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Abstract—This paper presents an automated system for a 
rehabilitation robotic device that guides stroke patients through 
an upper-limb reaching task. The system uses a partially 
observable Markov decision process (POMDP) as its primary 
engine for decision-making. The POMDP allows the system to 
automatically modify exercise parameters to account for the 
specific needs and abilities of different individuals, and to use 
these parameters to take appropriate decisions about stroke 
rehabilitation exercises. The performance of the system was 
evaluated through various simulations and by comparing the 
decisions made by the system with those of a human therapist for 
a single patient. In general, the simulations showed promising 
results and the therapist thought the system decisions were 
believable.   
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I.  INTRODUCTION 
Stroke is the leading cause of physical disability and death 

around the world [1, 2]. Research has shown that post-stroke 
impairments and disabilities can be reduced by intensive, 
repetitive, and goal-directed rehabilitation, which improves 
motor function and cortical reorganization in stroke patients 
with both acute and long-term (chronic) impairments [3]. The 
recovery process, however, is typically slow and labor-
intensive, usually involving extensive interaction between a 
therapist and a patient. One of the main motivations for 
developing rehabilitation robotic devices is to automate 
repetitive and physically demanding interventions, which can 
alleviate strain on therapists. This technology makes it 
possible for a single therapist to supervise multiple patients 
simultaneously, and for home-based therapy, which can 
contribute in the reduction of health care costs. 

The upper extremities are typically affected more than the 
lower extremities after stroke [4]. There have been several 
types of robotic devices designed to deliver upper-limb 
rehabilitation for people with paralyzed upper extremities. The 
Assisted Rehabilitation and Measurement (ARM) Guide [5] 
presents a technique called “active assist therapy” that helps a 
user to complete a desired reaching task. The Mirror Image 
Movement Enabler (MIME) therapy system [6] uses a six-

degree of freedom (DOF) robot manipulator that applies forces 
through an orthosis to the user’s affected arm in order to 
accomplish both unimanual and bimanual goal-directed 
movements in 3-dimensional space. The GENTLE/s system 
[7] uses a 3-DOF robot that allows pronation/supination of the 
elbow as well as flexion and extension of the wrist through a 
gimbal mechanism. The rehabilitation robotic device that has 
received the most clinical testing is the Massachusetts Institute 
of Technology (MIT)-MANUS [8]. It consists of a 2-DOF 
robot manipulator that assists shoulder and elbow movements 
by moving the user’s hand in the horizontal plane.  

Recent work has also employed virtual reality games [9] 
and artificial intelligence (AI) methods, e.g. fuzzy logic [10] 
and artificial neural network [11], to improve upon the active 
assistance techniques found in the previous systems mentioned 
above. While these robotic systems have shown promising 
results, none of them is able to autonomously adjust different 
exercise parameters according to each individual’s needs. The 
rehabilitation systems discussed above also do not account for 
physiological factors, such as fatigue, which can provide 
information as to when the user should take a break and rest, 
which may benefit rehabilitation progress [12].  

The research described in this paper aims to fill these 
existing gaps by using stochastic modeling and decision 
theoretic reasoning to autonomously facilitate upper-limb 
reaching rehabilitation for moderate level stroke patients, 
tailor the exercise parameters for each individual, and estimate 
user fatigue. This paper is an extension of our previous work 
[13] that presents an intelligent controller using POMDP 
(partially observable Markov decision process) for reaching 
rehabilitation task. This paper also presents early pilot data to 
show the efficacy of the new system. 

II. REHABILITATION SYSTEM OVERVIEW 
The automated upper-limb stroke rehabilitation system 

consists of three main components: the exercise (Fig. 1), the 
robotic system (Fig. 2(a)), and the POMDP agent (Fig. 2(b)). 
As the user performs the reaching exercise on the robot, data 
from the robotic system are used as input to the POMDP, 
which decides on the next action for the system to take. 



 
Figure 1.  The reaching exercise 

A. The exercise 
A targeted, load-bearing, forward reaching exercise was 

chosen by consulting the therapists of this project. Reaching is 
one of the most important abilities to possess, as it is the basic 
motion involved in many activities of daily living [12]. Fig. 1 
provides an overview of the reaching exercise. The reaching 
exercise is performed in the saggital plane (aligned with the 
shoulder) and begins with a slight forward flexion of the 
shoulder, and extension of the elbow and wrist (Fig. 1(a)). 
Weight is translated through the heel of the hand as it is 
pushed forward in the direction indicated by the arrow, until it 
reaches the target position (Fig. 1(b)). The return path brings 
the arm back to the initial position. The goal is to have patients 
gradually reach the furthest target at maximum resistance, 
while performing the exercise with control (e.g. no deviation 
from the straight path) and proper posture (e.g. without trunk 
rotation, shoulder abduction/internal rotation). 

