
Abstract

Packages are the basic units of release and reuse in

software development. The contents and boundaries of

packages should therefore be chosen to minimize change

propagation and maximize reusability. This suggests the

need for a predictive measure of stability at the package

level. We observed the rates of change of packages in

Linux, a large open-source software system. We compared

our empirical observations to a theoretical ‘stability

metric’ proposed by Martin. In this case, we found that

Martin’s metric has no predictive value.

1 Introduction: Packaging and Software
Change

In software development terminology, a package is a

“basic development unit which can be separately created,

maintained, released, tested, and assigned to a team” [1,

Chap. 7]. A large software system can be split into

smaller units, called packages, that make system

comprehension, customer delivery, maintenance and

continued development easier. The focus on maintenance

and release management (including testing) distinguishes

packaging from other software structuring concerns, such

as modules, classes, subsystems, program families, and

namespaces. In practice a package is a subset of the

source files of the system, and a packaging is a

partitioning of the set of source files. If we have (or have

developed) a software system encoded in a set of source

files, then there arises the question of how to package

them, that is, what packaging to choose. In general there

are exponentially many distinct partitionings of a set of n

elements1. The appropriate choice is based on how pack-

ages depend on each other and how they change from

release to release. A packaging determines a dependency

relation between packages, induced by the dependency

relation between source files. Any change to a source file

requires a new release to the package it belongs to.

In his recent book [2], R. Martin of OMI Inc. adds

‘reused’ to the above list of properties of a package. He

points out that dependency management during reuse,

especially reuse of multi-use packages, must be combined

with release management. Therefore we should choose a

packaging so that

1. each package is reusable,

2. no package contains two or more reusable subsets, and

3. the package dependency relation is well-founded (cycle-

free).

The first prescription is simply supporting reuse at the

package level; the second is meant to maximise flexibility,

and the third of course enables packages to be released

independently.

In order to minimize change propagation, it’s helpful to

distinguish between the empirical fact of change and the

intent or purpose of change as a design evolves. Some

software units are designed to change often; others are

expected to change rarely. Developers should be conscious

of these intents and reflect them in the overall design and

documentation. During evolution and maintenance, some

software units change often in fact; others change rarely.

Developers should be aware of the rate of change and

manage packaging and release accordingly.

Martin designates packages which are intended to be

1 The number of distinct partitionings is called the Bell

number. It is between 2
n

and n! . There is no good closed form

for it.

Stability and Volatility in the Linux Kernel

John Champaign, Andrew Malton, Xinyi Dong
School of Computer Science

University of Waterloo
{jchampaign,ajmalton,xdong}@uwaterloo.ca

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2010 at 23:17:22 UTC from IEEE Xplore. Restrictions apply.

easy to change as unstable. (We would prefer a term that

is less suggestive of poor quality – such as soft.)

Examples of unstable (“soft”) packages include

configuration and build scripts, customization modules,

and business rules which reflect changing external

conditions (such as the tax rules for the current year).

(Martin mentions the example of a procedure which

reports the version number [2].) By contrast, packages

which are intended to change rarely, and allowed to be

difficult to change, are called stable (and we naturally

would prefer hard.) Examples of stable (“hard”) units are

‘core’ data structures and methods, and interface modules.

Once a package has been designated as hard (or “set in

stone”), then its design decisions can be safely allowed to

lead the rest of the design, without further indirection,

abstraction, or information hiding: the rest of the system

can depend on them to any desired degree.

But our best-laid plans often go off track, so we must

observe change as it actually happens, as well as how it

was planned. We accept Martin’s use of the term volatile

to describe those packages which actually change often

during evolution and maintenance. In these terms, we can

control maintenance costs by ensuring that volatile

packages are soft, so that the change we expect is easy to

carry out: equivalently, we may ensure that hard packages

are nonvolatile, so that the difficulty of changing core

structures and interfaces rarely arises. (Conversely, should

soft packages be volatile? This seems less important.

