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1.1 Introduction

Although computer memories, at all levels of the hierarchy, have grown dramatically over
the past few years, increased problem sizes continues to outstrip this growth. Minimizing
space is crucial not only in keeping data in the fastest memory possible, but also in moving
it from one level to another, be it from main memory to cache or from a web site around
the world. Standard data compression, say Huffman code or grammar based code, applied
to a large text file reduces space dramatically, but basic operations on the text require that
it be fully decoded.

In this chapter we focus on representations that are not only terse but also permit the
basic operations one would expect on the underlying data type to be performed quickly.
Jacobson [33] seems to have been the first to apply the term succinct to such structures;
the goal is to use the information-theoretic minimum number of bits and to support the
expected operations on the data type in optimal time. Our archetypical example (discussed
in Section 1.4) is the representation of binary tree. Suppose, we would like to support
the operations of navigating through a binary tree moving to either child or the parent
of the current node, asking the size of the subtree rooted at the current node or giving
the unique ‘number’ of the node so that data can be stored in that position of an array.
At lgn bits per reference, this adds up to at least 5nlgn bits. However, there are only

0-8493-8597-0/01/$0.00+$1 50
® 2001 by CRC Press, LLC 1-1



1-2

(2":1) /(2n + 1) binary trees, so the information-theoretic minimum space is fewer than 2n
bits. Our archetypical data structure is a 2n + o(n)-bit representation that supports the
operations noted above, and others, in constant time.

We consider a variety of abstract data types, or combinatorial objects, with the goal of

producing such succinct data structures. Most, though not all, of the structures we consider
are static. In most cases the construction of a succinct data structure from the standard
representation is fairly straightforward in linear time.
Memory Model: We study the problems under the RAM model with word size O(lgn),
where n is the input size of the problem under consideration. This supports arithmetic (ad-
dition, subtraction, multiplication and division), indexing and bit-wise boolean operations
(AND, OR, NOT, XOR etc.) on words, and reading/writing of words from/to the memory
in constant time.

1.2 Bitvector

A bitvector provides a simple way to represent a set from any universe that is easily mapped
onto [m] . Membership queries (checking whether a given element from the universe is
present in the set) can be answered in constant time (in fact a single bit probe) using a
bitvector. Furthermore, one can easily support updates (inserting and deleting elements)
in constant time. The most interesting twist on the bitvector came with Jacobson [33]
considering two more operations:

e rank(i) : return the number of 1s before the position 4, and
e select(s) : return the position of the i-th 1.

As we shall see, these operations are crucial to a number of more complex structures
supporting a variety of data types. An immediate use is to support the queries:

e predecessor(z) : find the largest element y < z in S,
e successor(x) : find the smallest element y > z in S.

Given a bitvector of length m, Jacobson [33] gave a structure that takes o(m) bits of
additional space and supports rank and select operations by making O(lgm) bit probes to
the structure. On a RAM with word size ©(lgm) bits, the structure given by Munro [40]
enhanced this structure and the algorithms to support the operations in O(1) time, without
increasing the space bound. We briefly describe the details of this structure.

The structure for computing rank, the rank directory, consists of the following;:

e Conceptually break the bitvector into blocks of length |—lg2 m]. Keep a table
containing the number of 1s up to the last position in each block. This takes
O(m/lgm) bits of space.

e Conceptually break each block into sub-blocks of length |—% lg m]. Keep a table
containing the number of 1s within the block up to the last position in each
sub-block. This takes O(mlglgm/lgm) bits.

e Keep a precomputed table giving the number of 1s up to every possible position
in every possible distinct sub-block. Since there O(y/m) distinct possible blocks,
and O(lgm) positions in each, this takes O(y/mlgmlglgm) bits.

for positive integers m, [m] denotes the set {0,1,...,m — 1}
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FIGURE 1.1: Two-level rank directory.

Thus, the total space occupied by this auxiliary structure is o(m) bits. The rank of an
element is, then, simply the sum of three values, one from each table.

The structure for computing select uses three levels of directories and is more complex.
The first one records the position of every (lgmlglgm)-th 1 bit in the bitvector. This
takes O(m/1glgm) bits. Let r be the subrange between two values in the first directory,
and consider the sub-directory for this range. If » > (Igmlglgm)? then explicitly store
the positions of all ones, which requires O(r/lglgm) bits. Otherwise, subdivide the range
and store the position (relative to the beginning of this range) of every (lgrlglg m)-th one
bit in the second level directory. This takes O(r/1glgm) bits for each range of size r, and
hence O(m/1glgm) bits over the entire bitvector. After one more level of similar range
subdivision, the range size will reduce to at most (Iglgm)*. Computing select on these
small ranges is performed using a precomputed table. The total space occupied by this
auxiliary structure is o(m) bits. The query algorithm is straightforward. See [9, 43] for
details.

This ‘indexable bitvector’ is used as a substructure in several succinct data structures.
To represent a bitvector of length m, it takes m + o(m) bits of space. In general, if nothing
is known about the bitvector then any representation needs at least m bits to distinguish
between all possible bitvectors, and hence this is close to the optimal space. But if we
also know the density (the number of ones) of the bitvector, then the space bound is no
longer optimal, in general. The ‘fully indexable dictionary’ described in Section 1.3.2 gives
a solution that takes nearly optimal space.

Using the ideas involved in constructing rank and select directories, one can also support
the following generalizations of these two operations, using o(m) bits of extra space: Given
a bitvector of length m, and a fixed binary pattern p of length up to (1 — €)lgm, for some
fixed constant 0 < e <1

e rank, (i) : return the number of (possibly overlapping) occurrences of p before the
position 4, and
o select,(7) : return the i-th occurrence of the pattern p.

One can extend the ideas of rank and select directories to support indexing into a fixed
or variable length encoded text (e.g. Huffman coding, prefix-free encoding etc.) in constant
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time, using negligible extra space. See [33, 43] for some examples.