 
Figure 2.  The reaching rehabilitation system 

B. Robotic system 
Fig. 2(a) shows the robotic system, which is comprised of 

three main components: the robotic device, the postural 
sensors, and the virtual environment. 

The non-restraining robotic platform, shown in Fig. 3(a), 
was built by Quanser Inc., a robotics company in Toronto. It 

has two degrees of freedom, which allow the reaching exercise 
to be performed in 2D space. The robotic device incorporates 
haptic technology to provide resistance and boundary 
guidance for the user during the exercise.  

 

  
(a) (b) 

Figure 3.  Robotic platform 

Encoders in the end-effector of the robotic device provide 
data to indicate hand position and shoulder abduction/internal 
rotation (i.e. compensation) during the exercise. The 
unobtrusive trunk sensors (Fig. 3(b)) provide data to indicate 
trunk rotation compensation. The trunk sensors are comprised 
of three photoresistors taped to the back of a chair, each in one 
of three locations: the lower back, lower left scapula, and 
lower right scapula. The detection of light during the exercise 
indicates trunk rotation, as it means a gap is present between 
the chair and user.  

Finally, the virtual environment represents the reaching 
exercise in the form of a 2D bull’s eye game. The goal of the 
game is for the user to move the robot’s end-effector, which 
corresponds to the cross-tracker in the virtual environment, to 
the bull’s eye target. The rectangular box is the virtual (haptic) 
boundary, which keeps the cross-tracker within those walls 
during the exercise. 

C. POMDP agent 
The POMDP agent (Fig. 2(b)) is the decision-maker of the 

system. Observation data from the robotic device are passed to 
a state estimator that estimates the progress of the user as a 
probability distribution over the possible states, known as a 
belief state. A policy then maps the belief state to an action for 
the system to execute, which can be either setting a new target 
position and resistance level or stopping the exercise.  

D. Partially observable Markov Decission Process 
A POMDP is a decision-theoretic model defined by: a 

finite set of world states S; a finite set of actions A; a finite set 
of observations O; a transition function T : S x A → ∏(S), 
where ∏(S) denotes a probability distribution over states S, 
and P(s’|s,a) denotes the probability of transition from state s 
to s’ when action a is performed; an observation function Z : S 
x A → ∏(O), with P(o|a,s’) denoting the probability of 
observing o after performing action a and transiting to state s’; 
and a reward function R : S x A x 0 → R, with R(s,o,a) 
denoting the expected reward or cost (i.e. negative reward) 
incurred after performing action a and observing o in state s. 

This work was supported by CITO-Precarn Alliance Program, a grant 
from the NSERC-CIHR CHRP Program, Quanser Inc, and by 
FONCICYT contract number 000000000095185. The content of this 
document reflects only the author’s views. FONCICYT is not liable 
for any use that may be made of the contained information. 



The POMDP agent is used to find a policy (i.e. course of 
action) that maximizes the expected discounted sum of 
rewards attained by the system over an infinite horizon, to 
monitor beliefs about the system state in real time, and to use 
the computed policy to decide which actions to take based on 
the belief states [14]. 

E. Justification for using a POMDP to model reaching 
rehabilitation 
The rehabilitation system for the reaching task does not 

use any physical sensors to directly measure user fatigue, 
which is considered a “hidden” state. Hence, a POMDP-based 
formalism is suitable for estimation of user fatigue by 
capturing observable states such as user compensation and 
control. The reaching exercise is also a stochastic decision 
problem where choosing a particular action (target distance 
and resistance) at a particular state does not always produce 
the same outcome (user fatigue), instead, the action has a 
random chance of producing a specific result with a known 
probability. A POMDP can account for the uncertainty 
associated with an action through its transition probabilities 
and reward functions. By knowing the probabilities and 
rewards of the outcomes of taking an action in a specific state, 
the POMDP agent can estimate the likelihood of future 
outcomes to determine the optimal course of action to take in 
the present. The reaching task also needs to adapt to each 
individual patient’s needs and abilities over time. A POMDP 
has the capability of incorporating user abilities autonomously 
in real-time by keeping track of which actions have been 
observed to be the most effective in the past. For example, the 
POMDP may decide to keep the target closer for a longer 
period of time for patients who are progressing slowly, but 
may increase the target location further at a quicker rate for 
those who are progressing faster. Overall, the autonomous 
decision-making capability of a POMDP may help to reduce 
the health care cost since the decision-making process does 
not involve direct input of the therapists. 

