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Text Search and Succinct Data Structures: Unit 4 

 
 
Given a text file, or several text files, how do we search for a query string? 
 
Note the query/pattern is not of fixed length, unlike key searches. 
 
If we are not able to preprocess the text file (length m), the “obvious method” is  O(mn)  where  
n  is the length  of the query. 
 
 Knuth-Morris-Pratt:  showed how to construct a simplified automaton in  O(n)  time so that 

the query is answered in  O(m)  time.  Indeed the method essentially operates with two 
pointers into the text and on each comparison one is advanced. 

        Knuth D.E., Morris (Jr) J.H., Pratt V.R., 1977, Fast pattern matching in strings, SIAM Journal on Computing 6(2):323-350. 
 

 Boyer-Moore:  give a method by which the pattern is aligned with the text, then the pattern is 
matched from right to left (i.e. back to front).  If a mismatch is found early (near the end of 
the pattern string), the pattern may be advanced a substantial distance.  It is thus possible to 
answer some queries in as little as  O(m/n)  time. 

      Boyer R.S., Moore J.S., 1977, A fast string searching algorithm. Communications of the ACM. 20:762-772. 

 
 Rabin-Karp:  this is a simple hashing scheme.  The key idea is to have a hash function on 

strings of length  n  such that   Hash(ai+1…ai+n)  is easily computed from  Hash(ai…ai+n-1).  
The usual approach is to use     a j x j  mod r     for some values of  x  and the modulus  r. 

      Karp R.M., Rabin M.O., 1987, Efficient randomized pattern-matching algorithms. IBM J. Res. Dev. 31(2):249-260. 
 

When text is allowed to be preprocessed: 
 
Peter Weiner (Peter Weiner: Linear Pattern Matching Algorithms. Proc. 14th IEEE SWAT (old name 
of FOCS)  pp. 1-11; 1973)  proposed the suffix tree (he called it a position-tree). 
 
McCreight  (Edward M. McCreight: A Space-Economical Suffix Tree Construction Algorithm. JACM 
23(2): 262-272 (1976)) and Ukkonen (Esko Ukkonen: On-Line Construction of Suffix Trees. 
Algorithmica 14(3): 249-260 (1995)) gave different and more space efficient construction 
algorithms.   
 
See (Robert Giegerich, Stefan Kurtz: From Ukkonen to McCreight and Weiner: A Unifying View of 
Linear-Time Suffix Tree Construction. Algorithmica 19(3): 331-353 (1997)) for a unified view of these 
algorithms. 
 
Gonnet et al (OED project) and Manber and Meyers (Udi Manber, Eugene W. Myers: Suffix Arrays: 
A New Method for On-Line String Searches. SIAM J. Comput. 22(5): 935-948 (1993); also SODA 1990) 
demonstrated the importance of this structure, and a cut-down form of it, for large scale text 
indexing. 
 
We deal with the text  S[1,.m]  where wlg the last character is an eof symbol $. 
 



Suffix tree:  Digital tree (or trie) in which root to leaf paths are in correspondence with suffixes 
of   S (i.e., S[i,m] I = 1,m).  All internal nodes are of degree at least two, each node is labeled 
with a non-null string of characters so that the root to leaf path spells out the appropriate suffix.  
[Sibling labels differ at the earliest possible point]. 
 
Representational issues 
- Denote an edge label by a pair  [b,f]  such that  S[b,f]  corresponds to the string (note that the 

choice of  b  and  f  is not necessarily unique). 
- As there are no internal nodes of degree 1, there are  < m  internal nodes. 
- The total space required (excluding  S[1,m]  is  O(m)  “words” of  lg m  bits each. 
- If the tree were binary (as is often done) the edge information can be reduced to the number of  

bits skipped (i.e. bits on which all suffixes matching thus far continue to match). 
 
Clearly we can build a suffix tree in  O(m2)  time.   
Clearly we can reduce this by a “straightforward” sort of the suffixes. 
 
