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Abstract— Large databases with uncertain information are
becoming more common in many applications including data
integration, location tracking, and Web search. In these applica-
tions, ranking records with uncertain attributes needs to handle
new problems that are fundamentally different from conventional
ranking. Specifically, uncertainty in records’ scores induces a
partial order over records, as opposed to the total order that is
assumed in the conventional ranking settings.

In this paper, we present a new probabilistic model, based on
partial orders, to encapsulate the space of possible rankings orig-
inating from score uncertainty. Under this model, we formulate
several ranking query types with different semantics. We describe
and analyze a set of efficient query evaluation algorithms. We
show that our techniques can be used to solve the problem of
rank aggregation in partial orders. In addition, we design novel
sampling techniques to compute approximate query answers. Our
experimental evaluation uses both real and synthetic data. The
experimental study demonstrates the efficiency and effectiveness
of our techniques in different settings.

I. INTRODUCTION

Uncertain data are becoming more common in many appli-
cations. Examples include managing sensor data, consolidating
information sources, and opinion polls. Uncertainty impacts
the quality of query answers in these environments. Dealing
with data uncertainty by removing records with uncertain
information is not desirable in many settings. For example,
there could be too many uncertain values in the database (e.g.,
readings of sensing devices that become frequently unreliable
under high temperature). Alternatively, there could be only
few uncertain values in the database but they affect records
that closely match query requirements. Dropping such records
leads to inaccurate or incomplete query results. For these
reasons, modeling and processing uncertain data have been
the focus of many recent studies [1], [2], [3].

Top-k (ranking) queries report the k records with the highest
scores in query output, based on a scoring function defined
on one or more scoring predicates (e.g., columns of database
tables, or functions defined on one or more columns). A
scoring function induces a total order over records with
different scores (ties are usually resolved using a deterministic
tie-breaker such as unique record IDs [4]). A survey on the
subject can be found in [5].

In this paper, we study ranking queries for records with un-
certain scores. In contrast to the conventional ranking settings,
score uncertainty induces a partial order over the underlying
records, where multiple possible rankings are valid. Studying
the formulation and processing of top-k queries in this context
is lacking in the current proposals.

Fig. 1. Uncertain Data in Search Results

A. Motivation and Challenges
Consider Figure 1 which shows a snapshot of actual search

results reported by apartments.com for a simple search for
available apartments to rent. The shown search results include
several uncertain pieces of information. For example, some
apartment listings do not explicitly specify the deposit amount.
Other listings mention apartment rent and area as ranges rather
than single values.

The obscure data in Figure 1 may originate from different
sources including: (1) data entry errors, for example, an
apartment listing is missing the number of rooms by mistake,
(2) integrating heterogeneous data sources, for example, list-
ings are obtained from sources with different schemas, (3)
privacy concerns, for example, zip codes are anonymized, (4)
marketing policies, for example, areas of small-size apartments
are expressed as ranges rather than precise values, and (5)
presentation style, for example, search results are aggregated
to group similar apartments.

In a sample of search results we scrapped from
apartments.com and carpages.ca, the percentage of apart-
ment records with uncertain rent was 65%, and the percentage
of car records with uncertain price was 10%.

Uncertainty introduces new challenges regarding both the
semantics and processing of ranking queries. We illustrate such
challenges by giving the following simple example for the
apartment search scenario in Figure 1.

Example 1: Assume an apartment database. Figure 2(a)
gives a snapshot of the results of some user query posed
against such database. Assume that the user would like to rank
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Fig. 2. Partial Order for Records with Uncertain Scores

the results using a function that scores apartments based on
rent (the cheaper the apartment, the higher the score). Since
the rent of apartment a2 is specified as a range, and the rent
of apartment a4 is unknown, the scoring function assigns a
range of possible scores to a2, while the full score range 1

[0 − 10] is assigned to a4. !

Figure 2(b) depicts a diagram for the partial order induced
by apartment scores (we formally define partial orders in
Section II-A). Disconnected nodes in the diagram indicate
the incomparability of their corresponding records. Due to the
intersection of score ranges, a4 is incomparable to all other
records, and a2 is incomparable to a3.

A simple approach to deal with the above partial order
is to reduce it to a total order by replacing score ranges
with their expected values. The problem with such approach,
however, is that for score intervals with large variance, ar-
bitrary rankings that are independent from how the ranges
intersect may be produced. For example, assume 3 apart-
ments, a1, a2, and a3 with uniform score intervals [0, 100],
[40, 60], and [30, 70], respectively. The expected score of each
apartment is 50, and hence all apartment permutations are
equally likely rankings. However, based on how the score
intervals intersect, we show in Section IV that we can compute
the probabilities of different rankings of these apartments
as follows: Pr(〈a1, a2, a3〉) = 0.25, Pr(〈a1, a3, a2〉) =
0.2, Pr(〈a2, a1, a3〉) = 0.05, Pr(〈a2, a3, a1〉) = 0.2,
Pr(〈a3, a1, a2〉) = 0.05, and Pr(〈a3, a2, a1〉) = 0.25. That
is, the rankings have a non-uniform distribution even though
the score intervals are uniform with equal expectations. Similar
examples exist with non-uniform/skewed data.