1.3 Succinct dictionaries

The (static) dictionary problem is to store a subset S of size n so that membership queries
can be answered efficiently. In our case, the universe is taken to be the set [m)]. This problem
has been widely studied and various solutions have been proposed to support membership
queries in constant time.

As we have seen in the last section, a bitvector is a simple way of representing a set
from a given universe. But this requires m bits of space. Since there are (’7’:) sets of size n
from a universe of size m, one would require only B =1g (') (= n(lgm —lgn +Ige), when
n = o(m)) bits to store a canonical representation of any such set. Thus a bitvector is quite
wasteful of space when the set is sparse. A sorted array is another simple representation,
but it requires O(lgn) time to answer queries. A fusion tree (see Chapter 71) also takes
linear space and supports membership queries in O(lgn/lglgn) time. In this section, we
consider representations of sets whose space complexity is close to the information theoretic
minimum and support queries in constant time. (As all the structures outlined below
support membership queries in worst case constant time, we do not mention the query
complexity explicitly.)

Fredman, Komlés and Szemerédi [19] gave the first linear space structure for the static
dictionary problem. This takes nlgm + O(nv/Ign + lglg m) bits of space. The lower order
term was later improved by Schmidt and Siegel [55] to O(n +1glgm). This structure uses a
universe reduction function followed by a two-level hash function to hash the given subset
one-to-one onto the set [n], and stores the elements of subset in a hash table (in the order
determined by the hash function). The hash table takes nlgm bits and a clever encoding
of the hash function takes O(n + 1glgm) bits of space. We refer to this as the FKS hashing
scheme. Note that the space required for this structure is ©(nlgn) bits more than the
optimal bound of B bits.

Brodnik and Munro [5] gave a static dictionary representation that takes B+ o(B) bits of
space. It uses two different solutions depending on the relative values of n and m. When the
set is relatively sparse (namely, when n < m/(lgm)'18™), it partitions the elements into
buckets based on the first 1gn — lglgm bits of their bit representations, and store explicit
pointers to refer to the representations of individual buckets. Each bucket is represented by
storing all the elements that fall into it in a perfect hash table for that bucket. Otherwise,
when the set is dense, it uses two levels of bucketing (at each level splitting the universe into
a number of equal-range buckets, depending only on the universe size) after which the range
of these buckets reduces to ©(lgn). These small buckets are stored (almost) optimally by
storing pointers into a precomputed table that contains all possible small buckets. In either
case the space occupancy can be shown to be B + o(B) bits.

Pagh [46] observed that each bucket of the hash table may be resolved with respect to
the part of the universe hashing to that bucket. Thus, one can save space by compressing
the hash table, storing only the quotient information, rather than the element itself. From
the FKS hash function, one can obtain a quotienting function that takes lg(m/n) + O(1)
bits for each element. Using this idea one can obtain a dictionary structure that takes
nlg(m/n)+ O(n+1glgm) bits of space, which is only ©(n) bits more than the information-
theoretic lower bound (except for the O(lglgm) term). Pagh has also given a dictionary
structure that takes only B + o(n) + O(lglgm) bits of space.
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1.3.1 Indexable dictionary

One useful feature of the sorted array representation of a set is that, given an index 4, the i-th
smallest element in the set can be retrieved in constant time. Furthermore, when we locate
an element in the array, we immediately know its rank (the number of elements in the set
which are less than the given element). On the other hand, hashing based schemes support
membership in constant time, but typically do not maintain the ordering information. In
this section we look at a structure that combines the good features of both these approaches.

An indezable dictionary is a structure representing a set S of size n from the universe [m)
to support the following queries in constant time:

rank(z, S): Given z € [m], return —1if z ¢ S, and |{y € S|y < z}| otherwise, and

select(é, S): Given i € {1,...n}, return the i-th smallest element in S.

Here the rank operation is only supported for the elements present in the set S. Ajtai [1]
showed that the more general problem of supporting rank for every element in the universe
has a query lower bound of Q(lglgn), even if the space used is polynomial in n. As a
consequence, we emphasize the need for handling both S and its complement in the next
section.

A dictionary that supports rank operation [52], as well as an indexable dictionary is very
useful in representing trees [50] (see Section 1.4.3).

Elias [15] considered the indexable dictionary problem and gave a representation that
takes nlgm — nlgn + O(n) bits and supports the queries in O(1) time, though he only
considered the average case time complexity of the queries. Raman et al. [50] have given
an indexable dictionary structure that takes B+ o(n) + O(lglgm) bits. The main idea here
is, again, to partition the elements into buckets based on their most significant bits, as in
the static dictionary structure of Brodnik and Munro [5]. The difference is that instead of
storing explicit pointers to the bucket representations, they store the bucket sizes using a
succinct representation that supports partial sum queries (see Section 1.8) in constant time.
This not only saves a significant amount of space, but also provides the extra functionality
needed for supporting rank and select.

Using similar ideas, one can also represent multisets and collections of sets using almost
optimal space. See [50] for details.

1.3.2 Fully indexable dictionary

Given a set S C [m], a fully indexable dictionary (FID) of S is a representation that
supports rank and select operations on both S and its complement S = [m]\ S in constant
time [50].

It is easy to see that the bitvector representation of a set, with auxiliary structures
to support rank and select on both the bits as mentioned in Section 1.2, is an FID. But
this requires m + o(m) bits, where m is the size of the universe. Here we look at an FID
representation that takes B+o(m) bits of space. Note that when the set is reasonably sparse
(namely when n = m/w(lgm)) B = o(m), and hence it improves the space complexity of
the bitvector representation.

Let S C [m] be a given set of size n. Divide [m] into blocks of consecutive elements,
with block size u = | 1gm|. Let S; be the subset of S that falls into the i-th block. Each
of the S;’s is represented by storing an index into a table that contains the characteristic
bitvectors of all possible subsets of a particular size from the universe [u]. As a consequence,
the space occupied by these representations together with all the precomputed tables can
be shown to be B+ o(m) bits. To enable fast access to the representations of these subsets,
we store the partial sums of the sizes of the subsets, and also the partial sums of the lengths
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of the representations of these subsets, which take O(mlglgm/lgm) bits. This can be used
to support rank in O(1) time.