However, checking that soft packages are volatile

reassures us that the investment in softness (by means of

wrapping, interface design, modularity enforcement, etc.)

hasn’t been wasted.

Now change propagation is this: a unit changes,

forcing its dependents to change also. When changing a

unit we have to consider its dependents; we have to assess

the impact of the planned change on them, and possibly

expand the scope of the change to include them. Thus

dependent units are made more volatile by change

propagation, and in the same way, units which are

depended on are made harder by change propagation. In

order to achieve the cost control described in the previous

paragraph, we should therefore try to arrange for dependent

units to be soft (because they tend to be volatile) and for

depended-on units to be nonvolatile (because they tend to

be hard).

Martin distills these observations into another

packaging principle, which he calls Stable Dependency

Principle, to the effect that “a package should only depend

upon packages that are more stable than it is.” [2]

Martin’s assumption is that the harder (more stable) a

package is, the less volatile it tends to be, and therefore

dependence only on harder packages would tend to result in

dependence on nonvolatile packages, as desired. Though

plausible, this is an assumption which needs validation.

Perhaps there are other causes of volatility which are more

influential than instability is. Similarly Martin assumes

that the more dependent a package is, the softer it tends to

be. Since, as we noted, dependency tends to cause

volatility, Martin’s two assumptions are equivalent.

The main reason for formulating the Stable Dependency

Principle is this: we cannot directly know the future

volatility of a package, but we can estimate hardness from

an examination of the package dependency. The second

form of Martin’s assumption above says that softness

increases with dependency. Thus, Martin formulates his

“stability metric” directly in terms of the dependency

relation between packages, as follows. Consider a node

(that is, a package) p in the dependency graph. It has

incomingedges(Martincallsthem“afferentdependencies”)

and outgoing edges (“efferent dependencies”). Write Ap

for the number of incoming and Ep for the number of

outgoing. Then the contextual stability Spof p is the

proportion of incoming edges to the total: Sp =
Ap

Ap + Ep

.

A package on which no other package depends has a

contextual stability of 0, and by assumption maximally

tends to be volatile, due to its dependence on other

packages. A package which depends on no other packages

has a contextual stability of 1, and by assumption

maximally tends to be nonvolatile due to its dependents.

Now Martin recommends the practice of conforming to the

Stable Dependency Principle with respect to contextual

stability: that is, a package should only depend upon

packages that are more contextually stable than it is.

For a metric to be considered valid, it must provide

reasonable measurements of a desired variable in known

situations. The desired measured variable is ‘hardness to

change’. Thus to validate this metric a system is required

that has a range of packages with varying hardnesses. The

empirical hardness of each package must be estimated, then

compared to the contextual stability. If there is a high

correlation between the two, we can conclude that the

metric is reasonable. The more situations studied, the

greater the confidence in the metric.

This suggests two research directions. The first is to

explore the relationship between hardness and volatility for

a large code base under current maintenance, looking for

evidence for Martin’s assumption that hard packages are

nonvolatile and volatile packages are soft. The second is

to explore the metric itself looking for correlation between

hardness and contextual stability: does the metric actually

measure what is intended? (For more on the relationship

between metric and measure, see Zuse [20].) In the present

paper we obtain some preliminary results for a large, high-

quality, evolving, open-source system (aha! Linux!) by

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2010 at 23:17:22 UTC from IEEE Xplore. Restrictions apply.

comparing the volatility, measured in terms of actual

change between releases, to the contextual stability as

defined by Martin. If both Martin’s assumptions are

correct, we should find at least some directional

correlation: volatile packages should tend to have low

contextual stability, and nonvolatile packages should tend

to have high contextual stability. But this is not what we

find…

1.1 Related Work

Packaging is treated under the theory of configuration

management in software engineerings texts [6,7,8,9,10].

Packaging in the setting of software evolution was studied

by Oreizy [20] and by van Deursen and de Jonge [13].

Our work was originally inspired by Martin’s account

of packaging in object-oriented software development [2].