Another possible ranking query on partial orders is finding
the skyline (i.e., the non-dominated objects [8]). An object
is non-dominated if, in the partial order diagram, the object’s
node has no incoming edges. In Example 1, the skyline objects

1Imputation methods [6], [7] can give better guesses for missing values.
However, imputation is not the main focus of this paper.

are {a1, a4}. The number of skyline objects can vary from
a small number (e.g., Example 1) to the whole database.
Furthermore, skyline objects may not be equally good and,
similarly, dominated objects may not be equally bad. A user
may want to compare objects’ relative orders in different
data exploration scenarios. Current proposals [9], [10] have
demonstrated that there is no unique way to distinguish or
rank the skyline objects.

A different approach to rank the objects involved in a
partial order is inspecting the space of possible rankings that
conform to the relative order of objects. These rankings (or
permutations) are called the linear extensions of the partial
order. Figure 2(c) shows all linear extensions of the partial
order in Figure 2(b). Inspecting the space of linear extensions
allows ranking the objects in a way consistent with the partial
order. For example, a1 may be preferred to a4 since a1
has rank 1 in 8 out of 10 linear extensions, even though
both a1 and a4 are skyline objects. A crucial challenge for
such approach is that the space of linear extensions grows
exponentially in the number of objects [11].

Furthermore, in many scenarios, uncertainty is quantified
probabilistically. For example, a moving object’s location can
be described using a probability distribution defined on some
region based on location history [12]. Similarly, a missing
attribute can be filled in with a probability distribution of
multiple imputations, using machine learning methods [6],
[7]. Augmenting uncertain scores with such probabilistic
quantifications generates a (possibly non-uniform) probability
distribution of linear extensions that cannot be captured using
a standard partial order or dominance relationship.

In this paper, we address the challenges associated with
dealing with uncertain scores and incorporating probabilistic
score quantifications in both the semantics and processing of
ranking queries. We summarize such challenges as follows:

• Ranking Model: The conventional total order model
cannot capture score uncertainty. While partial orders
can represent incomparable objects, incorporating prob-
abilistic score information in such model requires new
probabilistic modeling of partial orders.

• Query Semantics: Conventional ranking semantics as-
sume that each record has a single score and a distinct
rank (by resolving ties using a deterministic tie breaker).
Query semantics allowing a score range, and hence
different possible ranks per record needs to be adopted.

• Query Processing: Adopting a probabilistic partial order
model yields a probability distribution over a huge space
of possible rankings that is exponential in the database
size. Hence, we need efficient algorithms to process such
space in order to compute query answers.

B. Contributions

We present an integrated solution to compute ranking
queries of different semantics under a general score uncertainty
model. We tackle the problem through the following key
contributions:
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tID Score Interval Score Density
t1 [ 6 , 6 ] f1 = 1
t2 [ 4 , 8 ] f2 = 1/4
t3 [ 3 , 5 ] f3 = 1/2
t4 [ 2 , 3.5 ] f4 = 2/3
t5 [ 7 , 7 ] f5 = 1
t6 [ 1 , 1 ] f6 = 1

Fig. 3. Modeling Score Uncertainty

• We introduce a novel probabilistic ranking model based
on partial orders (Section II-A).

• We formulate the problem of ranking with score un-
certainty by introducing multiple different semantics of
ranking queries under our model (Section II-B).

• We introduce a space pruning algorithm to cut down
the answer space allowing efficient query evaluation
(Sections VI-A).

• We introduce a set of efficient query evaluation tech-
niques. We show that exact query evaluation is expen-
sive for some of our proposed queries (Section VI-C).
We thus design novel sampling techniques based on a
Markov Chain Monte-Carlo (MCMC) method to compute
approximate answers (Section VI-D).

• We study the novel problem of optimal rank aggregation
in partial orders. We give a polynomial time algorithm to
solve the problem (Section VI-E).

• We conduct an extensive experimental study using real
and synthetic data to examine the robustness and effi-
ciency of our techniques in various settings (Section VII).

II. DATA MODEL AND PROBLEM DEFINITION

In this section, we describe the data model we adopt in
this paper (Section II-A), followed by our problem definition
(Section II-B).

A. Data Model

We adopt a general representation of uncertain scores, where
the score of record ti is modeled as a probability density
function fi defined on a score interval [loi, upi]. The density
fi can be obtained directly from uncertain attributes (e.g., a
uniform distribution on possible apartment’s rent values as in
Figure 1). Alternatively, the score density can be computed
from the predictions of missing/incomplete attribute values
that affect records’ scores [6], or constructed from histories
and value correlations as in sensor readings [13]. A deter-
ministic (certain) score is modeled as an interval with equal
bounds, and a probability of 1. For two records ti and tj
with deterministic equal scores (i.e., loi = upi = loj = upj),
we assume a tie-breaker τ(ti, tj) that gives a deterministic
records’ relative order. The tie-breaker τ is transitive over
records with identical deterministic scores.

Figure 3 shows a set of records with uniform score densities,
where fi = 1/(upi − loi) (e.g., f2 = 1/4). For records with
deterministic scores (e.g., t1), the density fi = 1.

