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Abstract 
This paper presents a real-time system that guides stroke 
patients during upper extremity rehabilitation. The system 
automatically modifies exercise parameters to account for 
the specific needs and abilities of different individuals. We 
describe a partially observable Markov decision process 
(POMDP) model of a rehabilitation exercise that can 
capture this form of customization. The system will be 
evaluated in user trials during summer 2008 in Toronto, 
Canada. 

Introduction   
Stroke is the leading cause of adult disability in Canada. 
Every year, 60% of the 50,000 stroke sufferers are left with 
permanent or long-lasting disability (CNS 2007). A 
growing body of research shows that stroke rehabilitation 
can substantially reduce the limitations and disabilities that 
arise from stroke, and improve function, allowing stroke 
survivors to regain their quality of life and independence 
(TRI 2008). However, this long and physically demanding 
process is both slow and tedious, usually involving one-on-
one therapist-patient repetitive therapy. A primary 
motivation for developing rehabilitation robotic devices is 
to automate interventions that are repetitive and labor-
intensive. This can provide stroke patients with intensive 
movement training without the expense of a continuously 
present therapist, thus, reducing health care costs and 
physical strain on therapists. These devices can also 
provide accurate measures on patient performance and 
function (Hidler et al. 2005). 

Stroke patients with an affected upper-limb have great 
difficulties performing many activities of daily living 
(ADLs), such as reaching to grasp objects.  Although there 
are many robotic systems designed to assist and improve 
upper-limb stroke rehabilitation (Brewer, McDowell, and 
Worthen-Chaudhari 2007), none of them are able to 
autonomously learn and adapt to different users over time.  
This feature is especially important if the intention is to 
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minimize therapist intervention in the clinic or to 
eventually use the device in the home setting. This paper 
presents a real-time system designed to facilitate upper-
limb reaching rehabilitation for moderate level stroke 
survivors. It has the ability to operate autonomously 
(without any explicit feedback) and account for the specific 
needs and abilities of each individual, which will change 
over time. The system uses a partially observable Markov 
decision process (POMDP), a versatile decision-theoretic 
modeling technique, as the primary decision maker for our 
upper-limb stroke rehabilitation robotic device. 

There have been several robotic devices that use AI 
techniques to provide assistance for upper extremity 
rehabilitation (Ju et al. 2005; Erol et al. 2006). However, 
these intelligent devices do not account for psychological 
factors (e.g. fatigue) that may affect rehabilitation progress. 
POMDPs have the ability to make decisions about 
unobservable parameters that cannot be measured directly, 
such as fatigue, and have been applied in the assistive 
technology area such as assisting elderly individuals with 
their daily activities (Pineau et al. 2003) and assisting older 
adults with dementia during the handwashing task (Hoey et 
al. 2007). 

System Overview 
Our system for guiding stroke patients during upper-limb 
stroke rehabilitation consists of three main components: 
the exercise (Figure 1), the robotic system (Figure 2a), and 
POMDP (Figure 2b). As the user performs the reaching 
exercise on the robot, data from the device is used as input 
to the POMDP, where it decides on an action for the 
system to take. 
Exercise. Discussions with a team of experienced 
occupational and physical therapists at Toronto 
Rehabilitation Institute (TRI) have identified that early 
stage exercises for upper-limb stroke patients, such as the 
reaching motion, is an area of rehabilitation that is in need 
of more efficient tools. Thus, a targeted, forward reaching 
task was chosen as the exercise for this project. Figure 1 
provides a basic overview of the reaching exercise. The 
exercise begins with a slight forward flexion of the 
shoulder, and extension of the elbow and wrist (Figure 1a). 



Weight is translated through the heel of the hand as it is 
pushed forward in the direction indicated by the arrow, 
until it reaches the final position (Figure 1b). The reaching 
exercise occurs in the saggital plane (aligned with the 
shoulder), and the return path brings the arm back to the 
initial position. It is important to note that a proper 
reaching exercise is performed with control (e.g. no 
deviation from the straight path) and without compensation 
(e.g. trunk rotation, shoulder abduction/internal rotation). 
Although the reaching motion is fundamental to many 
ADLs, incorporating resistance into the exercise will help 
to improve coordination and strengthen muscle control, 
which will provide support and anchoring for other body 
movements (e.g. pushing down on a chair to stand up or 
using stair handrails for support). 
Robotic System. The robotic system (Figure 2a) includes a 
haptic-robotic device, postural trunk sensors, and a virtual 