Although we have concentrated on the Linux kernel, study

of other architectural settings would provide much-needed

perspective, as pointed out by van Deursen and de Jonge.

Previous work by the Software architecture Group at

the University of Waterloo used a similar approach to ours

for the generation and analysis of source-based data. Base

facts are extracted using compiler techniques [16,20]. We

considered Bowman and Holt’s work [11] in the decisions

of how to analyze the Linux kernel. Godfrey and Tu’s

work [4,5] helped during considerations of how to measure

change.

2 Choosing a Guinea Pig

In software reverse-engineering and evolution studies the

term guinea pig2 is used to refer to subject software

systems accessible as source code. Inevitably open-source

systems are more frequently guinea pigs than closed-

source systems are. Our criteria for a system to

empirically evaluate change were these:

1. source code available in many releases – in order to

estimate volatility and compute contextual stability –

2. reasonably mature – to avoid special cases of software

systems in early-release frenzy –

3. packaged according to Martin’s principles – in order to

give his assumptions the best chance – and

4. healthy, with a solid design and development history,

rather than “aged” as defined by Parnas [3].

Our estimate of volatility would be most accurate with

2 From their use in experimental biology. Given the size of

some software systems, perhaps ‘capybara’ would be more

appropriate than ‘guniea pig’.

a long but cautious release history, and a minimum of

special events (large migrations or architectural

restructurings). Our estimates of hardness would be more

accurate for a large code base having many dependencies.

While it doesn’t satisfy all these criteria we feel the

Linux kernel was a good choice for a guinea pig. It is

open-source, of course. It has been in active development

for 12 years (since 1991), and all its releases are available

for download. It is publicly acknowledged as a high quality

software system3. It has been released 499 times and con-

sists of about 850 packages with currently (v2.4.18) about

3.7 MLOC of C source code. It is mature, stable, and

widely used, and certainly shows no signs of Parnas aging

(often manifested by issues such performance degradation,

fail-stop behaviour, abnormal termination, increased

maintenance difficulty, and an increase in fault introduction

[3]). It has been studied by software evolutionists already

[11, 5, 21].

It’s not easy to assess the degree to which Linux is

packaged according to Martin’s principles. Linux is not

formally object-oriented, and so there is an immediately

visible architectural mismatch with Martin’s development

methods. Linux is not organized for reuse.4 There is no

notion of “package” conceived separately from the

architectural and modular structure. Therefore, for our

purposes we adopted the directories of the source tree as

“packages”, since they are the units tracked by change

management in the open-source project. What is more,

directories represent the division, by the developers, of the

large software system into more manageable subunits that

can be assigned to specific developers or groups of

developers. This is analogous to packaging in the sense

we are using it. On this view Linux has historically had

about 1500 packages, not all of which are present in any

given release.

3 Measuring the Volatility of Linux
Packages

To assess a packaging strategy we need to quantify the

volatility of packages. Having accepted the term ‘volatile’

for packages which ‘change often’, we naturally wish to

define the volatility of a package as ‘the probability that it

will change on the next release of the source’. In a release-

management régime where only changed material is

released (the ‘patch’ style) it is the probability that the

3 See for example msnbc-cnet.com.com/2100-1001-

985221.html or www.catb.org/~esr/writings/
4 E. S. Raymond discusses in “Homesteading the Noosphere”

the strong aversion to forking (reusing) that exists in the

open source community.

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2010 at 23:17:22 UTC from IEEE Xplore. Restrictions apply.

package is included in the next release. For a CVS-

managed5 régime, which includes a release attribute, it is

the probability that the content of a package is different

between a pair of successive randomly chosen releases.

Anyone familiar with software evolution and

maintenance in practice knows that the volatility of a

given region of the design depends on the long-term

software life cycle (see Bennet and Rajlich [19] for

discussion). Equally familiar to programmers, however,

is the presence of ‘never touched’ and ‘always changing’

source files within the local culture of a software project.