Our interval-based score representation induces a partial
order over database records, which extends the following
definition of strict partial orders:

Definition 1: Strict Partial Order. A strict partial order P
is a 2-tuple (R,O), where R is a finite set of elements, and
O ⊂ R×R is a binary relation with the following properties:
(1) Non-reflexivity: ∀i ∈ R : (i, i) /∈ O.
(2) Asymmetry: If (i, j) ∈ O, then (j, i) /∈ O.
(3) Transitivity: If {(i, j), (j, k)} ⊂O , then (j, k) ∈ O. !

Strict partial orders allow the relative order of some el-
ements to be left undefined. A widely-used depiction of
partial orders is Hasse diagram (e.g., Figure 2(b)), which is a
directed acyclic graph whose nodes are the elements of R, and
edges are the binary relationships in O, except the transitive
relationships (relationships derived by transitivity). An edge
(i, j) indicates that i is ranked higher than j according to
P. The linear extensions of a partial order are all possible
topological sorts of the partial order graph (i.e., the relative
order of any two elements in any linear extension does not
violate the set of binary relationships O).

Typically, a strict partial order P induces a uniform dis-
tribution over its linear extensions. For example, for P =
({a, b, c}, {(a, b)}), the 3 possible linear extensions 〈a, b, c〉,
〈a, c, b〉, and 〈c, a, b〉 are equally likely.

We extend strict partial orders to encode score uncertainty
based on the following definitions.

Definition 2: Record Dominance. A record ti dominates
another record tj iff loi ≥ upj . !

The deterministic tie-breaker τ eliminates cycles when ap-
plying Definition 2 to records with deterministic equal scores.

Based on Definitions 2, Record Dominance is a non-
reflexive, asymmetric, and transitive relation.

We assume the independence of score densities of individual
records. Hence, the probability that record ti is ranked higher
than record tj , denoted Pr(ti > tj), is given by the following
2-dimensional integral:

Pr(ti > tj) =
∫ upi

loi

∫ x

loj

fi(x) · fj(y)dy dx (1)

When neither ti nor tj dominates the other record, [loi, upi]
and [loj , upj ] are intersecting intervals, and so Pr(ti > tj)
belongs to the open interval (0, 1), where Pr(tj > ti) = 1 −
Pr(ti > tj). On the other hand, if ti dominates tj , then we
have Pr(ti > tj) = 1 and P(tj > ti) = 0.

We say that a record pair (ti, tj) belongs to a probabilistic
dominance relation iff Pr(ti > tj) ∈ (0, 1).

We next give the formal definition of our ranking model:

Definition 3: Probabilistic Partial Order (PPO). Let R =
{t1, . . . , tn} be a set of real intervals, where each interval
ti = [loi, upi] is associated with a density function fi such that∫ upi

loi
fi(x)dx = 1. The set R induces a probabilistic partial

order PPO(R,O,P), where (R,O) is a strict partial order
with (ti, tj) ∈ O iff ti dominates tj , and P is the probabilistic
dominance relation of intervals in R. !
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Definition 3 states that if ti dominates tj , then (ti, tj) ∈ O.
That is, we can deterministically rank ti on top of tj . On the
other hand, if neither ti nor tj dominates the other record,
then (ti, tj) ∈ P . That is, the uncertainty in the relative order
of ti and tj is quantified by Pr(ti > tj).

Figure 4 shows the Hasse diagram and the probabilistic
dominance relation of the PPO of records in Figure 3. We
also show the set of linear extensions of the PPO.

The linear extensions of PPO(R,O,P) can be viewed
as tree where each root-to-leaf path is one linear extension.
The root node is a dummy node since there can be multiple
elements in R that may be ranked first. Each occurrence of
an element t ∈ R in the tree represents a possible ranking of
t, and each level i in the tree contains all elements that occur
at rank i in any linear extension. We explain how to construct
the linear extensions tree in Section V.

Due to probabilistic dominance, the space of possible linear
extensions is a probability space generated by a probabilis-
tic process that draws, for each record ti, a random score
si ∈ [loi, upi] based on the density fi. Ranking the drawn
scores gives a total order on the database records, where the
probability of such order is the joint probability of the drawn
scores. For example, we show in Figure 4, the probability
value associated with each linear extension. We show how to
compute these probabilities in Section IV.

B. Problem Definition

Based on the data model in Section II-A, we consider three
classes of ranking queries:
(1) RECORD-RANK QUERIES: queries that produce records
that appear in a given range of ranks, defined as follows:

Definition 4: Uncertain Top Rank (UTop-Rank). A
UTop-Rank(i, j) query reports the most probable record to
appear at any rank i . . . j (i.e., from i to j inclusive) in
possible linear extensions. That is, for a linear extensions
space Ω of a PPO, UTop-Rank(i, j) query, for i ≤ j, reports
argmaxt(

∑
ω∈Ω(t,i,j)

Pr(ω)), where Ω(t,i,j) ⊆ Ω is the set of
linear extensions with the record t at any rank i . . . j. !

For example, in Figure 4, a UTop-Rank(1, 2) query reports
t5 with probability Pr(ω1) + · · · + Pr(ω7) = 1.0, since t5
appears at all linear extensions at either rank 1 or rank 2.
(2) TOP-k-QUERIES: queries that produce a set of top-ranked
records. We give two different semantics for TOP-k-QUERIES:

Definition 5: Uncertain Top Prefix (UTop-Prefix). A
UTop-Prefix(k) query reports the most probable linear ex-
tension prefix of k records. That is, for a linear exten-
sions space Ω of a PPO, UTop-Prefix(k) query reports
argmaxp(

∑
ω∈Ω(p,k)

Pr(ω)), where Ω(p,k) ⊆ Ω is the set of
linear extensions sharing the same k-length prefix p. !