environment. The novel robotic device, as detailed in (Lam 
2007), has been built to assist in the forward reaching 
exercise. Figure 3 shows an actual diagram of the 
rehabilitation device. The non-restraining platform has two 
active and two passive degrees of freedom, and allows the 
reaching exercise to be performed in three-dimensional 
(3D) space. However, for the purpose of our research, the 
exercise will only be performed in 2D space (in the 

horizontal plane parallel to the floor). Encoders in the end-
effector provide data to indicate hand position and shoulder 
abduction/internal rotation (i.e. compensation) during the 
exercise. The robotic device also incorporates haptic 
technology, which provides feedback through sense of 
touch. Haptic refers to the modality of touch and the 
sensation of shape and texture of virtual objects 
(McLaughlin, Hespanha, and Sukhatme 2001). In our 
project, the haptic device provides resistance and boundary 
guidance for the user during the exercise. The unobtrusive 
trunk sensors (Figure 4) provide data to indicate trunk 
rotation compensation. The trunk sensors are comprised of 
three photoresistors taped to the back of a chair, each in 
one of three locations: the lower back, and lower left and 
lower right scapula. The detection of light during the 
exercise indicates trunk rotation, as it means a gap is 
present between the chair and user. Lastly, the virtual 
environment provides the user with visual feedback on 
target location and hand position during the exercise. 
Figure 5 shows a close up diagram of the virtual 
environment. The reaching exercise is disguised in the 
form of a 2D bull’s eye game. The goal of the game is for 
the user to move the robot’s end-effector, which 

Figure 1: The reaching exercise. 

Figure 2: The robotic system (a) and POMDP (b). 

Figure 3: Robotic rehabilitation device. 



corresponds to the cross-tracker in the virtual environment, 
to the bull’s eye target. The rectangular box is the virtual 
(haptic) boundary, which keeps the cross-tracker within 
those walls during the exercise. 
POMDP. The POMDP (Figure 2b) is the decision-maker 
of the system. Observation data (e.g. the time it takes the 
user to reach the target) from the robotic device is passed 
to a state estimator that estimates the progress of the user 
as a belief state. A policy then maps the belief state to an 
action for the system to execute, which is to set a new 
target position and resistance level or to stop the exercise. 
The goal of the POMDP agent is to help patients regain 
their maximum reaching distance at the most difficult level 
of resistance, while performing the exercises with control 
and proper posture. 

POMDP Model 
We now describe the specific POMDP model for the stroke 
reaching rehabilitation. 

A discrete-time POMDP consists of the following 
components: a finite set of states S of the world; a finite set 
of actions A; a finite set of observations O; the transition 
function T : S x A → ∏(S), with P(s’|s,a) denoting the 
probability of transition from state s to s’ by performing 
action a; the observation function Z : S x A → ∏(O), with 
P(o|a,s’) denoting the probability of observing o by 
performing action a and landing in state s’, and the reward 
function R : S x A → , with R(s,a) denoting the expected 
reward or cost (i.e. negative reward) incurred after 
performing action a in state s. 

The POMDP is used to monitor beliefs about the system 
state in real-time, and to find a policy that maximizes the 
expected discounted sum of rewards attained by the system 
over an infinite horizon. Since knowledge of the system 
state is never certain, the policy must map belief states (i.e. 
probability distribution over S) into actions. For an 
overview of POMDPs, refer to (Astrom 1965; Lovejoy 
1991; Kaelbling, Littman, and Cassandra 1998). 

State Variables and Actions 
The POMDP model of the stroke rehabilitation domain 
relies on two main variables: fat = {yes,no} describes the 
user’s level of fatigue and n(r) = {none,d1,d2,goal} 
describes the range (or ability) of the user at a particular 
resistance level, r ∈ {none,min,max}. The range is defined 
as the furthest target distance, d ∈ {d1,d2,goal}, the user is 
able to reach at a particular resistance. Thus, if r=min and 
the furthest target the user can reach is d=d2, then the 
user’s range is n(min)=d2. 

There are 10 possible actions the system can take. These 
are comprised of 9 actions of which each is a different 
combination of resistance level (3 values) and target 
distance (3 values); and stop, which will terminate the 
exercise when the user is fatigued. 