These experiences are our reason for preferring a guinea

pig system which is mature and not subject to catastophic

restructurings. In such a case, we assume that the change

rate is fairly steady, and that we can therefore estimate the

volatility by counting releases.

An important phenomenon in software evolution is the

movement and copying of source material (not only

source files but portions of source files) between

packages. This occurs, for example, when a module

overburdened with responsibilities is refactored by

splitting into two coupled modules. An accurate analysis

of origins [5,18] for the release history of a project is

difficult to obtain. Nevertheless, it might be objected that

code from the original module had migrated unchanged to

the new modules, and therfore ought not to be counted to

the rate of change. For the measurements reported here,

we deliberately chose to ignore this issue and treat the

source in each package as self-originating. From the

point of view of change management the origin of source

material is irrelevant. If a package changes (even by

receiving unmodified code from some other package, or by

losing code unmodified to some other package) then

impact assessment, change propagation, or at least

recompilation, is needed. These are the very phenomena

we are trying to measure.

Therefore we model the release history as follows. Let

there be given a fixed set P of packages – or more

precisely of package ‘identifiers’ since their contents vary

between releases. A release r is a partial function from

P to possible package contents – this may be thought of

as source file names and source text, or just as a package

version number: anything that can be compared between

releases. Given two releases r1 and r2 , and a package p

released in either of them, then we say that p is

unchanged between the releases when r1 (p) = r2 (p) (both

defined and equal) – otherwise p is changed. A release

history (R,p) is a set R of releases (of P) together with

a partial order : r1 p r2 when release r1 historically

precedes release r2 . When r1 p r2 and there is no r3 such

that r1 p r3 p r2 then we say that r1 is a predecessor of r2

5 For information about CVS consult www.cvshome.org.

and r2 is a successor of r1 . A package pŒ P is changed

for a release r if it is changed between r and any of r ’s

predecessors. The set of change releases Cp of a package

p is Cp = {r Œ R | p is changed for r} . This is a subset

of the set Rp of releases of p , that is

Rp = {r Œ R | r(p) is defined} . The volatility of pŒ P

is just the ratio Vp =
Cp

Rp

.

With this definition of volatility, a package appearing

in an initial release and unchanged in any subsequent

release has a volatility of 0. A package introduced after an

initial release and changed in every subsequent release has a

volatility of 1 (and so does the special case of a package

just introduced in a most recent release). These extrema

satisfy the intuition, but some consequences may be less

attractive. A package appearing in a merge release (several

branches closed off at once) is reckoned to have changed for

that release unless its contents at the end of all those

branches are the same as its contents after merging (this

situation never appeared in the Linux kernel). A package

which is much changed in some experimental branch but

never changed for production releases will nevertheless

appear volatile. A package which is renamed will seem to

have disappeared (its history ended) and a new one

appeared (with no history of volatility). Lastly, this

definition is sensitive to the notion of “contents” of a

package. If the contents of a package is the names of its

source files, then organizational volatility is measured; if

the contents of a package is the raw text in all its source

files, then the slightest change even to comments or

spacing will appear to be a change. However, this

measure of volatility is easy to compute, and concurs with

the manager’s need to know if a package “has changed at

all since last time”. One prefers to err on the side of

caution when assessing impact of change. Our method

used file size when considering change, and therefore there

is a slim chance this method would miss a change if the

change preserved the exact size of each source file changed.

This type of change seems rare.

For the Linux code base, we obtained 499 releases

containing a total of some 1500 “packages” (really source

directories). We represented the contents of each package

as a “fingerprint” consisting of the names of any

subdirectories and the sizes in bytes of any text files. This

approach recognizes (almost!) all textual changes to source

files, and any movement of files or subdirectories, but

without counting changes to subdirectories (which are

packages in their own right). When a subdirectory is

moved to a different package, a change will be registered in

four packages (the original parent, the new parent, the

original subdirectory, and the new subdirectory). As noted

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2010 at 23:17:22 UTC from IEEE Xplore. Restrictions apply.

previously, there is no origin analysis.