For example, in Figure 4, a UTop-Prefix(3) query reports
〈t5, t1, t2〉 with probability Pr(ω1) + Pr(ω2) = 0.438.

Definition 6: Uncertain Top Set (UTop-Set). A UTop-
Set(k) query reports the most probable set of top-k records of
linear extensions. That is, for a linear extensions space Ω of a
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Fig. 4. Probabilistic Partial Order and Linear Extensions

PPO, UTop-Set(k) query reports argmaxs(
∑

ω∈Ω(s,k)
Pr(ω)),

where Ω(s,k) ⊆ Ω is the set of linear extensions sharing the
same set of top-k records s. !

For example, in Figure 4, UTop-Set(3) query reports the
set {t1, t2, t5} with probability Pr(ω1) + Pr(ω2) + Pr(ω4) +
Pr(ω5) + Pr(ω6) + Pr(ω7) = 0.937

Note that {t1, t2, t5} appears as Prefix 〈t5, t1, t2〉 in ω1 and
ω2, appears as Prefix 〈t5, t2, t1〉 in ω4 and ω5, and appears
as Prefix 〈t2, t5, t1〉 in ω6 and ω7. However, unlike the UTop-
Prefix query, the UTop-Set query ignores the order of records
within the query answer. This allows finding query answers
with a relaxed within-answer ranking.

The above query definitions can be extended to rank differ-
ent answers on probability. We define the answer of l-UTop-
Rank(i, j) query as the l most probable records to appear at
a rank i . . . j, the answer of l-UTop-Prefix(k) query as the l
most probable linear extension prefixes of length k, and the
answer of l-UTop-Set(k) query as the l most probable top-
k sets. We assume a tie-breaker that deterministically orders
answers with equal probabilities.
(3) RANK-AGGREGATION-QUERIES: queries that produce a
ranking with the minimum average distance to all linear
extensions, formally defined as follows:

Definition 7: Rank Aggregation Query (Rank-Agg). For
a linear extensions space Ω, a Rank-Agg query reports a
ranking ω∗ that minimizes 1

|Ω|
∑

ω∈Ω d(ω∗, ω), where d(.) is
a measure of the distance between two rankings. !

We give examples for Rank-Agg query in Section VI-E.
We also show that this query can be mapped to a UTop-
Rank query.

The answer space of the above queries is a projection on the
linear extensions space. That is, the probability of an answer
is the summation of the probabilities of linear extensions
that support that answer. These semantics are analogous to
possible worlds semantics in probabilistic databases [14], [3],
where a database is viewed as a set of possible instances, and
the probability of a query answer is the summation of the
probabilities of database instances containing this answer.

UTop-Set and UTop-Prefix query answers are related. The
top-k set probability of a set s is the summation of the top-k
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prefix probabilities of all prefixes p that consist of the same
records of s. Similarly, the top-rank(1, k) probability of a
record t is the summation of the top-rank(i, i) probabilities
of t for i = 1 . . . k.

Similar query definitions are used in [15], [16], [17], under
the membership uncertainty model where records belong to
database with possibly less than absolute confidence, and
scores are single values. However, our score uncertainty model
(Section II-A) is fundamentally different, which entails differ-
ent query processing techniques. Furthermore, to the best of
our knowledge, the UTop-Set query has not been proposed
before.
Applications. Example applications of our query types include
the following:

• A UTop-Rank(i, j) query can be used to find the most
probable athlete to end up in a range of ranks in some
competition given a partial order of competitors.

• A UTop-Rank(1, k) query can be used to find the most-
likely location to be in the top-k hottest locations based
on uncertain sensor readings represented as intervals.

• A UTop-Prefix query can be used in market analysis
to find the most-likely product ranking based on fuzzy
evaluations in users’ reviews. Similarly, a UTop-Set query
can be used to find a set of products that are most-likely
to be ranked higher than all other products.

Naı̈ve computation of the above queries requires material-
izing and aggregating the space of linear extensions, which is
very expensive. We analyze the cost of such naı̈ve aggregation
in Section V. Our goal is to design efficient algorithms that
overcome such prohibitive computational barrier.

III. BACKGROUND

In this section, we give necessary background material
on Monte-Carlo integration, which is used to construct our
probability space, and Markov chains, which are used in our
sampling-based techniques.
• Monte-Carlo Integration. Monte-Carlo integration [18]
computes accurate estimate of the integral

∫
Γ́ f(x)dx, where

Γ́ is an arbitrary volume, by sampling from another volume
Γ ⊇ Γ́ in which uniform sampling and volume computation
are easy. The volume Γ́ is estimated as the proportion of
samples from Γ that are inside Γ́ multiplied by the volume
of Γ. The average f(x) over such samples is used to compute
the integral. Specifically, let v be the volume of Γ, s be the
total number of samples, and x1 . . . xm be the samples that
are inside Γ́. Then,

∫

Γ́
f(x)dx ≈ m

s
· v · 1

m

m∑

i=1

f(xi) (2)

The expected value of the above approximation is the true
integral value with an O( 1√

s
) approximation error.