The auxiliary state variables are the user’s time to reach 
the target, ttt = {none,slow,norm}, the amount of control 
they have by staying on the straight path to the target, ctrl 
= {none,min,max}, and if they show compensatory actions 
such as elbow deviation and trunk rotation, comp = 
{yes,no}. 

The dynamics of a user’s rehabilitation are dependent on 
the concept of stretch={+6,+5,+4,+3,+2,+1,0,-1,-2}. The 
stretch is the amount the system is asking the user to go 
beyond their current range. For example, if the user’s range 
is n(min)=d1, then setting the target at d=d2 at resistance 
r=min is a stretch of 1.0, while setting the target at d=d1 at 
resistance r=max is a stretch of 3.0. Note that stretch is a 
direct function of both target distance and resistance level: 
it is a joint measure of how much a particular distance and 
resistance are going to push a user beyond their range. 

Observations 
Currently, the system’s observation functions are 
deterministic, where the variables ttt, ctrl, and comp are 
actually the observation variables. 

Figure 4: Trunk photoresistor sensors. 

Figure 5: Virtual environment. 



Dynamics 
Figure 6 shows the current POMDP model as a dynamic 
Bayesian network (DBN) for all actions except stop. 

Instead of explicitly using conditional probability tables 
(CPTs) to describe the transition probability for each 
variable, all variables of interest can be modeled as simple 
parametric functions of stretch and fat. For example, if the 
user is not fatigued and the system sets a target with a 
stretch of 0 (so at the user’s range), then the user might 
have a 90% chance of reaching the target at normal time 
(ttt=norm). However, if the stretch is set to 1, then this 
chance might decrease to 50%. Even if the stretch is 0, but 
the user is fatigued, the chance of reaching the target at 
ttt=norm will also decrease. This idea can be applied to the 
other variables modeling the user’s control and 
compensation, and even their range and fatigue levels. 
Certainly, a larger stretch will increase the probability of 
the user becoming fatigued. 

We use the sigmoid function as the common parametric 
function, which relates stretch and fatigue levels to user 
performance. We call this function the pace function, 
φ(s,f), which is a function of stretch, s, and fatigue level, f: 

φ (s, f ) =
1

1+ e−(s−m−m( f )) /σ s
 

where m is the mean stretch (the value of stretch for which 
the function φ is 0.5 if the user is not fatigued), m(f) is a 
shift dependent on the user’s fatigue level (e.g. 0 if the user 
is not fatigued), and σs is the slope of the pace function. 

For each pace function, there are three parameters that 
need to be specified: m, σs, and m(f) (where the latter is 
technically a function, but since the fatigue variable is a 
binary value in our model, it is a single real-valued 
parameter). However, it is simpler to specify the pace 
function in terms of upper and lower pace limits: the values 
of stretch where a user’s performance will vary by a 
certain probability when the user is not fatigued (m(f)=0). 
For example, the upper pace limit for a user to compensate 
(comp=yes) when not fatigued is the stretch at which the 
user will compensate with a probability of φ+. Similarly, 
the lower pace limit for comp=yes is the stretch at which 
the user will compensate with a probability of φ- (so 
succeed in reaching the target with comp=no with a 
probability of 1-φ-). Denoting the upper and lower pace 
limits by s+ and s-, respectively, we have the following two 
equations: 

φ+ =
1

1+ e−(s+ −m ) /σ s
, 

φ− =
1

1+ e−(s− −m ) /σ s
 

which can be solved for m and σs: 

m =
s+β− − s−β+

(β− − β+)
 

σ s =
s+ − s−

(β+ − β−)
 

where β+ = ln φ+

1−φ+

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  and β− = ln φ−

1−φ−

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ . 

Setting the pace limits for the variables ttt, ctrl, and 
comp is simple and intuitive. However, setting those for 
the user’s fatigue level is more challenging since it is 
difficult to quantify how much more fatigued a user gets in 
a single trial. It is more intuitive to specify how many trials 
it takes for a user to become fatigued with a certain 
probability at some level of stretch. We can use this 
concept to deduce m and σs for fat (as above) in the 
following paragraph. 