III. POMDP MODEL 
Fig. 4 shows the POMDP model (without rewards) as a 

dynamic Bayesian network (DBN). The following sections 
describe different components of the system. 

A. Actions, variables, and observations 
The system can take 10 possible actions, where nine 

actions are specified as different combinations of target 
distance d∈{d1,d2,d3} and resistance level 
r∈{none,min,max}, and the last action is specified to stop the 
exercise when the user is fatigued. 

The following variables were chosen to represent the 
exercise: 1) fatigue = {yes,no} describes the user’s level of 
fatigue, 2) n(r) = {none,d1,d2,d3} describes the range (or 
ability) of the user at a particular resistance level, 
r∈{none,min,max}. The range is defined as the furthest target 
distance, d∈{d1,d2,d3}, the user is able to reach at a particular 
resistance. For example, if r=min and the furthest target the 
user can reach is d=d2, then the user’s range is n(min)=d2. 3) 

stretch = {+9,+8,+7,+6,+5,+4,+3,+2,+1,0,-1,-2} describes 
the amount the system is asking the user to go beyond his/her 
current range. It is a deterministic function of the system’s 
choice of resistance level (ar) and distance (ad), which 
measures how much this choice is going to push a user beyond 
his/her range, and is computed as follows: 
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where r ∈{1=none,2=min,3=max}, ra ∈{1,2,3}, and 

da ∈{1,2,3}. Variables rn ∈{0,1,2,3} and
ra

n ∈{0,1,2,3} 

indicate ranges at r and .ra 4) learnrate = {lo,med,hi} 
describes how quickly the user is progressing during the 
exercise. 
 

 
Figure 4.  POMDP model as a DBN 

The observations were chosen as follows: 1) ttt = 
{none,slow,norm} describes the time it takes the user to reach 
the target, 2) ctrl = {none,min,max} describes the user’s 
control level by his/her ability to stay on the straight path, and 
3) comp = {yes,no} describes any compensatory actions (i.e. 
improper posture) performed. 

Note that, although the observations are fully observable, 
the states are still not known with certainty since the fatigue, 
user range, stretch, and learning rate variables are 
unobservable and must be estimated. 

B. Dynamics 
The dynamics of all variables were specified manually 

using simple parametric functions of stretch and the user’s 
fatigue. The functions relating stretch and fatigue levels to 
user performance are called pace functions. The pace function, 
φ, is a function of the stretch, s, and fatigue, f, and is a sigmoid 
function defined as follows: 
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where m is the mean stretch (the value of stretch for which the 
function φ is 0.5 when the user is not fatigued), m(f) is a shift 
function that is dependent on the user’s fatigue level (e.g. 0 if 
the user is not fatigued), and σs is the slope of the pace 
function. There is one such pace function for each variable, 
and the value of the pace function at a particular stretch and 
fatigue level gives the probability of the variable in question 
being true in the following time step. Fig. 5 shows an example 
of pace function for comp=yes. It shows that when the user is 
not fatigued and the system sets a target with a stretch of 3 
(upper pace limit), the user might have a 90% chance to 
compensate. However, if the stretch is -1 (lower pace limit), 
then this chance might decrease to 10%. The pace limits 
decrease when the user is fatigued (at the same probability). In 
other words, the user is more likely to compensate when 
fatigued. 
 

 
Figure 5.  Pace function for comp=yes 

The detailed procedure to specifying m, σs, and m(f) has been 
described in our previous work [13]. 

In the current model, the ranges were modeled separately. 
The dynamics for the ranges state that setting targets at or just 
above a user’s range will cause his/her range to increase 
slowly, but less so if the user is fatigued. If a user’s range is at 
d3 for a particular resistance, then practicing at that distance 
and resistance will increase his/her range at the next higher 
resistance from none to d1. The dynamics also includes 
constraints to ensure that ranges at higher resistances are 
always less than or equal to those at lower resistances. Finally, 
the dynamics of range includes a dependency on the learning 
rate (learnrate): higher learning rates cause the ranges to 
increase more quickly. 