• Markov Chains. We give a brief description for the theory
of Markov chains. We refer the reader to [19] for more detailed
coverage of the subject. Let X be a random variable, where
Xt denotes the value of X at time t. Let S = {s1, . . . , sn} be

the set of possible X values, denoted the state space of X .
We say that X follows a Markov process if X moves from
the current state to a next state based only on its current state.
That is, Pr(Xt+1 = si|X0 = sm, . . . , Xt = sj) = Pr(Xt+1 =
si|Xt = sj). A Markov chain is a state sequence generated by
a Markov process. The transition probability between a pair
of states si and sj , denoted Pr(si → sj), is the probability
that the process at state si moves to state sj in one step.

A Markov chain may reach a stationary distribution π
over its state space, where the probability of being at a
particular state is independent from the initial state of the
chain. The conditions of reaching a stationary distribution
are irreducibility (i.e., any state is reachable from any other
state), and aperiodicity (i.e., the chain does not cycle between
states in a deterministic number of steps). A unique stationary
distribution is reachable if the following balance equation
holds for every pair of states si and sj :

Pr(si → sj)π(si) = Pr(sj → si)π(sj) (3)

• Markov Chain Monte-Carlo (MCMC) Method. The
concepts of Monte-Carlo method and Markov chains are
combined in the MCMC method [19] to simulate a complex
distribution using a Markovian sampling process, where each
sample depends only on the previous sample.

A standard MCMC algorithm is the Metropolis-Hastings
(M-H) sampling algorithm [20]. Suppose that we are interested
in drawing samples from a target distribution π(x). The (M-H)
algorithm generates a sequence of random draws of samples
that follow π(x) as follows:

1) Start from an initial sample x0.
2) Generate a candidate sample x1 from an arbitrary

proposal distribution q(x1|x0).
3) Accept the new sample x1 with probability

α = min(π(x1).q(x0|x1)
π(x0).q(x1|x0)

, 1).
4) If x1 is accepted, then set x0 = x1.
5) Repeat from step (2).
The (M-H) algorithm draws samples biased by their prob-

abilities. At each step, a candidate sample x1 is generated
given the current sample x0. The ratio α compares π(x1) and
π(x0) to decide on accepting x1. The (M-H) algorithm satisfies
the balance condition (Equation 3) with arbitrary proposal
distributions [20]. Hence, the algorithm converges to the target
distribution π. The number of times a sample is visited is
proportional to its probability, and hence the relative frequency
of visiting a sample x is an estimate of π(x). The (M-H)
algorithm is typically used to compute distribution summaries
or estimate a function of interest on π.

IV. PROBABILITY SPACE

In this section, we formulate and compute the probabilities
of the linear extensions of a PPO.

The probability of a linear extension is computed as a nested
integral over records’ score densities in the order given by the
linear extension. Let ω = 〈t1, t2, . . . tn〉 be a linear extension.
Then, Pr(ω) = Pr((t1 > t2), (t2 > t3), . . . , (tn−1 > tn)).
The individual events (ti > tj) in the previous formulation
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are not independent, since any two consecutive events share a
record. Hence, For ω = 〈t1, t2, . . . tn〉, Pr(ω) is given by the
following n-dimensional integral with dependent limits:

Pr(ω) =
∫ up1

lo1

∫ x1

lo2

...

∫ xn−1

lon

f1(x1)...fn(xn)dxn... dx1

(4)
Monte-Carlo integration (Section III) can be used to com-

pute complex nested integrals such as Equation 4. For ex-
ample, the probabilities of linear extensions ω1, . . . , ω7 in
Figure 4 are computed using Monte-Carlo integration.

In the next theorem, we prove that the space of linear
extensions of a PPO induces a probability distribution.

Theorem 1: Let Ω be the set of linear extensions of
PPO(R,O,P). Then, (1) Ω is equivalent to the set of all
possible rankings of R, and (2) Equation 4 defines a proba-
bility distribution on Ω. !

Proof: We prove (1) by contradiction. Assume that ω ∈
Ω is an invalid ranking of R. That is, there exist at least
two records ti and tj whose relative order in ω is ti > tj ,
while loj ≥ upi. However, this contradicts the definition of
O in PPO(R,O,P). Similarly, we can prove that any valid
ranking of R corresponds to only one linear extension in Ω.

We prove (2) as follows. First, map each linear extension
ω = 〈t1, . . . , tn〉 to its corresponding event e = ((t1 > t2) ∧
· · ·∧(tn−1 > tn)). Equation 4 computes Pr(e) or equivalently
Pr(ω). Second, let ω1 and ω2 be two linear extensions in Ω
whose events are e1 and e2, respectively. By definition, ω1 and
ω2 must be different in the relative order of at least one pair
of records. It follows that Pr(e1∧e2) = 0 (i.e., any two linear
extensions map to mutually exclusive events). Third, since Ω
is equivalent to all possible rankings of R (as proved in (1)),
the events corresponding to elements of Ω must completely
cover a probability space of 1 (i.e., Pr(e1 ∨ e2 · · · ∨ em) =
1, where m = |Ω|). Since all ei’s are mutually exclusive, it
follows that Pr(e1 ∨ e2 · · · ∨ em) = Pr(e1) + · · ·+ Pr(em) =∑

ω∈Ω Pr(ω) = 1, and hence Equation 4 defines a probability
distribution on Ω.