To support select, we first store the positions of every (lg2 m)-th element explicitly in
an array, which takes O(m/lgm) bits. Call the part the universe that lies between two
successive elements in this array a segment. If the size of a segment is more than lg* m,
then we explicitly store all the lg* m elements of S that belong to this segment in sorted
order. This takes lg® m bits for every such ‘sparse’ segment, and hence at most m /lgm
bits, over all the sparse segments. Dense segments are handled by constructing a complete
tree with branching factor /Igm, and so constant height, whose leaves are the blocks
that constitute this segment, and storing some additional information to navigate this tree
efficiently (see the searchable partial sum structure in Section 1.8).

To support rank and select on S, first observe that an implicit representation of a set
over a given universe is also an implicit representation of its complement. Thus, we need
not store the implicit representations of S; again. Except for this, we repeat the above
construction with S;’s replaced by S;’s.

The overall structure space requirement is B+ O(mlglgm/lgm) bits, and rank and select
are supported on both S and S in O(1) time. See [50] for details.

1.3.3 Dynamic dictionary

We have looked at several succinct structures for static dictionaries. We now briefly consider
the dynamic dictionary problem where one can add and delete elements from the set while
supporting the membership queries.

Model: The model of memory allocation is very important in dynamic data structures.
One widely used model [4, 44, 50] is to assume the existence of a ‘system’ memory manager
that would allocate and free memory in variable-sized chunks. In this model, the space
complexity of a structure is counted as the total size of all the blocks allocated for that
structure, and hence this approach does not account for the space wastage due to external
fragmentation.

Fundamentally, memory is most easily viewed as a large array. If we are to use the
storage, we must manage it. Therefore a simple view is to count all the fragmentation
we may cause and count the memory usage as the difference between the addresses of the
first and last locations used by the structure. While more complex scenarios may be more
realistic in certain cases, we take this simple address difference model as our focus. The
methods we discuss are equivalent under either model up to constant factors.

A balanced tree can be used to support all the dynamic dictionary operations in O(lgn)
time using nlgm + O(nlgn) bits, where n is the current size of the set. Using the ideas
of the FKS dictionary, Dietzfelbinger et al. [14] gave a dynamic dictionary structure that
supports membership in O(1) time and updates (insert/delete) in O(1) expected amortized
time. This structure takes O(nlgm) bits of space. There have been several improvements,
lowering the space complexity close to the information theoretic-minimum, culminating
in a structure that takes B + o(B) bits with the same query complexity as above. See
[5, 46, 47, 18, 51] and the references therein.

All these structures also support associating satellite information with the elements, so
that whenever an element is found to be in the set, we can also retrieve the satellite infor-
mation associated with it in constant time.

1.4 Tree representations
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Trees are one of the most fundamental objects in computer science. We consider the problem
of representing large trees succinctly. Storing a tree with a pointer per child as well as other
structural information can account for the dominant storage cost. For example, standard
representations of a binary tree on n nodes, using pointers, take O(nlgn) bits of space.
Since there are only (2":1) /(2n + 1) different binary trees on n nodes, less than 2n bits

suffice to distinguish between them. We look at some binary tree representations that take
2n + o(n) bits and support the basic navigational operations in constant time.

1.4.1 Binary trees

First, if the tree is a complete binary tree (i.e., a binary tree in which every level, except
possibly the deepest, is completely filled, and the last level is filled from the left as far as
required), then there is a unique tree of a given size and we require no additional space to
store the tree structure. In fact, by numbering the nodes from 1 to n in the ‘heap order’
[59] (left-to-right level-order traversal of the tree), one can support navigational operations
on the tree by observing that the parent of a node numbered 4 is the node numbered |i/2],
and the left and right children of node i are 2i and 2i + 1 respectively. But this property
does not hold when the tree is not complete.

If the tree is not complete, one could extend it to a complete binary tree with the same
height and store a bit vector indicating which nodes are present in the tree (in the heap order
of the complete tree) to support the operations efficiently. But this takes space exponential
in the number of nodes, in the worst case.

To save space, one can use the following compressed representation due to Jacobson [33]:
First, mark all the nodes of the tree with 1 bits. Then add external nodes to the tree, and
mark them with 0 bits. Construct a bitvector by reading off the bits that are marking the
nodes in left-to-right level-order. (See Figure 1.2.) It is easy to see that the original tree
can be reconstructed from this bitvector. For a binary tree with n nodes, this bitvector
representation takes 2n + 1 bits. Moving between parent and child is just a slight twist on
the method used in a heap. By storing the rank and select directories for this bitvector, one
can support the navigational operations in constant time using the following equations:

parent(i) = select(|i/2]); leftchild(i) = 2 - rank(i); rightchild(i) = 2 - rank(é) + 1.

1.4.2 Ordinal trees

Now, consider optimal representations of trees of higher degree, of which there are two
different notions.

An ordinal tree is a rooted tree of arbitrary degree in which the children of each node are
ordered. Ordinal trees on n nodes are in one to one correspondence with binary trees on n
nodes. Hence about 2n bits are necessary to represent an arbitrary ordinal tree on n nodes.
A cardinal tree of degree k is a rooted tree in which each node has k positions for an edge to
a child. Hence, a binary tree is a cardinal tree of degree 2. There are C¥ = (*1) /(kn + 1)
cardinal trees of degree k on n nodes [25]. Hence we need roughly (Ig(k — 1) + klg %)n
bits to represent an arbitrary such tree.

The basic operations we would like to support on tree representations are: given a node,
finding its parent, i-th child, degree and the size of the subtree rooted at that node (subtree
size). For the cardinal trees we also need to support the additional operation of finding a
child with a given label.
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1(1)

level-order bitmap: 1111 0011 11000100000

FIGURE 1.2: Level-order bitmap representation of a binary tree.

We outline three different representations of an ordinal tree. All the three representations
map the n nodes of the tree onto the integers 1,...,n, and hence all are appropriate for
applications in which data is to associated with nodes or leaves.