Some remarks regarding text files is in order, as the

releases of Linux include text files which are not

programming language source files. Documentation files

(having extension txt) were considered part of packages

in which they appear, as they record group knowledge

about the software architecture. In the Linux release

management structure they are for the most part isolated

in documentation directories, and therefore changes to

documentation alone have little effect on the volatility of

the system as a whole. Build scripts (having extension

sh) and Makefile files6 were also considered part of pack-

ages as they contain essential (albeit operational) data

about the system’s architecture. Changes to any of these

classes of text file we consider to be changes to their

enclosing packages.

Having assigned a volatility in 0,1[] to each package,

we sorted the packages by volatility, displaying the

resulting positive curve as Figure 1. This may be called

the ‘volatility profile’ of the Linux kernel, as it shows for

each level of volatility (height on the vertical axis) how

many packages (width on the horizontal axis) are at least

that volatile.

6 For information about Make see www.gnu.org/software/make.

4 Measuring the Contextual Stability of
Linux Packages

For reasons stated above we would prefer to measure the

hardness of Linux packages, but the actual difficulty of

change cannot be assessed without detailed knowledge of

the change process and history. Instead, we compute the

value of Martin’s stability metric and use this as a

substitute estimate of relative hardness.

The contextual stability of a package is defined in terms

of its dependence in a single release of the system. This is

in contrast to volatility which is defined over the release

history. It is no surprise that contextual stability should

be localized in time, because its purpose is to give an

estimate of softness (or nonvolatility) which can be made

on the basis of the system’s packaging as it is now.

However, for our purposes it means we must select a

typical release of Linux and assess the contextual stability

for that particular release. We chose release 2.4.18 as

being a typical recent release.

In order to compute the contextual stability we need to

know all the packages (directories) and all the ways in

which they depend on each other. Although this might be

roughly assessed by creative use of Unix tools (grep,

sed, awk, sort, etc.) a much more accurate picture is

obtained by ‘build time view’ data collection [16,17].

The build-time view (“BTV”) technique collects facts

detected during an actual build of the system. It is based on

an instrumented version of GNU Make. During normal

processing make notices dependencies between ‘targets’,

many of which are actually source files. Some

dependencies are explicitly stated in make files; others are

implicit in Make’s built-in rules. This is one of the many

reasons why dependencies are hard to extract from static

source files. During the processing of Linux’s build

scripts, additionally, some scripts are dynamically

generated and those and others are dynamically executed –

further complicating the task of discovering dependencies

from the build scripts and source code. Lastly, the Linux

build process makes use of dynamically created symbolic

links to represent aspects of the target architecture. For all

these reasons, tracking the actual build process was

essential to getting an accurate view of dependencies

between “packages”.

By extracting dependencies between packages based on

the execution of the build process, we risk failing to notice

two kinds of dependency which may exist in practice.

Firstly, it may happen that some source file say F.c

includes some header file say G.h, but the dependency is

not noted explicitly or implicitly in any make script.

Secondly, we will miss any dependency which is not

triggered by building the top-level target.

Figure 1 - Volatility Profile. Choose a volatility level on

the vertical axis; the horizontal distance to the intersection

with the curve at that level shows the proportion of packages

which are at most that volatile. The 50% level is at volatility

0.23, so that half of the packages change less than a quarter of

the time.

Package Volatility in the Linux Kernel

vo
la
til
ity

Packages (ordered by increasing volatility)

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2010 at 23:17:22 UTC from IEEE Xplore. Restrictions apply.

Fortunately, these limitations don’t prevent us from

getting accurate file dependencies for the Linux kernel. It

happens that file inclusion dependencies are dynamically

computed by Linux’s build process (using the tool

mkdep). Hence the first risk is no threat in our case.