V. A BASELINE EXACT ALGORITHM

We describe a baseline algorithm that computes the queries
in Section II-B by materializing the space. Algorithm 1 gives
a simple recursive technique to build the linear extensions
tree (Section II-A). The first call to Procedure BUILD TREE
is passed the parameters PPO(R,O,P), and a dummy root
node. A record t ∈ R is a source if no other record t́ ∈ R
dominates t. The children of the tree root will be the initial
sources in R, so we can add a source t as a child of the root,
remove it from PPO(R,O,P), and then recurse by finding
new sources in PPO(R,O,P) after removing t.

The space of all linear extensions of PPO(R,O,P) grows
exponentially in |R|. As a simple example, suppose that R
contains m elements, none of which is dominated by any
other element. A counting argument shows that there are
Σm

i=1
m!

(m−i)! nodes in the linear extensions tree.

Algorithm 1 Build Linear Extension Tree

BUILD TREE (PPO(R,O,P) : PPO, n : Tree node)

1 for each source t ∈ R
2 do
3 child ← create a tree node for t
4 Add child to n’s children
5 ´PPO ← PPO(R,O,P) after removing t
6 BUILD TREE( ´PPO, child)

t5

t1 t2

t2 t3 t1

t2

t5

t1
0.438 0.063 0.25 0.25
w1 w2 w3 w4 w5 w6 w7, , ,

Fig. 5. Prefixes of Linear Extensions at Depth 3

When we are only interested in records occupying the top
ranks, we can terminate the recursive construction algorithm at
level k, which means that our space is reduced from complete
linear extensions to linear extensions’ prefixes of length k.
Under our probability space, the probability of each prefix
is the summation of the probabilities of linear extensions
sharing that prefix. We can compute prefix probabilities more
efficiently as follows. Let ω(k) = 〈t1, t2, . . . , tk〉 be a linear
extension prefix of length k. Let T (ω(k)) be the set of records
not included in ω(k). Let Pr(tk > T (ω(k))) be the probability
that tk is ranked higher than all records in T (ω(k)). Let
Fi(x) =

∫ x
loi

fi(y)dy be the cumulative density function
(CDF) of fi. Hence, Pr(ω(k)) = Pr((t1 > t2), . . . , (tk−1 >
tk), (tk > T (ω(k)))), where

Pr(tk > T (ω(k))) =
∫ upk

lok

fk(x) · (
∏

ti∈T (ω(k))

Fi(x))dx (5)

Hence, we have

Pr(ω(k)) =
∫ up1

lo1

∫ x1

lo2

...

∫ xk−1

lok

f1(x1)...fk(xk)·(
∏

ti∈T (ω(k))

Fi(xk)) dxk . . . dx1

(6)
Figure 5 shows the prefixes of length 3 and their probabil-

ities for the linear extensions tree in Figure 4. We annotate
the leaves with the linear extensions that share each prefix.
Unfortunately, prefix enumeration is still infeasible for all but
the smallest sets of elements, and, in addition, finding the
probabilities of nodes in the prefix tree requires computing
an l dimensional integral, where l is the node’s level.
• Query Evaluation. The algorithm computes UTop-
Prefix query by scanning the nodes in the prefix tree in depth-
first search order, computing integrals only for the nodes at
depth k (Equation 6), and reporting the prefixes with the
highest probabilities. We can use these probabilities to answer
UTop-Rank query for ranks 1 . . . k, since the probability of
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a node t at level l < k can be found by summing the
probabilities of its children. Once the nodes in the tree have
been labeled with their probabilities, the answer of UTop-
Rank(i, j), ∀i, j ∈ [1, k] and i ≤ j, can be constructed by
summing up the probabilities of all occurrences of a record t
at levels i . . . j. This is easily done in time linear to the number
of tree nodes using a breadth-first traversal of the tree. Here,
we compute m!

(m−k)! k-dimensional integrals to answer both
queries. However, the algorithm still grows exponentially in m.
Answering UTop-Set query can be done using the relationship
among query answers discussed in Section II-B.

VI. QUERY EVALUATION

The BASELINE algorithm described in Section V exposes
two fundamental challenges for efficient query evaluation:

1) Database size: The naı̈ve algorithm is exponential in
database size. How to make use of special indexes and
other data structures to access a small proportion of
database records while computing query answers?

2) Query evaluation cost: Computing probabilities by naı̈ve
simple aggregation is prohibitive. How to exploit query
semantics for faster computation?

In Section VI-A, we answer the first question by using
indexes to prune records that do not contribute to query an-
swers, while in Sections VI-C and VI-D, we answer the second
question by exploiting query semantics for faster computation.

A. k-Dominance: Shrinking the Database
Given a database D conforming to our data model, we call

a record t ∈ D “k-dominated” if at least k other records in
D dominate t. For example in Figure 4, the records t4 and t6
are 3-dominated. Our main insight to shrink the database D
used in query evaluation is based on Lemma 1.

Lemma 1: Any k-dominated record in D can be ignored
while computing UTop-Rank(i, k) and TOP-k queries. !