Level-order unary degree sequence representation: A rooted ordered tree can be
represented by storing its degree sequence in any of a number of standard orderings of
the nodes. The ordinal tree encoding of Jacobson [33] represents a node of degree d as a
string of d 1s followed by a 0. Thus the degree of a node is represented by a binary prefix
code. These prefix codes are then written in a level-order traversal of the entire tree. Using
auxiliary structures to support rank and select operations on this sequence, one can support
finding the parent, the i-th child and the degree of any node in constant time. Thus, it gives
a representation that takes 2n + o(n) bits of space and supports the above three operations
in constant time, for an ordered tree on n nodes.

Balanced parenthesis representation: The tree encoding of Munro and Raman [41]
uses a balanced sequence of parentheses to represent an ordinal tree. This balanced repre-
sentation is derived from the depth-first traversal of the tree, writing an open parenthesis
on the way down and a close parenthesis on the way up. Thus, a tree on n nodes can be
represented by a balanced parenthesis sequence of length 2n. Extending the ideas of Ja-
cobson, they showed how to support the following operations in O(1) time, using negligible
extra space (o(n) bits):

e findopen/findclose(i): find the position of the open/close parenthesis matching
the given close/open parenthesis in position 3.

e excess(i): find the difference between the number of open and closing parentheses
before the position 3.

e enclose(i): given a parenthesis pair whose open parenthesis is in position 4, find
the open parenthesis corresponding to its closest enclosing matching parenthesis
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(b) Jacobson’s degree sequence representation
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(d) Depth-first degree sequence representation

FIGURE 1.3: Three ordinal encodings of an ordinal tree.

pair.

The parent of a node can be found in constant time using the enclose operation. In the
parenthesis representation, the nodes of a subtree are stored together, which enables us to
support the operation of finding the size of the subtree rooted at a given node in constant
time. The problem with this representation is that finding the i-th child takes ©(¢) time.
Depth-first unary degree sequence representation: Jacobson’s representation al-
lows access to the 4-th child in constant time, whereas Munro and Raman’s representation
supports subtree size operation in constant time. To combine the virtues of these two rep-
resentations, Benoit et al. [2] used a representation that writes the unary degree sequence
of each node in the depth-first traversal order of the tree. The representation of each node
contains essentially the same information as in Jacobson’s level-order degree sequence, but
written in a different order. Thus, it gives another 2n bit encoding of a tree on n nodes.
Replacing the 0’s and 1’s by open and close parentheses respectively, and adding an extra
open parenthesis at the begining, creates a string of balanced parantheses. Using auxiliary
structures to support rank and select operations on this bit string and also the operations
on balanced parenthesis sequences defined above, one can support finding the parent, i-th
child, degree and subtree size of a given node in constant time.

Other opeartions: Sadakane [54] has shown that the paranthesis representation of an
ordinal tree can be used to support least common ancestor queries in O(1) time using a
o(n)-bit auxiliary structure. Munro and Rao [45] have shown that one can also support
the level ancestor queries in O(1) time, using an additional o(n) bit auxiliary structure
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by storing the parenthesis representation. Geary et al. [23] obtained another structure
that takes 2n + o(n) bits and supports level-ancestor queries, in addition to all the other
navigational operations mentioned above in O(1) time.

1.4.3 Cardinal trees

A simple cardinal tree encoding can be obtained as follows: Encode each node of a k-ary
tree by k bits, where the ith bit specifies whether child ¢ is present. These can be written
in any fixed ordering of the tree nodes, such as level order or depth-first order, to obtain
the tree encoding. By storing the rank and select directories for this bitvector encoding,
one can support parent, i-th child and degree queries in constant time. This encoding has
the major disadvantage of taking kn bits, far from the lower bound of roughly (lg k +1ge)n
bits, as there are C(n, k) = (*"+')/(kn + 1) k-ary cardinal trees on n nodes.

Using some probabilistic assumptions, Darragh et al. [11] have implemented a structure
that takes lg k4 O(1) bits per node, though the implementation treats 1glgn as ‘a constant’
(indeed 5). This structure supports the navigational operations in constant expected time
and also supports updates ‘efficiently’ (compared with other linear space representations),
and was also shown to perform well in practice.

To achieve a better space bound with good worst-case performance, one can use the
ordinal tree encoding to store the underlying tree, and store some additional information
about which children are present at each node. The ordinal information (using the depth-
first unary degree sequence representation) can be used to support the parent, i-th child,
degree and subtree size queries in constant time.

Let Sy = {i1,42,...,%4} be the child labels of a node = with degree d in the cardinal tree.
To find the child labeled j of node z, it suffices to find 4 = rank(j) in the set S, if j € Sp. If
i=—1(i.e., j € S;), then there is no child labeled j at node x, otherwise the i-th child of =
is the child labeled j of node z. The i-th child can be found using the ordinal information.
Storing each of these sets S, using the indexable dictionary representation of Section 1.3.1,
which takes dlg k+o(d) + O(lglg k) bits for each S, requires nlgk+ o(n) + O(nlglg k) bits
in the worst case. Using a representation that stores a collection of indexable dictionaries
efficiently [50], one can reduce the space consumption to nlgk + o(n) + O(lglg k) bits.

Thus, this structure uses 2n + o(n) bits to represent the underlying ordinal tree, nlgk +
o(n + lg k) bits to represent the labels of the children at each node, and supports all the
navigational operations and the subtree size operation in O(1) time.

Using the succinct indexable dictionary structure mentioned in Section 1.3, Raman et al.
[50] obtained an optimal space cardinal tree representation. The main idea is to store the set
of all pairs, (i, j) such that the i-th node, in the level-order of the nodes, has a child labeled
Jj, using an indexable dictionary representation. (See Figure 1.4 for an example.) Since this
set is of size n from the universe [nk], it requires Ig (Zk) +o(n+1gk) =C(n,k)+o(n+1gk)
bits to store an indexable dictionary for this set. One can easily map the navigational
operations on the tree to the operations on this set, to support them in constant time. But
this structure does not support the subtree size operation efficiently.