We will return to this issue of creation of a suffix tree. 
 
Applications: 
 
Given a suffix tree of the text  S  and a query string  P  of length  n,  it is immediately obvious 
that we can determine whether the string  P  is a substring of  S.  Indeed in O(n)  time we can  
 
- determine whether P occurs in S, and if so (by keeping the size of a subtree at its root), the 

number of occurrences, in O(n) time (even if this number is  >> n). In fact a reference to the 
appropriate subtree may be a convenient way to pass on all matches. 

 
- among other useful information the suffix tree contains the longest repeated substring. 
 
Applications abound: 

- text processing 
- bioinformatics 

      -  compression 
 
There are (at least) three linear time algorithms for creating suffix trees [Weiner 1973], 
[McCreight, JACM 1976] [Ukkonen, Algorithmica 1995].   
All suffer from random access issues that make them costly for structures not fitting in main 
memory. 
 
Weiner’s approach (…the original so others are time/space reducing refinements): 
 
Basic idea: 
 
For  i = m  downto 1 do insert suffix  S[i,m]  but we keep some back pointers (call this tree  Ti).   
 
Where does  S[i,m]  branch off? 



 
- At the longest prefix of  S[i,m]  that is a substring of what you have already seen i.e. S[i+1,m] 
- Call this  Head(i) 
 
So the method is linear if we have  Head(i).   
Unfortunately, at this stage the time per step is proportional to the length of this prefix. 
 
Finding  Head(i) 
 
Key idea:  keep two vectors (indicator)  I and  (link)  L  (of alphabet size) 
 
I  is binary 
L  is null or pointer 
Iv (x)  is indicator of character  x  at  node  v 
Lv(x)  is a reference 
 
Key properties 
 
- For any character  x,  node  u,  Iu(x) = 1  in  Ti+1  iff there is a path from the root labeled x  
where   is the path to  u.  (xneed not end at a node,  Iu(x) = 1,  Lu(x) = null handles that 
case). 
- For any character  x,  Lu(x)  in  Ti+1 points to the internal node v in Ti+1 iff  v  has path label 
xand  u  has label  .  Otherwise  Lu(x)  is null.   
 
Key notion:  Start at leaf of  Suffi+1  in  Ti+1  walk up to find first node 
v   where  Iv(S(I)) = 1  and   
v’  where  I v’(S(i)) = 1  and  Lv is non-null. 
 
Numerous details (including degenerate case  where  v  or  v’  don’t exist).  See for example  
Gusfield, Algorithms on Strings Trees and Sequences, for details. 
 
Problem:  Space for suffix tree (even after it has been created) 
 
  O(m) words (2 or 3 pointers,  2 or 3 indices) 
 
in addition to the text of  m  characters. 
 
In OED project, binary suffix tree was of size 5 times text even though index points only every 
5th character or so. 
 
Reference to text at leaves needed (in OED case this space is roughly equal to text). 
 
But both Gonnet et al and Manber and Meyers tossed suffix tree in favour of simply keeping 
references to index points in the order of suffixes referred to.  Hence search for string takes   
O(lg n) time (includes getting all matches). 
 



This leads to the question of tree representations.  How much space does it take to represent a 
tree (say a binary tree) on  n  nodes, so that we  can efficiently “navigate the tree?” 
 
A starting point:  Indexing an  m  character text for searches starting at the beginning of each 
(English) word or special symbol. 
  

 m  bytes of text 
 m/5  index points 

 
Implement as (binary) suffix tree with references at leaves to text positions 
 
Naïve implementation: 2m/5 nodes, 
Each requiring   2 pointers = 8 bytes 
     1 subtree size = 4 bytes 
     skip/flag = 1 byte 
          13 bytes 
13  2m/5 = 5 1/5 m  bytes for index on  m  characters. 
 
We can only reduce this by realizing the leaves are only pointers and get away with about  
4 3/5  m  bytes. 
 
Neither is acceptable. 
 