C. Rewards and computation 
The reward function was constructed to motivate the 

system to guide the user to exercise at maximum target 
distance and resistance level, while performing the task with 

maximum control and without compensation. Thus, the system 
was given a large reward for getting the user to reach the 
furthest target distance (d=d3) at maximum resistance 
(r=max). Smaller rewards were given when targets were set at 
or above the user’s current range (i.e. when stretch >= 0), and 
when the user was performing well (i.e. ttt=norm, ctrl=max, 
comp=no, and fatigue=no). However, no reward was given 
when the user was fatigued, failed to reach the target, had no 
control, or showed signs of compensation during the exercise. 

The POMDP model had 82,944 possible states. The size 
of this reaching rehabilitation model renders optimal solutions 
intractable, thus, an approximation method was used. This 
approximation technique exploits the structure of the large 
POMDP by first representing the model using algebraic 
decision diagrams (ADDs) and then employing a randomized 
point-based value iteration algorithm [15], which is based on 
the Perseus algorithm [16] with a bound on the size of the 
value function. The model was sampled with a set of 3,000 
belief points that were generated through random simulation 
starting from 20 different initial belief states: one for every 
range possibility. The POMDP was solved on a dual AMD 
Opteron™ (2.4GHz) CPU using a bound of 150 linear value 
functions and 150 iterations in approximately 13.96 hours. 
D. Simulation 

A simulation program was developed in MATLAB® 
(before user trials) to determine how well the model was 
performing in real-time. The simulation began with an initial 
belief state. The POMDP then decided on an action for the 
system to take, which was predetermined by the policy. 
Observation data were manually entered and a new belief state 
was computed. This cycle continued until the system stopped 
the exercise because the user was determined (by the system) 
to be fatigued. Before the next cycle occurred, the simulation 
program reset the fatigue variable (i.e. user is un-fatigued after 
resting) and the user ranges were carried over. 

 

 
Figure 6.  Initial POMDP belief state of example simulation 

The simulation was continued for nine decision cycles 
before the stop decision was made. During simulation, the 
POMDP slowly increased the target distance and resistance 



level when the user successfully reached the target in normal 
time, had maximum control, and did not compensate. 
However, once the user started to lose control, compensated, 
or had trouble reaching the target, the POMDP increased its 
belief that the user was fatigued and stopped the exercise to 
allow the user to rest. 
An example simulation is described as follows with the 
assumption that the user is able to reach the maximum target 
(d=d3) at the maximum resistance level (r=max), but then 
slowly starts to compensate after several repetitions. The 
initial belief state (Fig. 6) assumes that the user’s range at both 
zero and minimum resistance (i.e. n(none) and n(min)) is 
likely to be d3, and the user’s range at maximum resistance 
(n(max)) is likely to be d1. In addition, the initial belief state 
assumes that the user is not fatigued with a 95% probability. 
From this belief state, the POMDP sets the first action to be 
d=d1 and r=max. According to the assumption, the user 
successfully reaches this target in normal time, with maximum 
control, and with no compensation. In the next five time steps, 
the POMDP sets the target at d=d2 and then increases it to 
d=d3, assuming the user successfully reaches each target with 
maximum control and no compensation. Here, the user’s 
fatigue level has increased slowly from approximately 5% to 
20% due to repetition of the exercise. Now, during the next 
time step when the POMDP decides to set the target at d=d3 
again, the user compensates but is still able to reach the target 
with maximum control. In this case, the fatigue level jumped 
to about 40% due to user compensation. The POMDP sets the 
same target during the 9th time step and the user compensates 
once more. This time, the POMDP decides to stop the exercise 
because it believes the user is fatigued due to performing 
compensatory movements for two consecutive times. 