1.4.4 Dynamic binary trees

All the tree representations mentioned so far are static. Even to make a minor modification
to the tree, such as adding a leaf, the entire structure has to be reconstructed (in the worst
case). In this section we look at some representations that are more efficient in supporting
updates to the tree.

Munro et al. [44] gave a binary tree representation that takes 2n+o(n) bits, and supports
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FIGURE 1.4: The tree is represented by storing an indexable dictionary of the set
{{0,0),(0,2),(0,3) ,(1,1),(1,3),(2,1),(5,0), {5, 1)}

FIGURE 1.5: Dynamic binary tree representation. B denotes an inter-block pointer and S
denotes an inter-subblock pointer.

parent, left child, right child and subtree size operations in O(1) time. Updating the tree
(adding a leaf or adding a node along an edge) requires O(lg®n) time, for some constant
¢ > 1 which depends on the size of the data associated with the nodes. Extending some of
the ideas involved in this, Raman and Rao [51] improved the update time to O((lglgn)®),
for any fixed € > 0, while maintaining the other time and space bounds.

We briefly outline the key issues involved in the construction of these structures. First,
we divide the tree into blocks of size ©(Ig°n), for some ¢ > 2, and each block in turn into
sub-blocks of size elgn, for some fixed € < 1. The sub-blocks are stored using an implicit
representation and are operated upon using precomputed tables. The block structure of
the tree is stored using explicit pointers. Since there are only ©(lg°'n) sub-blocks in
each block, we can store the sub-block structure within a block explicitly using ©(lglgn)
sized pointers. Each block stores its parent block and the size, using a constant number
of words. Thus, the overall block structure of the tree is easily handled by conventional
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means (storing explicit pointers) and only takes O(n/lgn) bits. The blocks and sub-blocks
tolerate some slack in their sizes and are moved to appropriate sized areas to avoid wasting
space. Ultimately, the key issues boil down to the memory management.

To support subtree size, we maintain the the subtree sizes of the roots of all blocks and
sub-blocks. Since each update changes the subtree sizes of several nodes, it is not possible to
update all the effected blocks and sub-blocks in constant time, in general. For this reason,
we assume that the navigation through the tree begins at the root and may end at any
point (or at the root, to achieve worst-case constant time for updates), and navigates the
tree by moving from a node only to either its parent or one of its children. Hence, updates
to a node higher in the tree regarding the insertions and deletions to descendents are made
on return to that node.

1.5 Graph representations

We consider several space efficient representations of graphs. In particular, we consider
representations that take close to the information theoretic minimum space and support
degree and adjacency queries efficiently. A degree query asks for the degree of a given node
in the graph, and an adjacency query asks whether two given vertices are adjacent or not
in the graph. In addition, we would also like to support listing all the vertices adjacent to
a given vertex.

Turdn [57] gave a linear time constructible representation of an arbitrary planar graph
that takes at most 12 bits per node. Though this gives a space efficient representation of
planar graphs, it does not support the queries efficiently. Kannan et al. [34] have given an
implicit (linear space) graph representation that supports adjacency queries using O(lgn)
bit probes.

Jacobson [33] gave a representation that takes O(n) bits of space to represent a planar
graph on n nodes that supports degree and adjacency queries in constant time. It uses a
simple mapping of one-page graphs to sequences of balanced parentheses, and the fact that
a planar graph always has a 4-page embedding. By storing auxiliary structures to support
some natural operations on these sequences (see Section 1.4.2), one can also support the
navigational operations in optimal time.

Munro and Raman [41] improved the space to 8n + 2m + o(n) bits, for a planar graph
on n vertices with m edges, still supporting the queries in constant time. In general, their
representation takes 2kn + 2m + o(kn + m) bits to store a k page graph on n vertices and
m edges and supports dgeree and adjacency queries in O(k) time.

There have been several improvements [8, 7, 29, 37, 38], improving the space close to the
information theoretic-lower bound, simultaneously expanding the class of graphs for which
the scheme works. In particular, Lu [38] gave an optimal space (within lower-order terms)
representation that can be constructed in linear time. This supports degree and adjacency
queries in O(1) time for constant-genus graphs.

The main idea is to partition the given graph G on n vertices into o(n/lgn) disjoint
subgraphs of size O(1g n) by removing a subgraph H of size o(n/lgn). This is done using
a ‘planarization algorithm’ for bounded genus graphs, and an algorithm to construct a
‘separator decomposition tree’ of a planar graph. The representation of G is obtained by
storing a rerepresentation of H, and recursing on each of the smaller subgraphs upto a
constant number of levels, after which we use a precomputed table to operate on the small
subgraphs. See [38] for details.
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1.6 Succinct structures for indexing

A text indez is a data structure storing a text (a string or a set of strings) and supporting
string matching queries: given a pattern P, find all the occurrences of P in the text. Two
well-known and widely used index structures are the suffix trees and suffix arrays. In this
section we briefly describe some succinct data structures for these two.

A suffiz tree for a text is the compressed digital trie of all the suffixes of the text [58, 39].
A suffix tree for a text of length n has n leaves and at most n — 1 internal nodes. The space
bound is a consequence of skipping nodes with only one child, hence there are precisely
n — 1 internal nodes if we use a binary trie. Each leaf points to the position in the text of
the corresponding suffix it represents uniquely. The edges are labeled by substrings of the
text, which are usually represented by storing a position in the text where the substring
starts and its length. Thus, a standard representation of a suffix tree for a text of length
n takes O(nlgn) bits. Searching for an occurrence of a pattern of length m using a suffix
tree takes O(m) time.

The suffiz array of a text is an array storing pointers to the suffixes of the text in their
lexicographic order. Thus, a suffix array for a text of length n takes n[lgn] bits. Note
that the leaf labels of a suffix tree written from left to right form the suffix array, if the
children of each node are arranged in lexicographic order of their edge labels. Searching for
an occurrence of a pattern of length m using a suffix array takes O(m + lgn) time.

