
other fields) and explains how this could be used for games.
The variable aspects of a player in a game and how these
can be estimated are discussed in Section 4. Section 5
shows some preliminary results of simulations in the stroke
rehabilitation setting. We conclude with Section 6.
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2 Dynamic Difficulty Adjustment in Games

One particular way in which games could adjust themselves
to their players is by dynamically changing the perceived
difficulty of the challenges that the player is facing. There
is a connection between the achievements of the player and
the enjoyment that the player feels. Biederman and Vessel
(2006) postulates that our brains are physiologically driven
by a desire to learn something new: new skills, new pat-
terns, new ideas. We have an instinct to play, and this in-
stinct is inherently connected with acquiring new knowl-
edge. There is an internal reward mechanism for each new
mastered skill or gained knowledge: the feeling of joy. The
games create additional rewards for their players such as
new items available, new areas to explore. At the same
time there are new challenges to overcome, new goals to
achieve, and new skills to learn, which creates a loop of
learning-mastery-reward and keeps the player involved and
engaged.

Thus, an important ingredient of the games that are fun
to play is providing the players with the challenges corre-
sponding to their skills. It appears that an inherent property
of any challenge (and of the learning required to master it)
is its difficulty level. Here the difficulty is a subjective fac-
tor that stems from the interaction between the player and
the challenge. The perceived difficulty is also not a static
property: It changes with the time that the player spends
learning a skill.

Note that while the perceived difficulty depends on the abil-
ities of the player, at the same time the ability to learn the
skill and the speed of the learning process are also con-
trolled by how difficult the player perceives the task. If the
bar is set too high and the task appears too difficult, the
player will end up frustrated and will give up on the pro-
cess in favour of something more rewarding. Then again
if the challenge turns out to be too easy (meaning that the
player already possesses the skill necessary to deal with it)
then there is no learning involved, which makes the game
appear boring.

It becomes obvious that the game should provide the chal-
lenges for the player of the “right” perceived difficulty: The
one that stimulates the learning without pushing the play-
ers too far or not far enough. Ideally then, the difficulty of
any particular instance of the game should be determined
by who is playing it at this moment.

Both artificial intelligence researchers and the game de-
velopers community display an interest in the problem of
automatic difficulty scaling. Different approaches can be
seen in the work of Hunicke and Chapman (2004), Her-
brich et al. (2006), Danzi et al. (2003), and others. As
can be seen from these examples the problem of dynamic
difficulty adjustment in video games was attacked from

different angles, but a unifying approach is still missing.
Player modeling in computer games is a relatively new
area of interest for the researchers. Nevertheless, existing
work (Yannakakis & Maragoudakis, 2005; Togelius et al.,
2006; Charles & Black, 2004; Missura & Gärtner, 2009)
demonstrates the power of utilising the player models to
create the games or in-game situations of high interest and
satisfaction for the players.

3 Dynamically Estimating Player Abilities

3.1 Dynamical Systems Which Adapt to Users

Adapting the behavior of a system to a user is not only use-
ful for games. Work of Boger et al. (2005); Hoey et al.
(2007) shows how a system can be developed to assist peo-
ple suffering from dementia in a task such as hand-washing.
Some people might forget to rinse their hands after apply-
ing soap, and a visual or auditory cue might help to remind
them or, in worse cases, the assistance of a carer might be
required. If a prompt is not given when needed, the person
will not succeed in the task; if a prompt is given when none
was required the person will feel less independent. Here
we see that adaptation to the specific case is important. To
make the task even harder for the system, the cognitive abil-
ities will change over time, so the system should be able to
cope with this, ideally by having some kind of prediction
of future abilities from the estimated current state.