Lemma 1 follows from the fact that k-dominated records
do not occupy ranks ≤ k in any linear extension, and so they
do not affect the probability of any k-length prefix. Hence,
k-dominated records can be safely pruned from D.

In the following, we describe a simple and efficient tech-
nique to shrink the database D by removing all k-dominated
records. Our technique assumes a list U ordering records in D
in descending score upper-bound (upi) order, and that t(k), the
record with the kth largest score lower-bound (loi), is known
(e.g., by using an index maintained over score lower-bounds).
Ties among records are resolved using our deterministic tie
breaker τ (Section II-A).

Algorithm 2 gives the details of our technique. The central
idea is to conduct a binary search on U to find the record
t∗, such that t∗ is dominated by t(k), and t∗ is located at
the highest possible position in U . Based on Lemma 1, t∗ is
k-dominated. Moreover, let pos∗ be the position of t∗ in U ,
then all records located at positions ≥ pos∗ in U are also
k-dominated.
Complexity Analysis. Since Algorithm 2 conducts a binary
search on U , its worst case complexity is in O(log(m)), where

Algorithm 2 Remove k-Dominated Records

SHRINK DB (D: database, k: dominance level, U : score upper-
bound list)
1 start ← 1; end ← |D|
2 pos∗ ← |D| + 1

3 t(k) ← the record with the kth largest loi

4 while (start ≤ end) {binary search}
5 do
6 mid ← start+end

2

7 ti ← record at position mid in U

8 if (t(k) dominates ti)
9 then

10 pos∗ ← mid

11 end ← mid − 1

12 else {t(k) does not dominate records above ti}
13 start ← mid + 1

14 return D\ {t: t is located at position ≥ pos∗ in U }

m = |D|. The list U and the record t(k) can be pre-computed
for heavily-used scoring functions with typical values of k
(e.g., sensor reading in a sensor database, or the rent attribute
in an apartment database). Otherwise, U is constructed by
sorting D on upi in O(m log(m)), while t(k) is found in
O(m log(k)) by scanning D while maintaining a k-length
priority queue for the top-k records with respect to loi’s. The
overall complexity in this case is O(m log(m)), which is the
same complexity of sorting D.

In the remainder of this paper, we use D́ to refer to the
database D after removing all k-dominated records.

B. Overview of Query Processing
There are two main factors impacting query evaluation cost:

the size of answer space, and the cost of answer computation.
The size of the answer space of RECORD-RANK QUERIES

is bounded by |D́| (the number of records in D́), while for
UTop-Set and UTop-Prefix queries, it is exponential in |D́|
(the number of record subsets of size k in D́). Hence, mate-
rializing the answer space for UTop-Rank queries is feasible,
while materializing the answer space of UTop-Set and UTop-
Prefix queries is very expensive (in general, it is intractable).

The computation cost of each answer can be heavily reduced
by replacing the naı̈ve probability aggregation algorithm (Sec-
tion V) with simpler Monte-Carlo integration exploiting the
query semantics to avoid enumerating the probability space.

Our goal is to design exact algorithms when the space size is
manageable (RECORD-RANK QUERIES), and approximate al-
gorithms when the space size is intractable (TOP-k-QUERIES).

In the following, let D́ = {t1, t2, . . . , tn}, where n =
|D́|. Let Γ be the n-dimensional hypercube that consists
of all possible combinations of records’ scores. That is,
Γ = ([lo1, up1] × [lo2, up2] × · · · × [lon, upn]). A vector
γ = (x1, x2, . . . , xn) of n real values, where xi ∈ [loi, upi],
represents one point in Γ. Let ΠD́(γ) =

∏n
i=1 fi(xi), where

fi is the score density of record ti.
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C. Computing RECORD-RANK QUERIES

We start by defining records’ rank intervals.
Definition 8: Rank Interval. The rank interval of a record

t ∈ D́ is the range of all possible ranks of t in the linear
extensions of the PPO induced by D́. !

For a record t ∈ D́, let D́(t) ⊆ D́ and D́(t) ⊆ D́ be the
record subsets dominating t and dominated by t, respectively.
Then, based on the semantics of partial orders, the rank
interval of t is given by [|D́(t)| + 1, n − |D́(t)|].

For example, in Figure 4, for D́ = {t1, t2, t3, t5}, we have
D́(t5) = φ, and D́(t5) = {t1, t3}, and thus the rank interval
of t5 is [1, 2].

The shrinking algorithm in Section VI-A does not affect
record ranks smaller than k, since any k-dominated record
appears only at ranks > k.

Hence, given a range of ranks i . . . j, we know that a record
t has non-zero probability to be in the answer of UTop-
Rank(i, j) query only if its rank interval intersects [i, j].

We compute UTop-Rank(i, j) query using Monte-Carlo inte-
gration. The main insight is transforming the complex space of
linear extensions, that have to be aggregated to compute query
answer, to the simpler space of all possible score combinations
Γ. Such space can be sampled uniformly and independently to
find the probability of query answer without enumerating the
linear extensions. The accuracy of the result depends only on
the number of drawn samples s (cf. Section III). We assume
that the number of samples is chosen such that the error
(which is in O( 1√

s
)) is tolerated. We experimentally verify in

Section VII that we obtain query answers with high accuracy
and a considerably small cost using such strategy.