We now briefly sketch the ideas involved in representing a suffix tree (and hence also a
suffix array) using O(n) bits. We first convert the trie into binary by using a fixed length
encoding of the characters of the alphabet. We then store the paranthesis representation
of the underlying tree structure (see Section 1.4.2). The edge labels of a suffix tree can be
omitted, as this can be determined by finding the longest common prefix of the leftmost
and rightmost leaves of the parent node (of the edge). The parenthesis representation of
an ordinal tree can be augmented with o(n)-bit additional structure to support finding the
leftmost and rightmost leaves of a given node in constant time. Thus, one can use this tree
representation to store the tree structure of a suffix tree, and store the leaf pointers (suffix
array) explicitly. This gives a sufix tree representation that takes nlgn+ O(n) bits of space
and supports indexing queries in optimal time. See [43] for details.

The above structure uses n [lgn] bits to represent the pointers to the text or the suffix
array. Grossi and Vitter [26] obtained a suffix array structure that takes O(n) bits and
supports finding the i-th element in the suffix array (lookup queries) in O(lgfn) time, for
any fixed € > 0. Using this structure they also obtained a suffix tree representation that
takes O(n) bits of space and supports finding all the s occurrences of a given pattern of
length m in O(m +s1g® n) time. The structure given by Rao [53] generalizes the suffix array
structure of Grossi and Vitter, which takes O(nt(Ign)'/(**1)) bits and supports lookup in
O(t) time, for any parameter 1 < t < lglgn. Using this structure, one can get an index
structure that takes o(nlgn) bits and supports finding all the s occurrences of a given
pattern of length m in O(m + s + 1g°n) time.

Ferragina and Manzini [16] presented an opportunistic data structure taking O(nHy(n))+
o(n) bits of space, where Hy(n) denotes the k-th order entropy of the given text of length
n. This supports finding all the occurrences of a pattern of length m in O((m + s)1g°n)
time, where s is the number of occurrences of the pattern. They also presented its practical
performance [17].

Sadakane [54] gave a data structure that takes O(n - (1 + Hp) + O(|Z|1g|X|)) bits for a
text of length n over an alphabet X, where Hy < lg|X]| is the order-0 entropy fo the text.
This supports finding all the s occurrences of a given pattern P in O(|P|lgn + slg°n) time,
and decompress a portion of the text of length [ in O(l + lg°) time, for any fixed € > 0.
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Grossi et al. [27] gave another index structure that takes nHy(n) 4+ O(nlglgnlg|X|/lgn)
bits for a text of length n over an alphabet X. Finding an occurrence of a pattern of length
m using this structure takes O(mlg|X| + polylog(n)) time. This is also shown to perform
well, in terms of space as well as query times, in practice [28]

1.7 Permutations and Functions

1.7.1 Permutations

Permutations are fundamental in computer science and have been the focus of extensive
study. Here we consider the problem of representing permutations succinctly to support
computing 7* (i) for any integer k, where 7°(i) = i for all i; 7*(i) = w(7*~1(i)) when k > 0
and 7% (i) = 7~ (7*+1(i)) when k < 0.

The most obvious way of representing an arbitrary permutation, 7, of the integers
{0,1,...,n — 1} is to store the sequence 7(0),7(1),...,7(n — 1). This takes n [lgn] bits,
which is ©(n) bits more than the information-theoretic lower bound of Ig(n!) ~ nlgn—nlge
bits. This representation can be used to find 7 (i) in O(1) time, but finding 7= (i) takes
O(n) time in the worst case, for 0 < ¢ < n — 1. Using this representation, one can easily
compute 7% (i) in k steps, for k > 1. To facilitate the computation in constant time, one
could store 7* (i) for all i and k (|k| < n, along with its cycle length), but that would require
O(n?lgn) bits. The most natural compromise is to retain 7* (i) with |k| < n a power of 2.
Unfortunately, this n [lg n]2 bit representation leaves us with a logarithmic time evaluation
scheme and a factor of lgn from the minimal space representation.

We first show how to augment the standard representation to support m ! queries ef-
ficiently, while avoiding most of the extra storage cost one would expect. In addition to
storing the standard representation, we trace the cycle structure of the permutation, and for
every cycle whose length is at least ¢, we store a shortcut pointer with the elements which
are at a distance of a multiple of ¢ steps from an arbitrary starting point. The shortcut
pointer points to the element which is ¢ steps before it in the cycle of the permutation. This
short cycle representation of a permutation can be stored using (1 + 1/¢)nlgn + o(n) bits,
and it supports m queries in O(1) time and 7! queries in O(t) time, for any parameter
1<t<n.

Consider the cycle representation of a permutation 7 over {0,1,...,n — 1}, which is a
collection of disjoint cycles of © (where the cycles are ordered arbitrarily). Let o be this
permutation, i.e., the standard representation of ¢ is a cycle representation of 7. Let B be
a bit vector of length n that has a 1 corresponding to the starting position of each cycle of
7 and 0 everywhere else, together with its rank and select directories with respect to both
bits. Let S be a representation of o that supports (i) and 0~ (i) queries efficiently. Then
to find 7* (i), first find the index j of the cycle to which o—1(i) belongs, using B and S.
Find the length [ of the j-th cycle and the number p of elements upto (but not including)
the j-th cycle. Then, one can verify that 7% (i) = o(p + (i — p + k mod [)). Combining this
with the short cycle representation, one can get a representation taking (14 €)nlgn+ O(1)
bits that supports computing arbitrary powers in O(1) time.