Closer to the dynamic difficulty adjustment in games is the
ongoing work (building on previous work (Patricia Kan,
Jesse Hoey, Alex Mihailidis, 2008)), in which the same ap-
proach is used for rehabilitation for upper limb recovery for
people who have suffered a stroke. Here the person has to
perform a simple exercise, where the system can adapt the
difficulty. Ideally the exercise should be of such difficulty
that it should be manageable, but not too easily. The sys-
tem keeps an estimate of the fatigue level, prompting the
person to take a break when the estimated fatigue level is
too high. The exercise system is a haptic controller for a
computer game the person is playing. This was introduced
to make the exercises more enjoyable, an important aspect
of rehabilitation exercises. We will show some results of
simulations with this system in Section 5.

The approach used in both these domains is to model the
person together with the system as a POMDP, which is ca-
pable of dealing with sequential dynamic systems where
some states are preferred to others and not everything rele-
vant to the process is observable. In the given examples the
actual abilities of the people are not directly observable, but
their interactions with the system are.

When using a model represented as a POMDP, at each step
a belief state (a probability distribution over all states) is
kept. A policy for a POMDP tells us for any belief state
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which action the system should take next. When the ac-
tion is taken and the observable variables are gathered, the
belief state can be updated using the new evidence in a
Bayesian approach.

A given POMDP can be solved by a number of approaches,
but finding an exact solution is generally a very complex
and time-consuming task (Aberdeen, 2003). The POMDPs
for the described tasks were represented as influence dia-
grams, a method to reduce large POMDPs to a smaller and
easier to handle form (Hoey et al., 1999). Given this repre-
sentation, an adaptation of the PERSEUS algorithm (Spaan
& Vlassis, 2005) can find an approximate solution.

Generally, an influence diagram for a system adapting to
the user’s abilities would look like Figure 1. In an in-
fluence diagram, a node represents a variable aspect of a
state. The probabilities of these values are dependent on
only those variables from which a directed edge arrives at
the variable node. For example, in Figure 1, the value of
the STRETCH variable in the next time step depends only
on the ACTION of the system and the current ABILITY of
the person. Variables where the name ends in an apostro-
phe (e.g. ABILITY’) are variables representing the state in
the next time-step.

There is a single action per time step that the system
can choose and four variables describing the current state.
ABILITY indicates the current estimate of the abilities of
the user. The variable TASK is a description of the task the
person is performing; representing for example the type of
game being played. STRETCH describes the difference in
level between the selected action and the actual abilities of
the person. If the stretch is high, the task is estimated to
be very hard, if it is equal to zero the task is exactly at the
current ability, if it is below zero the task is too easy. This
variable is crucial as the entire expected behavior depends
directly on this variable. The BEHAVIOR is what we are ac-
tually able to monitor, in the rehabilitation task the behav-
ior is the time needed to perform the exercise and whether
the person compensated using his or her upper body. The
conditional probabilities of these variables are monotonic
functions of the STRETCH variable, with high stretch giv-
ing high probabilities of compensating and lower control.

3.2 Modeling a Game and a Player as a POMDP

The adaptive models represented as POMDPs as described
in the previous section are clearly usable for finding poli-
cies for adaptive games. Indeed, in such games we want
the behavior of the system (the selection of the difficulty
level, for example) to depend on the current estimates of the
player abilities, her enjoyment and the type of the player.

In this case the hidden variables are the actual abilities
of the player (which will change as the player learns to

Figure 1. An influence diagram for adaptive systems.

play the game better), the enjoyment (including boredom
and frustration levels), and the player type, as well as the
stretch (as in the previous section) which indicates how
hard the previous level was, given the estimated abilities of
the player. Observable behavior is the time the player needs
to complete the level, how many lives the player lost during
the level, how many sub-goals were accomplished, etc. An
important extra observable parameter is whether the player
decided to stop playing for now – this might indicate that
he did not enjoy the game enough. Both observable and
unobservable variables will be discussed more elaborately
in the next section.

4 Variables of the Player and System in
Games

In this section we will discuss possible observable behavior
of a player in a game, and the characteristics of a player
which have to be estimated from this behavior. These can
be modeled by an influence diagram, enabling us to model
the combination of game and player as a POMDP.