(The first risk is technically an error in the build process,

but can be benign, especially when the files are all in the

same package or change in concert with some third file

whose dependency is recorded. Hence users of our

technique must take care of this point when working on

other systems.) We addressed the second risk by covering

as many key parts of the build process as possible. We

built the target modules which generates modules, such

as AFS and the Ethernet drivers, that are not included with

the kernel source package, and we built the main target

bzImage. The Linux kernel approach to handling

multiple architectures is to create a symbolic link to an

architecture specific directory. We considered all

architectural configuration that could be linked (so that

something depending on the symbolic link would depend

on all architectures that contain the file it is looking for).

Device drivers are handled in the Linux kernel as seperate

software systems to be dynamically loaded by the kernel.

Hence there appear to be multiple, semi-autonomous

systems bundled in each kernel source distribution. Using

the BTV package we obtained dependencies between these

packages also.

Having computed a contextual stability in 0,1[] for

each package of release 2.4.18, we sorted the packages by

stability, and displaying the resulting positive curve as

Figure 2. By the very shape of this it is immediately

apparent that contextual stability measures something

other than volatility for the Linux system.

5 Findings

In this section we compare the two measures of change

computed in the previous sections. We also relate the

change measures to a high-level view of the software

architecture.

We had begun with the assumption that Linux’s

directory structure might be taken as an example of

Martin-principled packaging. We found that although the

directory structure was similar to Martin’s packages, it did

violate the principles in some instances. For example, in

the 2.4.18 kernel there are three pairs of circular

dependency (between linux and linux/sunrpc,

between linux and net, and between net and

net/irda.) This seemed a small exception given the

number of packages in a typical release.

5.1 No Correlation

We had sought positive correlation between volatility

and contextual instability, since if Martin’s assumptions

are correct for Linux we would have seen that packages

which actually change slowly tend to have more packages

dependent on them than they have dependencies on others;

and packages which actually change quickly tend to the

reverse situation. To visualize this we displayed the

contextual stabilities of packages against the volatility

profile (see Figure 3) and conversely the volatility of

packages against the contextual stability profile (see

Figure 4). It is immediately clear that these functions are

quite unrelated. These results cast doubt on the validity of

Martin's assumptions, but provide a valuable approach for

Figure 2 – Stability Profile. More than half the packages

have contextual instability 0, which means that we found in

them no static dependency on other packages. Much of this is

device driver code (see [5] for discussion) A large number of

packages have contextual instability 0.33, typically because

of one incoming and two outgoing dependencies.

Figure 3 - This is Figure 1 augmented with the computed

contextual instability displayed (in white) for each package

in v.2.4.18. If there had been the expected correlation, the

white bars would tend to be longer on the right and shorter on

the left.

Contextual Instability in the Linux Kernel
(v.2.4.18)

Packages (ordered by increasing instability)

co
n
te
xt
u
a
li
n
st
a
b
ili
ty

Volatility against Contextual Instability
(Linux Kernel v.2.4.18)

Packages (ordered by increasing instability)

Volatility

Instability

vo
la
til
ity
/in
st
a
b
ili
ty

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2010 at 23:17:22 UTC from IEEE Xplore. Restrictions apply.

verifying such metrics.

From the failure to correlate these two measure, and the

discussion above in 2, we can conclude that for the

evolving Linux system, one of the following is true:

either

1. a certain number of packages are easy to change despite

many others depending on them, or

2. a certain number of packages are changed frequently

despite being hard to change

Future work must find an independent way of measuring

hardness in order to discover which.

5.2 Architectural Volatility

Godfrey's previous work on the growth of Linux [4,5] has

shown areas of high volatility in the architecture. We

having obtained the foregoing negative result then sought

some correlation between the architectural structure of the

system and its change rate. This is displayed in Figure 5,

in which the packages are again displayed in increasing

order of volatility, but now their architectural

classification (subsystem) are broken into 5 parts.

It may be seen that the four different subsystems differ

in volatility. Given that these results were determined

using a long run of versions, spanning many years, these

results are not due to simply to chance or (temporary)

local architectural restructuring. Instead they give insight

into how likely change is in these various parts of the

system. We had originally hoped that packages might tend

to fall into “hardness categories”. This may be viewed as a

partial fulfillment of that hope, in so far as we find the

subsystems of Linux tending to fall into “volatility

categories”. Future work must explore this connection

more closely and discover how architectural roles can be

predicted by volatility, and vice versa.