Benes network: A Benes network [36] is a communication network composed of a number
of switches. Each switch has 2 inputs z¢ and x; and 2 outputs yo and y; and can be
configured either so that o is connected to yo (i-e. a packet that is input along xo comes
out of yg) and z; is connected to y;, or the other way around. An r-Benes network has
2" inputs and outputs, and is defined as follows. For r = 1, the Benes network is a single
switch with 2 inputs and 2 outputs. An (r + 1)-Benes network is composed of 2"+! switches
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FIGURE 1.6: Benes network: (a) construction of (r + 1)-Benes network (b) Benes network
realising the permutation (4,7,0,6,1,5,2,3).

and two r-Benes networks, connected as as shown in Fig. 1.6(a). A particular setting of
the switches of a Benes network realises a permutation 7 if a packet introduced at input 4
comes out at output 7(4), for all i. See Fig. 1.6(b) for an example.

Clearly, a Benes network may be used to represent a permutation. For example, if
n = 27, a representation of a permutation 7 on [n] may be obtained by configuring an
r-Benes network to realize 7w and then listing the settings of the switches in some canonical
order (e.g. level-order). This represents 7 using 72" — 2”1 = nlgn —n/2 bits. Given i, one
can trace the path taken by a packet at input ¢ by inspecting the appropriate bits in this
representation, and thereby calculate 7(7) in O(lgn) time (indeed, in O(lgn) bit-probes).
In fact, by tracing the path back from output i we can also compute 7~1(7) in O(Ign) time.

One can compress the middle levels of a Benes network by storing an implicit representa-
tion of the permutation represented by the middle O(lgn/lglgn) levels. This reduces the
space to lg(n!) 4+ o(n) bits. One can also group the remaining bits of this Benes network into
words of size ©(lgn) bits (by taking O(lglgn) consecutive levels and O(lgn/lglgn) appro-
priate rows). This enables us to traverse ©(lglgn) levels in a Benes network in O(1) time.
Thus, it gives a representation that takes the optimal [lg(n!)] + o(n) bits, and supports
computing arbitrary powers in O(lgn/lglgn) time.

One can obtain a structure with same time and space bounds even when n is not a power
of 2. See [42] for details.

1.7.2 Functions

Now consider the problem of representing arbitrary functions f : [n] — [n], so that queries
for f¥(i) for any integer k can be answered efficiently. Here f°(i) = i and for any k > 0,
FE@) = f(f* 1)) and f=%(i) = {j|f*(j) = i}, for all 5. This is a generalization of the
problem considered in the previous section. Since there are n™ functions from [n] to [n],
any representation scheme takes at least [nlgn] bits to store an arbitrary function.

A standard way of representing a function is to store the sequence f(i),fori =0,...,n—1.
This representation does not support the efficient evaluation of f*(i) for k >> 1. We look at
a representation that takes (1+€)nlgn+ O(1) bits of space to store a function f : [n] = [n]
and supports computing arbitrary positive powers in constant time and negative powers
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FIGURE 1.7: Graph representation of the function f(z) = (z° + 2z — 1) mod 19, for
0<z<18.

F7*@), in O(1 + |f7*(3)|) time.

Given an arbitrary function f : [n] — [n], consider the directed graph, Gy = (V, E),
obtained from it, where V = [n] and E = {(,j) : f(i) = j}. In general this directed graph
consists of a disjoint set of subgraphs, each of which is a directed cycle with trees rooted at
the nodes on the cycle and edges directed towards the roots. See Figure 1.7 for an example.

The main idea of the solution is as follows: in each directed cycle, we re-order the nodes
of each tree such that the leftmost path of any subtree is the longest path in that subtree.
This enables finding a node at a given depth from any internal node, if it exists, in constant
time using the parenthesis representation. We then preprocess each of the trees and store
auxiliary structures to support level-ancestor queries on them in constant time (see Section
1.4.2). Observe that finding f*(i), for k¥ > 0, can be translated to finding the ancestor of
node i which is & levels above it, if ¢ is at a depth at least k in its tree T. Otherwise, we
have to traverse the cycle to which the root of T' belongs, to find the required answer. This
can be done by storing these cycles as a permutation.

When i belongs to one of the trees in a subgraph, one can answer f*(i) queries for k < 0
in optimal time by finding all the nodes that are at the k-th level in the subtree rooted at 1.
Otherwise, if 7 is part of the cycle in the subgraph, we store an auxiliary structure that, for
any given ¢ and k, outputs all the trees in the subgraph containing ¢ that have an answer.
From this, one can easily find the required answer in optimal time. The auxiliary structure
takes O(m) bits for a subgraph with m nodes, and hence O(n) bits overall. See [45] for
details.

For functions from [n] — [m] one can show the following: If there is a representation of a
permutation that takes P(n) space to represent a permutation on [n] and supports forward
in ¢; time and inverse in ¢, time, then there is a representation of a function from [n] to [m],
m < n that takes (n —m)lgm + P(m) + O(m) bits, and supports f*(i) in O(¢; + t2) time,
for any positive integer k and for any i € [n]. When m > n, larger powers are not defined
in general. In this case, we can have a structure that takes nlgm + P(n) + O(n) bits of
space and answers queries for positive powers (returns the power if defined or returns —1
otherwise) in O(t1 + t2) time.

1.8 Partial sums
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Let a1, as, - - ., a, be a sequence of n non-negative k-bit numbers. The partial sums problem
maintains the sequence under the following operations:

e sum(i): return sum’_,a;,
e update(i,d): set a; < a; + &, for some integer & such that 0 < a; +6 < 2% — 1.
Our later solutions have the additional constraint that |§] < 1g°W .

Dietz [13] gave a structure for the partial sum problem that supports sum and update in
O(lgn/lglgn) time using O(nlgn) bits of extra space, for the case when k = O(lgn) and
no constraints on §. The time bounds are optimal due to the lower bound of Fredman and
Saks [20]. As the information-theoretic space lower bound is kn bits, this structure uses
space within a constant factor of the optimal.

The main idea of this structure is to store the elements at the leaves of a complete tree
with branching factor O(lg® n) for some € < 1. The operations are performed by traversing
a path from a leaf to the root, querying/updating the nodes along the path.

The searchable partial sums problem is an extension of the partial sums problem that
also supports the following operation:

e search(j): find the smallest 4 such that sum(z) > j.