4.1 Observable Behavior of a Player

The actual performance (whether the player is playing well
or not) tells us a lot about her abilities. Depending on the
game, this could be measured by the time to achieve the
goal, the number of lives lost during the level, or the num-
ber of points scored. If the player has good performance on
a level intended to be hard, it means she has a high ability
for this type of game and will be expected to perform well
in similar levels or games of the same type.
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4.2 Unobservable Characteristics of a Player

There are many aspects of the physical and mental capabil-
ities of the player in his current state which are relevant to
his behavior and performance in the game but are not di-
rectly observable. In this section we will give a number of
examples of such aspects and describe their possible influ-
ence on the behavior of the player, which indicates in what
way these things could be estimated and how they should
be taken into account for a general strategy.

Abilities: the user’s expected success rate for specific kinds
of tasks can be very diverse for different people. Some
people have slower reflexes or have difficulty getting their
timing right, which is critical for many games.

Boredom: if a player is not challenged enough for a period
of time, she can be expected to get bored by the game. If
a player is bored, general enjoyment is low and the player
might decide to stop playing. In this case the game has
clearly failed to hold the player’s attention. Thus, making
levels not too easy is an important part of the general game
strategy.

Frustration: in contrast to overly easy levels boring the
player, levels which are too hard may be frustrating for the
player. If a level is not passable, the player will at some
point give up trying and stop playing. Even if she does not,
having to try every level for a large number of tries before
the player gets through will not give much enjoyment to the
player. The conclusion is that the levels should not be too
hard given the player’s estimated abilities.

Player Type: as not every person is the same, with some
people being fast learners and others taking more time, and
some people having more experience with certain kinds of
games, the prior expected abilities (before the player gets
any experience playing this specific game) and the rate at
which these change depend on the player type. Not only
that, but the rate at which the player gets bored or frus-
trated depends on this too, as does the threshold at which
the player would become too bored or frustrated and decide
to stop playing. In the work by Missura and Gärtner (2009)
players were clustered according to having similar behav-
ior in a game, where new players could then be classified
as belonging to one of these clusters. We can assume that
each cluster represents a type of player with specific learn-
ing rates, prior abilities and enjoyment expectations. In
Section 5.2 we describe an experimental simulation where
the type of person (indicating his learning rate) is estimated
from his behavior.

5 Simulations

As an illustration of the possibilities of the suggested ap-
proach we will show some results of simulations using the

stroke rehabilitation system. All simulations were run us-
ing a simple simulator which will improve his abilities at
a constant rate over time, reaching full ability after 100
time steps. The amount of control is deterministically de-
termined by the value of the STRETCH variable, as are the
ability to reach the target and the time it takes and whether
there was compensation. We realize this is not a plausible
simulator for a real person but include these results to il-
lustrate the behavior of the system for varying settings of
system parameters.

The influence diagram for the stroke rehabilitation system
is shown in Figure 2.

Figure 2. An overview of the influence diagram used for the
stroke rehabilitation system.

The LEARN RATE indicates how fast a the increase of abil-
ities is expected to be. The vector N(R) represents which
distance the person is able to reach at each resistance set-
ting, thus giving us his or her ability. The STRETCH vari-
able indicates how much the given exercise was beyond
the current ability. The fatigue level is represented by the
FAT node. For the observations, TTT indicates the time
needed to reach the target, CTRL represents whether the ex-
ercise was performed in a controlled way and COMP tells us
whether the person compensated by using his or her upper
body instead of just his arm. Rewards are given for succes-
ful exercises, and a penalty is given whenever the system
prompts the user to take a break using the STOP action.
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5.1 The Effect of Stop Cost on Exercise Run Length

In a first experiment the cost of the STOP action was varied,
measuring the effect on the average length of runs between
breaks. The results are shown in Figure 3. This graph
clearly shows that increasing the cost of stopping results
in longer exercise runs. Important to note is that for very
high costs, the system will select exercises slightly below
the actual abilities. This prevents the person from becom-
ing too fatigued. This implies that by changing the STOP
cost the system can generate short runs of exercises which
are a bit harder, or longer runs of easier exercises.
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Figure 3. Average run length of exercise sessions for varying costs
of the STOP action.