IV. PILOT STUDY – EFFICACY OF POMDP 
A pilot study was conduced with therapists and stroke 

patients to evaluate the efficacy of the POMDP agent—i.e. the 
correctness of its decisions. 
A. Participants 

Due to a delay in receiving ethics approval, only one 
therapist and one patient were recruited for the study. 
Therefore, the results of this section, being taken from a single 
patient-therapist dyad, should be taken only as a preliminary 
demonstration of the applicability of the system, and not a 
direct evaluation of the efficacy. The therapist was a physical 
therapist with more than nine years of experience in post-acute 
upper-limb stroke rehabilitation, and was fluent in English. 
The patient was right-side hemiparetic, had a stroke onset of 
227 days (7 months and 14 days) before enrolment, scored 4 
on the arm section of the Chedoke-McMaster Stroke 
Assessment (CMSA) Scale [17], was able to move to some 
degree but still had impaired movements as determined by her 
therapist, and could understand and respond to simple 
instructions. The patient continued with any outpatient 
therapies in which they were enrolled in at the time of study 
acceptance. 

B. Methods 
The patient participant was paired up with the therapist 

participant for the duration of the study. Each session lasted 
for approximately one hour and was completed three times a 
week for two weeks.  

For each session, the therapist brought the patient to the 
testing room. The patient participant was seated on a regular, 
straight-back chair positioned to the left of the robotic device. 
The therapist was responsible for adjusting the position of the 
chair, placing the trunk sensors at the appropriate spots (lower 
back, lower left scapula, and lower right scapula), and 
adjusting the height of the robot to ensure that the end-effector 
was correctly positioned in the saggital plane of the patient’s 
right shoulder. When both participants were ready to begin, 
the researcher powered on the robotic device and started the 
computer programs that controlled the POMDP agent, robotic 
device, and virtual environment.  

The exercise was performed in three parts: (A) after the 
POMDP made a decision (i.e. to set the target position and 
resistance level, or to stop the exercise) the therapist either 
agreed or disagreed with the decision made; (B) the researcher 
had the device either execute the decision made by the 
POMDP if the therapist agreed or execute the decision made 
by the therapist if the therapist disagreed; and (C) the patient 
then performed the reaching exercise by trying to reach the 
target on the computer screen. These parts were repeated in 
the order of A-B-C until the end of the session.  

Questions were asked at the end of each session and at the 
completion of the study for both participants. The 
questionnaire for the therapist participant was designed to 
focus on rating the decision-making strategy of the POMDP 
agent. For the patient participant, the questionnaire focused on 
gathering feedback with respect to her satisfaction in using 
such a robotic system. Both questionnaires consisted of 
quantitative and qualitative questions for statistical analysis 
and to provide insight into future design improvements, 
respectively. A four-point Likert scale was used for each 
quantitative question, with one representing complete 
disagreement and four representing complete agreement. 

V. RESULTS AND DISCUSSION 

A. Agreement of POMDP decisions 
Every decision made by both the POMDP and therapist was 

decomposed into three separate decisions: 1) the distance to set 
the target, 2) the level to set the resistance, and 3) whether or 
not to stop the exercise. The level of agreement by the therapist 
to the decisions made by the POMDP was calculated based on 
the three separate decisions as described above. A point of 
agreement would be given if the therapist set the same target 
distance as the POMDP, set the same resistance level as the 
POMDP, or agreed with the POMDP to stop the exercise or 
not. Figure 9 shows the percentage of agreement over all 
sessions. Note that there were 636 state transitions (i.e. total 
number of trials) and 1,154 decisions made by the system 
during the study. 

TABLE I.  PERCENTAGE OF AGGREMENT 



 Target  Resistance Stop Overall 

Percentage of 
agreement (%) 94.21 97.30 43.08 65.25 

 

The therapist agreed with both the target distance and 
resistance level decisions made by the POMDP approximately 
94% and 90% of the time, respectively, during the study 
(shown in Table I). Most of this agreement was with the 
POMDP repeatedly setting the target distance at d3 and the 
resistance at max. Since the patient was able to reach this 
setting within the first session with proper posture and control, 
the POMDP continued to make this decision as it was given 
large rewards for getting the user to reach the furthest target at 
maximum resistance.  This indicates that the overall mapping 
from the POMDP resistance/distance values to the actual 
settings on the device was set improperly for the subject in 
question.  This observation underlines the necessity of proper 
calibration by a therapist of the system prior to use. This 
calibration is part of our future work.  

The therapist only agreed with the POMDP approximately 
43% of the time for the stop decision. The POMDP wanted to 
stop the exercise to let the user take a break far more often than 
the therapist wanted. If the therapist did not see any signs of 
fatigue from the user, she would have the patient continue 
practicing the exercise for a longer period of time and not stop. 
Since the percentage of agreement for the stop decision was 
low, the overall therapist agreement with the POMDP decisions 
dropped to approximately 65%. 