What is the information theoretic minimum for representing a binary tree on  m  nodes? 
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!!!        and this is negative, hence recursive build up has a chance

 

 
Clearly trees can be represented in  2m  bits, but can we still navigate? 
 
A first approach? 
 

The  
3

2
lgm  term gives a hint. 

 
To represent a subtree of size  m  we use  Tree(m) bits.  Then for 
    
   •  
 
 
     i  m-i-1 
 
use  rep(i) Tree(i) Tree(m-i-1)  where  rep(i) is the number bits to denote   i , using a prefix code 
(we don’t know anything about  i  other than it is less than  m). 
 
Clearly  2   1lg i  bits suffice  …    1lg i   0’s then write  i  in binary.   

(But we can do better for large i). 
 
But there is a problem even with  ilg  bits when i  is close to  m  e.g. 

 
  T(m) = lg m + 0 + T(m-2)  leads to an  m lg m) solution. 
 
Solution to this: 
 
Let  i = size of smaller tree, then use 1 bit to say whether small tree is left or right. 
 
Reasonable tuning gives a 3m bit representation method by which we can navigate to children 
and find subtree size [can actually do a bit better, but the real problem is small subtrees and 
especially encoding  i]. 
 
Now we have a mapping of nodes to 1…m.  Root is 1, then do a preorder scan of left subtree, 
then right.  (This way we can reduce suffix tree rep to this plus leaf pointers). 
 
However, another approach leads to a  2m+o(n) bit representation and, ultimately, to more 
powerful navigation.  Jacob [FOCS 1989], Munro and Raman [FOCS 1997]. 
 
Use a heaplike ordering on a tree, that is: 
 



i) Append leaves to all positions 
ii) Read nodes level by level 
iii) Write 1 for an internal node, 0 for an external 

 
If the original tree has  m  nodes, we append  m+1 external nodes, so have a  2n+1 bit 
representation. 
 
Key Lemma:  The children of  ith  internal node are  2i  and  2i+1. 
 
Proof:  Straightforward induction.  Assume for a tree and position  i,  now convert to position i+1 
by converting external node to internal.  There are a couple of details 
 
Up to and including internal node  i  there are  i  internal nodes and  j  external nodes. 
 
Between internal node  i  and its left child  there are  i-j  more nodes.  So left child is node  2i. 
 
Note: 
 
ith 1 corresponds to  ith  internal node in level scan 
 
ith 0 corresponds to ith   external node 
 
Consider the following operations on a bit  string 
 
 rank(i):  find  #1’s  up to position  i 
 select(i):  find the position of ith  1 
 
[Note:  these work on any bit string so this could be used as a data structure over [1…n] for rank 
queries] 
 
The key issue is to answer queries quickly with this base vector and  o(m)  more space. 
 
But first 
 left-child(i) = 2 rank(i) 
 right-child(i) = 2 rank(i) + 1 
 parent(i) = select( i /2 ) 
 
This is “just like” a heap 
 
Doing rank: 
 
For every  kth  position write down  rank(i k)  i = 0,…,m/k.  This takes  (m lg m)/k  bits {k, the 
big block size, will be  w(lg n), but wait} 
 
So an answer is between two spots. 
 



For every  lth  position, write down rank since the preceding  kth  position.  This takes  (m lg k)/l  
bits {l,  the little block size, is also to be defined} 
 
To get the answer we simply look at the bits since the beginning of the last small block.  Let  
 l = 1/2 lg m  and use table lookup for all possible bit strings.  This table has size m. 
 
So with  k  (lgm)2,  the big block information takes  O(m/lg m)  bits; and the little block 
information  O(m lglg m / lg m) = o(m)  bits.  
 
Select is trickier.  Jacobson’s original idea required inspecting O(lg m) bits widely scattered.  
Munro and Raman [FOCS 1997]  avoid this problem. 
 
That paper actually uses another related approach to give subtree size.  Follow up papers have 
dealt with ordered trees, trees of fixed degrees (quartary trees) and dynamic versions of the 
problem). 
 
 