5.2 Estimating the Learning Rate from Observed Be-
havior

A second experiment using the simulator was performed to
measure how the model can be used to estimate the learn-
ing rate of a given person. The simulated person was the
same as in the previous experiment, with abilities improv-
ing every n steps with 10 ≤ n ≤ 1000. The model was
slightly extended to have three different types of people,
with learning rates equal to 0.1, 0.01 and 0.001.1 The a
priori probability of a person being a specific type is equal
for each type.

We ran the simulation for 2000 steps for every simulated
person, keeping track of the estimated learning rate. The
results are shown in Figure 4 (note the logarithmic scale on
both x and y-axis). In this graph we plot, for a wide range
of actual improvement rates (x-axis) the expected value of
the learning rate (

∑
r rP (r), r ∈ {0.1, 0.01, 0.001}) after

varying numbers of time steps. Here, it is clear that for the
fastest learning people (improving every 50 steps or faster)

1Unfortunately, due to the complexity of the dynamics of the
system, a clear correspondence between the ability improvement
frequency and the learning rate is not readily available.

the correct learning rate is found already after a small num-
ber of steps. For values of the improvement frequency near
0.001, the estimates converge to the slowest learning type,
while values between 0.008 and 0.01 converge to the mid-
dle learning rate. For the values between these ranges is
not directly clear which learning rate they correspond to.
The simulated person does not clearly belong to any of the
given types, given the behavior, but is a mix of different
types (the belief state has non-zero probabilities for more
than one value of the learning rate).

For the lower ability update frequencies, the system takes
a long time to converge. We assume this is due to the very
low evidence for any increase, leading to the assumption
that the user may be getting fatigued. Indeed, for these val-
ues of the update frequency the system’s estimate of the fa-
tigue level were very high throughout the entire run, which
the system takes as a likely explanation for the lack of suc-
cess in more difficult tasks than the very easiest. The sys-
tem will then only select very easy exercises, getting little
or no examples of slightly more taxing tasks.

The stepwise curve the graph converges to (as can be seen
from the graph after 2000 steps) is the behavior as it was
expected. The system believes every person to be of one
of the three different types, and as the runs progress more
evidence is gathered. If a higher resolution of learning rates
is required to adequately choose a rehabilitation policy for
a user, the model could be easily changed to have more
basic learning rates as possibilities.

The fact that the system needs a large number of steps to
converge to the correct learning rate for some frequencies
does not mean that the model is not useful after a limited
number of steps, however. When the system has not con-
verged with high certainty to a single type, the estimate of
the person type is a weighted combination of two or three
different types, leading to a strategy which is both accept-
able to the person and which will try to get more evidence
to decide the type. If the system receives a penalty for over-
stretching, a safe exercise regime would be selected in case
of uncertainty, until there is enough evidence that the learn-
ing rate is high enough for a heavier exercise scheme.

6 Conclusion

Partially observable Markov decision process present a
good approach to find a strategy for games with dynamic
difficulty adjustment, where the characteristics and abili-
ties of the player are estimated on-line (during the actual
run of the game, not in a separate training phase).

This kind of system has already been implemented in a set-
ting for upper limb rehabilitation for stroke victims. The
person plays a computer game where the controller is a
haptic device with adaptable resistance and sensors to de-
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Figure 4. Estimate of the learning rate after given number of steps
for simulators with varying ability improvement frequencies.

tect whether the person has good control over his move-
ment or needs to compensate by using upper body strength.
The adjustable difficulty in this system lies primarily in
the resistance of the controller and the distance the person
needs to reach, but if the game itself is too frustrating or
boring it will not be enjoyable and the person might be less
inclined to do the necessary exercises.

We presented simulated results for this system, showing
that changing the values of the parameters directly influ-
ences the behavior of the system and showing how aspects
of the characteristics of the user (e.g. learning rate) can
indeed be measured dynamically.
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