The therapist’s decisions alternated between having the 
patient work on muscle strengthening (by repeatedly setting the 
distance and resistance at the highest level) and on control (by 
randomizing the target distance and resistance levels). 
However, randomization was not part of the POMDP’s initial 
objective and thus, the POMDP would never make the decision 
to randomize the target distance and resistance levels.   
B. Questionnaire Data 

Table II summarizes the therapist’s session responses, in 
terms of mean and standard deviation (SD), regarding the 
appropriateness of the decisions made during the exercise and 
whether the patient was given enough time to complete each 
exercise before the next decision was made. 

TABLE II.  THERAPIST EVALUATION ON POMDP DECISION 

 

Decision type 
The decision 
made during 
the exercise 
was appropriate 

The patient was given 
an appropriate amount 
of time to complete each 
exercise before the next 
decision was made 

Rating on Likert scale 
(1-4) 

Mean SD Mean SD 
2.8 0.41 3.2 0.41 

 

The therapist’s rating on the appropriateness of the amount 
of time given to complete each exercise before the next 
decision was made was generally favorable with a mean score 
of 3.2 out of 4.0 on the Likert scale. However, the 
appropriateness of the decisions made by the POMDP during 
the sessions was less favorable with a mean score of 2.8 out of 
4.0. Comments from the therapist suggested that randomizing 

the target distance and resistance level would be beneficial for 
the patient to work on control in addition to strengthening. 

With the help of a translator, the patient was able to answer 
the final questionnaire at the end of the study, which consisted 
of eight quantitative four-point Likert scale questions and four 
qualitative questions. From the patient’s quantitative results, 
the patient found the quality of motion of the robotic device to 
be very smooth with a score of 4.0 out of 4.0. The patient also 
felt that the resistance applied by the robotic device was too 
little, scoring 1.0 out of 4.0. Throughout the study, the patient 
repeatedly commented that the exercise was “too easy”, a 
reflection of the device’s resistance levels not being properly 
tuned to this particular user before the start of the trial. The 
patient was not able to feel the trunk sensors at all during the 
exercise, which suggests that trunk compensatory movements 
can be captured unobtrusively. The patient also felt that the 
bull’s eye game was somewhat interesting, scoring 3.0 out of 
4.0. The patient felt that the exercise closely resembled the 
reaching motion and conventional upper-limb therapy, scoring 
3.0 out of 4.0 for both. In addition, the patient believed he 
would use this robotic system as his primary therapy, scoring 
4.0 out of 4.0. The patient did not elaborate on the qualitative 
questions, thus, feedback from this section of the questionnaire 
was discarded. 

VI. FUTURE WORK 
The immediate future work of this project is to test the 

POMDP model with more participants in order to obtain 
significant results. Besides this, the results from the pilot study 
provide the following insight into the future development of the 
POMDP model and overall system.  

- The effect of randomization of different target distances 
and resistance levels on control needs to be studied. 

- The dynamics of the fatigue variable and the cost of stop 
action may need to be changed in order to stop the exercise less 
often. For example, Fig. 7(a) shows simulated exercise run 
lengths between stops for different cost of stop action. The 
higher costs of stop action generates, on average, longer runs.  

 

 
(a) 



 
(b) 

Figure 7.  Average exercise run length between stops 

Fig. 7(b) shows another simulated result for different 
horizontal shift of fatigue pace function. A horizontal shift of 
the pace function changes the rate at which the user gets 
fatigued. Hence, higher shifts indicate that the user will be less 
likely to get fatigued with the same stretch. As a result, higher 
shifts lead to longer runs. 

- The POMDP model needs to be expanded in order to 
include targets in 2D space. As a first step of this expansion, 
currently we are developing 2D virtual games that include 
target positions in 2D space. Fig. 8 shows an example where 
the target positions are set in a rectangular trajectory and the 
reaching task is to position the ball, which represents the end-
effector of the robot, in the designated target position. 

 

 
Figure 8.  2D trajectory 

- The current robotic system only applies three discrete 
levels of resistance, which can be either increased or 
maintained at the same level during the exercise. The system 
will be more realistic if it is able to select varying levels of 
resistance that can be both increased and decreased to cope up 
with the need of an individual patient. Decreasing the 
resistance level may also result in lower fatigue probability and 
less frequent compensatory motion, which in turn may lead to 
longer duration of the exercise. To include these features into 
the current system, we are currently formulating a new 
probabilistic framework that models the users ability using 
Beta distributions [18] as a function of continuous resistance 
levels.    