Two time intervals, T1 and T2, represent the number of 
trials it takes for a user to become fatigued (with 
probability q) at stretch s1 and s2, respectively. When 
specifying these numbers, we assume that all other factors 
remain the same (i.e. that the user performs the trials in 
normal time, with control, and no compensation). Although 
this assumption will not hold in practice, we use it to 
determine the time intervals and deduce the appropriate 
parameters for the model. Now, q is the probability a user 
is fatigued after some number of T time steps, which can 
be written as: 

q = 1 – prob. user not fatigued after T steps 
so that: 

q = 1− (1− p)T (1− p0)  
where p is the (unknown) probability that a user becomes 
fatigued in a single time step and p0 is the probability the 

Figure 6: Current POMDP model as a DBN. The 
shorthand n(r) is used to denote the user’s ranges for all 
resistances. ttt, ctrl, and comp are the deterministic 
observation variables. 



user is fatigued at the start of the trial (time 0). Solving for 
p yields: 

p = 1− e

1
T

ln 1−q
1− p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
. 

Since p is given by the pace function for fatigue, we can 
write: 

1
1+ e−(si −m ) /σ s

= 1− e

1
Ti

ln 1−q
1− p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
 

where i ∈ 1,2. This equation can be solved for m and σs: 

m = s1 +σ s ln(ξ1)  

σ s =
s1 − s2

ln(ξ2 /ξ1)
 

where ξi =
en /Ti

1− en /Ti
 and n = ln 1− q

1− p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

The fatigue effect, m(f), is the last parameter to specify, 
and is a negative number that shifts the pace function 
downwards. The amount of shift indicates the amount the 
pace limits will be shifted down when the user is fatigued. 
Figure 7 shows an example pace function for comp=yes. 
Notice that both pace limits decrease when the user is 
fatigued (at the same probability). In other words, the user 
is more likely to compensate when fatigued. 

For the variables with three values, such as ttt and ctrl, 
two pace function need to be specified, one for the lowest 
value and one for the highest. The middle value gets what 
is left, so to speak. Figure 8 shows an example pace 
function for ttt. 

The ranges in the current model are modeled separately, 
although they could also use the concept of pace functions. 
They are modeled such that setting target distances at or 

just above the user’s current range will cause their range to 
slowly increase. They also have constraints to ensure that 
ranges at higher resistances are always less than or equal to 
those at lower resistances. 

Rewards 
The reward function is constructed to motivate the system 
to guide the user to exercise at maximum target distance 
and resistance level, with maximum control and no 
compensation. As such, the system gets a large reward 
when the user can reach the furthest target at maximum 
resistance. Smaller rewards are given when targets are set 
at or above the user’s current range. However, no reward is 
given if the user is fatigued, cannot reach the target, has no 
control, or compensates during the exercise. In addition, no 
reward is given for negative stretches. 

Computation and Simulation 
Unique combinations of instantiations of the state variables 
represent all the different possible states of the 
rehabilitation exercise that the system can observe. For this 
model, there are 20,736 possible states. 

There are several algorithmic methods for finding 
optimal POMDP policies as discussed in (Lovejoy 1991). 
However, the size of our model makes it impossible to 
solve optimally, thus, approximations must be used. We 
used a point-based approximation technique based on the 
Perseus algorithm (Spaan and Vlassis 2005) that exploits 
the structure of our system dynamics and rewards, which 
we represented as algebraic decision diagrams (ADDs) 
(Poupart 2005). We sampled a set of 3,000 belief points 
that was generated from 20 different initial belief states: 

Figure 7: Example pace function for comp=yes, with φ+

= 0.9, φ- = 0.1, s+ = +3, s- = -1, m(f=yes) = 0.8, and 
m(f=no) = 0.0. Shown are the upper and lower pace 
limits, and the pace function for each condition of fat. 

Figure 8: Example pace function for ttt, with φ+ = 0.9, 
φ- = 0.1, and m(f=no) = 0.0. Shown are the upper (s+ = -
3) and lower (s- = +2) pace limits for ttt=norm, and the 
upper (s+ = +4) and lower (s- = +1) pace limits for 
ttt=none. The pace function for ttt=slow gets what is 
left of the probability mass. 



one for each range possibility. The POMDP was solved 
using 150 linear value functions and 150 iterations in 
approximately 12.5 hours. 