Acknowledgements

The authors thank Michael Godfrey and the Software

Architecture Group at the University of Waterloo for

feedback and thoughts provided on early versions of this

work. We are additionally indebted to the open-source

developers of the Linux kernel for making their work

available to all.

References

[1] D. F. D’Souza, A. C. Wills. Objects, Components and

Frameworks with UML: The Catalysis Approach. Object

Technology Series. Addison-Wesley 1998.

[2] R.C Martin. Agile Software Development: Principles,

Patterns, and Practices. Prentice Hall 2002.

[3] D. L. Parnas. Software aging. In Proc. ICSE '94, Sorrento,

1994

[4] M. Godfrey, Q. Tu. Growth, Evolution and structural

change in open source software. In Proc. IWPSE-01, Vienna,

2001.

[5] M. Godfrey, Q. Tu. Evolution in open source software: a

case study. In Proc. ICSM-00, San José, 2000.

[6] B. Bruegge, A. H. Dutoit. Object-Oriented Software

Engineering. Prentice Hall, 2000.

[7] G. M. Clemm. Replacing version control with job control.

In Proc. 2nd IWSCM, ACM, Princeton, 1989. pp. 162-169.

[8] R. J. Leach. Introduction to Software Engineering. CRC

Press, 2000.

[9] R. S. Pressman. Software Engineering 3rd Edition.

McGraw-Hill, 1997.

[10] I. Sommerville. Software Engineering. Addison-Wesley,

1989.

[11] I. T. Bowman, R. C. Holt. Linux as a case study: its

extracted software architecture. In Proc. ICSE '99, Los

Angeles, 1999

[12] J. K. Hollingsworth, E. L. Miller. Using content-derived

Figure 4 - This is Figure 2 augmented with the observed

volatility of each package in v.2.4.18. The data are similarly

uncorrelated.

Figure 5 - Subsystem Volatility Profile. Here is shown the

subsystem each package (on a separate horizontal line)

belongs to; its relative volatility is indicated by its relative

position on the x axis, as in Figure 1.

Contextual Instability against Volatility
(Linux Kernel v.2.4.18)

Packages (ordered by increasing volatility)

vo
la
tili
ty
/in
st
ab
ilit
y

Volatility

Instability

Volatility of Linux Kernel Packages

Packages (ordered by increasing volatility)

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2010 at 23:17:22 UTC from IEEE Xplore. Restrictions apply.

names for configuration management. In Proc. 5th SIGSOFT,

ACM, 1997.

[13] A. van Deursen et al. Feature-based product line

instantiation using source-level packages. In Proc. SPLC2,

Springer-Verlag, 2002

[14] T. Dean et al. Union schemas as the basis for a C++ fact

extractor. In Proc. WCRE 2001, Stuttgart, 2001.

[15] P. Oreizy. Decentralized software evolution. In Proc.

IWPSE 1, Kyoto, 1998.

[16] R. C. Holt et al. The build/comprehend pipelines

(position paper). In 2nd ASERC Workshop on Soft. Arch.

Banff, 2003

[17] Q. Tu, M. W. Godfrey. The build-time software

architecture view. In Proc. ICSM-01, Florence, 2001

[18] M. W. Godfrey, Q. Tu. Tracking structural evolution

using origin analysis (position paper). In Proc. IWPSE-02,

Orlando, 2002.

[19] G. Bennet, V. Rajlich. Software evolution: a road map.

In Proc. ICSE 2000. Limerick, 2000.

[20] H. Zuse. A Framework of Software Measurement. Walter

de Gruyter, Berlin, 1998.

[21] Y. Xie, D. Engler. Using redundancies to find errors. In

Proc. 10th SIGSOFT, ACM, 2002.

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2010 at 23:17:22 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