A Beta distribution is initially chosen since it is suitable for 
modeling success or failure in continuous space. Fig. 11 shows 
a simulated example with a range of continuous resistance 
levels from 0-20, where the probability of successfully 
finishing an exercise at a given resistance level is modeled with 

the following Beta distributions: nβ  in case the person is not 

fatigued and yβ in case the person is fatigued. The total model 
is a weighted mixture of these two distributions, weighted 
according to the current belief that fatigue=yes. In this 
example, the posterior belief state assumes that probability of 
fatigue=no is 0.9 and probability of fatigue=yes is 0.1. The 
mixture model can be used to select the next resistance level 
for the exercise. In this example, the next resistance level 9.3 
(shown in green circle in Fig. 11) is selected as the maximum 
resistance that produces 5.0≥sumβ . Fig. 10(a) shows the next 
sequence where the distributions and the belief state are 
updated using the simulated observation that the person 
successfully completed the exercise (shown in red circle in Fig. 
10(a)) at the resistance level 9.3. 

 

 
Figure 9.  Continuous action using Beta distribution 

The updated model is the posterior according to Bayes’ rule. 
The next resistance level is set to 10.3 according to the 
updated sumβ . 
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(b) 

Figure 10.  Updated distributions 

Fig. 10(b) shows an instance where the distributions and belief 
state is updated after five observations. The first four 
observations are successful exercises (shown in red circle in 
Fig. 10(b)) and the last one is an unsuccessful exercise (the 
person did not reach the goal within acceptable time and 
control or had to compensate too much - shown in blue circle in 
Fig. 10(b)). As a result, the next resistance level is set smaller 
compared to the current resistance. The exercise can be 
continued until the probability of fatigue=yes reaches a 
predefined threshold. Hence, this formulation - 1) is able to 
increase and decrease resistance levels in continuous space, and 
2) is more adaptive to each individual patient's need since the 
distributions – the model of the person’s abilities - are updated 
with the new observations. The initial shapes of the 
distributions can also be varied according to the condition of 
individual patient so that it produces appropriate resistance 
level while starting the exercise.  

The same formulation can be applied to other state 
variables of the system.  The preceding simulations are meant 
to demonstrate the feasibility of such a representation, and we 
are currently in the process of applying them to our 
rehabilitation device. 

VII. CONCLUSION 
This paper presents a POMDP system that is designed for 

an upper-limb rehabilitation robotic device. A POMDP was 
chosen for this system because it has the ability to handle 
partial observability (e.g. user fatigue), adapt to users’ needs, 
and operate autonomously. The goal of the POMDP agent is to 
help patients regain their maximum reaching distance at the 
most difficult level of resistance, while performing the 
exercises with control and proper posture. Computer 
simulations of the POMDP model showed that the POMDP 
was making decisions in alignment to those of conventional 
reaching rehabilitation, which was to gradually increase target 
distance first, then resistance level as the user performed well, 
and increase the rate of fatigue if the user was not performing 
well.  

The performance of the system was also evaluated by 
comparing the decisions made by the system with those of a 

human therapist. A single patient participant was paired up 
with a therapist participant for the duration of the study. 
Overall, the therapist agreed with the system decisions 
approximately 65% of the time. In general, the therapist 
thought the system decisions were believable and could 
envision this system being used in both a clinical and home 
setting. The patient was satisfied with the system and would 
use this system as her primary method of rehabilitation. The 
data collected in this study can only be used to provide insight 
into the performance of the system since the sample size was 
limited. 

The feedback from the therapist also suggests that the 
present system needs to include 2D target locations and varying 
levels of resistance. To include these features into the current 
system, we are currently developing virtual games with 2D 
target locations and a new probabilistic framework that 
expresses the probability of successfully completing an 
exercise using Beta distributions as a function of continuous 
resistance levels. The distributions are continuously updated 
with the new observations to reflect the performance of each 
individual patient. The system is also able to increase or 
decrease resistance levels according to the performance of a 
patient. The flexibility of decreasing resistance levels may also 
result in lower fatigue probability and thus may prevent early 
stopping of the exercise.  
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