Simulations performed on this model are yielding very 
encouraging results. During simulation, the policy slowly 
increases the target distance and resistance level if the user 
successfully reaches the target in normal time, maximum 
control, and with no compensation. However, once the user 
starts to lose control, compensates, or can no longer reach 
the target, the policy increases its belief that the user is 
fatigued and decides to stop the exercise to allow the user 
to take a break. 

Figures 9-12 show the changes in the belief states of 
n(r), stretch, and fat during the first simulation example. 

Given the initial belief state (Figure 9), the POMDP sets 
the target and resistance at the lowest level (d=d1, r=none). 
At the end of the first trial, the user has successfully 
reached the target in normal time (ttt=norm), with 
maximum control (ctrl=max), and without compensation 
(comp=no). (Note that a trial is defined as the reaching 
exercise from the initial position (Figure 1a) to the final 
position (Figure 1b), then back to the initial position). 
Notice that in the updated belief state (Figure 10) stretch is 
about 60% likely to be +1. Thus, the system decides to set 
the target one level above the range (d=d2, r=none). Here, 
the user reaches the target in slow time (ttt=slow), with 
minimum control (ctrl=min), and again without 
compensation (comp=no). Figure 11 displays the updated 
belief state at the end of the second trial. The POMDP 
decides to set the same target distance and resistance level 

Figure 9: Initial belief state of n(r), stretch, and fat. 
POMDP sets target at d=d1 and resistance at r=none. 
User reaches target with ttt=norm, ctrl=max, and 
comp=no. 

Figure 10: Updated belief state of n(r), stretch, and fat
after the first trial. POMDP sets target at d=d2 and 
resistance at r=none. User reaches target with ttt=slow, 
ctrl=min, and comp=no. 

Figure 11: Updated belief state of n(r), stretch, and fat
after the second trial. POMDP sets target at d=d2 and 
resistance at r=none. User reaches target with ttt=slow, 
ctrl=none, and comp=yes. 

Figure 12: Updated belief state of n(r), stretch, and fat
after the third trial. POMDP stops the exercise. 



as the previous trial (d=d2, r=none). This time, however, 
the user reaches the target in slow time (ttt=slow), but with 
no control (ctrl=none) and with compensation (comp=yes). 
The final belief state (Figure 12) indicates that there is a 
50% chance the user is fatigued, and therefore, the 
POMDP decides to stop the exercise for the user to take a 
break. 

Figures 13-16 show the belief state changes of the 
second simulation example. The initial belief state is 
shown in Figure 13. Based on the initial belief state, the 
POMDP sets the target at d=d2 and resistance at r=max. 
Here, the user can successfully reach the target in normal 

time (ttt=norm), with maximum control (ctrl=max), and 
without compensation (comp=no). In the updated belief 
state (Figure 14), notice the shift in the n(max) range 
towards the goal value and the shift in stretch towards +1. 
Thus, the system decides to increase the target distance by 
one (d=goal, r=max). However, the user fails to reach the 
target (ttt=none) with minimum control (ctrl=min) and 
with compensation (comp=yes). Figure 15 displays the 
updated belief state at the end of the second trial. The 
POMDP decides to set the same target and resistance as the 
previous trial (d=goal, r=max). Again, the user fails to 
reach the target (ttt=none) while compensating 
(comp=yes), but this time, has no control (ctrl=none). The 
final belief state (Figure 16) indicates that there is a 70% 

Figure 13: Initial belief state of n(r), stretch, and fat. 
POMDP sets target at d=d2 and resistance at r=max. 
User reaches target with ttt=norm, ctrl=max, and 
comp=no. 
 

Figure 14: Updated belief state of n(r), stretch, and fat
after the first trial. POMDP sets target at d=goal and 
resistance at r=max. User fails to reach target with 
ttt=none, ctrl=min, and comp=yes. 
 

Figure 15: Updated belief state of n(r), stretch, and fat
after the second trial. POMDP sets target at d=goal and 
resistance at r=max. User fails to reach target with 
ttt=none, ctrl=none, and comp=yes. 

Figure 16: Updated belief state of n(r), stretch, and fat
after the third trial. POMDP stops the exercise. 
 



chance the user is fatigued and the system stops the 
exercise. 

Conclusion and Future Work 
We have presented a system that uses a partially 
observable Markov decision process (POMDP) to guide 
stroke patients through a reaching rehabilitation exercise. 
User trials for this system are scheduled for summer 2008 
in Toronto, Canada, and are expected to be completed in 
the fall. 
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