When k& = 1 (i.e., each element is a bit), the special case is commonly known as the
dynamic bit vector problem, which maintains a bit vector of length n under rank, select and
flip (update) operations.

For the searchable partial sums problem there is a structure that supports all operations
in O(lgn/lglgn) time, and uses kn + o(kn) bits of space [49]. For k = O(lglgn), one can
also obtain a structure that again takes kn + o(kn) bits and supports sum and search in
O(logy n) time and update in O(b) amortized time, for any parameter b > lgn/lglgn [30].
For the partial sums problem, one can support the above trade-off for £k = O(lgn) [49], and
the time bounds can be shown to be optimal [20].

For the dynamic bit vector problem, one can support rank and select in O(log, n) time
and flip in O(b) (worst-case) time, for any parameter lgn/lglgn < b < n, using o(n) bits
of extra space. One can also extend the above trade-off for k = O(lglgn), using kn + o(kn)
bits of space.

See [49] and [30] for details.

1.9 Arrays

1.9.1 Resizable arrays

A basic problem that arises in many applications is accumulating elements into a list when
the number of elements is unknown ahead of time. The operations needed from such a
structure are the ability to append elements to the end of the structure, removing the last
element from the structure (in applications such as implementing a stack) and some method
of accessing the elements currently in the structure.

One simple solution is a linked list which can easily grow and shrink, and supports
sequential access. But this does not support random access to the elements. Moreover, its
space overhead is O(n) pointers to store n elements.

Another standard solution is the doubling technique [3]. Here the elements are stored in
an array. Whenever the array becomes full, an array of double its size allocated and all the
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elements are copied to it. Similarly, whenever the array shrinks so that it is only one-fourth
full, an array of half its size is allocated and all the elements are copied to it. The advantage
of this solution over the linked lists is that random access to the elements takes only O(1)
time (as opposed to O(n) for linked lists). The amortized update time is O(1), though the
worst-case update time is O(n). The space overhead of this solution is O(n).

Sitarski [56] has proposed a solution whose space overhead is only O(y/n). The idea is to
divide the given list of n elements into sublists of size [y/n], store them in separate arrays,
and store an array (of length O(y/n)) of pointers to these sublists (in order). Whenever
[v/n] changes, the entire structure is reconstructed with the new size. Thus the amortized
update time is O(1) (though the worst-case time is O(n)). This also supports random access
in O(1) time.

Brodnik et al. [4] gave a structure that takes O(y/n) extra locations, where n is the
current size of the array, and supports the operations in O(1) time. One advantage of
this structure is that elements are never re-allocated. They have also shown that any such
structure requires Q(1/n) extra locations even if there are no constraints on the access time.

1.9.2 Dynamic arrays

A resizable array supports adding/deleting elements only at the end of the list, but does
not support insertion/deletion of elements at arbitrary positions in the array. A dynamic
array is data structure that maintains a sequence of records under the following operations:

e access(i): return the i-th record in the sequence,
e insert(r,4): insert the record r at position ¢ in the sequence, and
e delete(i): delete the i-th record in the sequence.

A standard way of implementing a dynamic array is to store the records in an array and
maintain it using the doubling technique. This supports access in O(1) but requires O(n)
time to support insert and delete operations.

Goodrich and Kloss [24] gave a structure, the tiered vector , that takes n + O(y/n) words
of space to represent a sequence of length n, where each record fits in a word. This structure
supports access in O(1) time and updates in O(y/n) amortized time. The major component
of a tiered vector is a set of indezable circular deques. A deque is a linear list which provides
constant time insert and delete operations at either the head or the tail of the list [35]. A
circular deque is a list which is stored in a sequential section of memory of fixed size. An
indexable circular deque maintains pointers h and ¢, which reference the index in memory of
the head and tail of this list. A tiered vector is a set of indexable circular deques. Insertions
and deletions in an arbitrary indexable circular deque require time linear in its size, but
inserting/deleting at either the head or the tail of the list takes O(1) time.

Thus, by maintaining the given sequence of n elements using O(+/n) indexable circular
deques each of size O(y/n), one can support access in O(1) time and updates in O(1/n)
amortized time. One can easily generalize this structure to one that supports access in
0O(1/e) time and updates in O(n®) time, for any parameter 0 < e < 1.

Using this structure to represent a block of O(1g°) n) records, Raman et al. [49] gave
a structure that supports access and updates in O(lgn/lglgn) amortized time, using o(n)
bits of extra space. The main idea is to divide the given list of length n into sublists of
length between %lg‘in and 21g* n, and store the sublists using the above dynamic array

structure. One can maintain these sublists as the leaves of a weight-balanced B-tree with
branching factor O(v/lgn), and hence height O(lgn/lglgn).
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By restricting the length of the array, Raman and Rao [51] obtained a dynamic array
structure that maintains a sequence of I = O(w®®)) records of = O(w) bits each, where w
is the word size. This structure supports access in O(1) time and updates in O(1 + Ir/kw)
amortized time, and uses Ir + O(klgl) bits, for any parameter k¥ < [. The data structure
also requires a precomputed table of size O(2¢?) bits, for any fixed € > 0. The main idea
is to store the newly added elements separately from the existing elements, and store a
structure to indicate all the positions of the ‘updated’ elements. The structure is rebuilt
after every k updates.

1.10 Conclusions

We looked at several succinct data structures that achieve almost optimal space while
supporting the required operations efficiently. Apart from being of theoretical interest,
succinct data structures will also have many practical applications due to the enormous
growth in the amount of data that needs to be stored in a structured fashion.

Most of the succinct data structures we presented here can be constructed in linear time
from the standard representation. But this method requires more space than necessary
during the construction. Developing algorithms that directly construct the succinct repre-
sentations without using more space during construction, preferably in optimal time, is an
important open problem. See [31] for an example.

Another aspect, that is more of theoretical significance, is to study the cell probe (in
particular, bit probe) complexity of succinct data structures [6, 22, 48]. For most problems,
no bounds other than the straightforward translations from the bounds on the RAM model
are known. It is also interesting to consider the time-space trade-offs of these structures.
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