For a record tk, we draw a sample γ ∈ Γ as follows:
1) generate the value xk in γ
2) generate n−1 independent values for other components

in γ one by one.
3) If at any point there are j values in γ greater than xk,

reject γ.
4) Eventually, if the rank of xk in γ is in i . . . j, accept γ.
Let λ(i,j)(tk) be the probability of tk to appear at rank

i . . . j. The above procedure is formalized by the following
integral:

λ(i,j)(tk) =
∫

Γ(i,j,tk)

ΠD́(γ) dγ (7)

where Γ(i,j,tk) ⊆ Γ is the volume defined by the points
γ = (x1, . . . , xn), with xk’s rank is in i . . . j. The integral
in Equation 7 is evaluated as discussed in Section III.
Complexity Analysis. Let s be the total number of samples
drawn from Γ to evaluate Equation 7. In order to compute the
l most probable records to appear at a rank in i . . . j, we need
to apply Equation 7 to each record in D́ whose rank interval
intersects [i, j], and use a heap of size l to maintain the l most
probable records. Hence, computing l-UTop-Rank(i, j) query
has a complexity of O(s · n(i,j) · log(l)), where n(i,j) is the
number of records in D́ whose rank intervals intersect [i, j].
In the worst case, n(i,j) = n.

D. Computing TOP-k-QUERIES

Let v be a linear extension prefix of k records, and u be a
set of k records. Let θ(v) be the top-k prefix probability of v,
and Θ(u) be the top-k set probability of u.

Similar to our discussion of UTop-Rank queries in Sec-
tion VI-C, θ(v) can be computed using Monte-Carlo integra-
tion on the volume Γ(v) ⊆ Γ which consists of the points
γ = (x1, . . . , xn) such that the values in γ that correspond to
records in v have the same ranking as the ranking of records
in v, and any other value in γ is smaller than the value
corresponding to the last record in v. On the other hand, Θ(u)
is computed by integrating on the volume Γ(u) ⊆ Γ which
consists of the points γ = (x1, . . . , xn) such that any value in
γ that does not correspond to a record in u is smaller than the
minimum value that corresponds to a record in u.

The cost of the previous integration procedure can be further
improved using the CDF product of remaining records in D́,
as described in Equation 6.

The above integrals have comparable cost to Equation 7.
However, the number of integrals we need to evaluate here
is exponential (one integral per each top-k prefix/set), while
it is linear for UTop-Rank queries (one integral per each
record). We thus design sampling techniques, based on the
(M-H) algorithm (cf. Section III), to derive approximate query
answers.
• Sampling Space. A state in our space is a linear extension
ω of the PPO induced by D́. Let π(ω) be the probability of the
top-k prefix, or the top-k set in ω, depending on whether we
simulate θ or Θ, respectively. The main intuition of our sample
generator is to propose states with high probabilities in a light-
weight fashion. This is done by shuffling the ranking of records
in ω biased by the weights of pairwise rankings (Equation 1).
This approach guarantees sampling valid linear extensions
since ranks are shuffled only when records probabilistically
dominate each other.

Given a state ωi, a candidate state ωi+1 is generated as
follows:

1) Generate a random number z ∈ [1, k].
2) For j = 1 . . . z do the following:

a) Randomly pick a rank rj in ωi. Let t(rj) be the
record at rank rj in ωi.

b) If rj ∈ [1, k], move t(rj) downward in ωi, other-
wise move t(rj) upward. This is done by swapping
t(rj) with lower records in ωi if rj ∈ [1, k], or with
upper records if rj /∈ [1, k]. Swaps are conducted
one by one, where swapping records t(rj) and
t(m) is committed with probability P(rj ,m) =
Pr(t(rj) > t(m)) if rj > m, or with probabil-
ity P(m,rj) = Pr(t(m) > t(rj)) otherwise. Record
swapping stops at the first uncommitted swap.

The (M-H) algorithm is proven to converge with arbi-
trary proposal distributions [20]. Our proposal distribution
q(ωi+1|ωi) is defined as follows. In the above sample gen-
erator, at each step j, assume that t(rj) has moved to a rank
r < rj . Let R(rj ,r) = {rj − 1, rj − 2, . . . , r}. Let Pj =
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∏
m∈R(rj,r)

P(rj ,m). Similarly, Pj can be defined for r > rj .
Then, the proposal distribution q(ωi+1|ωi) =

∏z
j=1 Pj , due to

independence of steps. Based on the (M-H) algorithm, ωi+1

is accepted with probability α = min(π(ωi+1).q(ωi|ωi+1)
π(ωi).q(ωi+1|ωi)

, 1).

• Computing Query Answers. The (M-H) sampler simulates
the top-k prefixes/sets distribution using a Markov chain (a
random walk) that visits states biased by probability. Gelman
and Rubin [21] argued that it is not generally possible to use
a single simulation to infer distribution characteristics. The
main problem is that the initial state may trap the random walk
for many iterations in some region in the target distribution.
The problem is solved by taking dispersed starting states
and running multiple iterative simulations that independently
explore the underlying distribution.

We thus run multiple independent Markov chains, where
each chain starts from an independently selected initial state,
and each chain simulates the space independently of all
other chains. The initial state of each chain is obtained by
independently selecting a random score value from each score
interval, and ranking the records based on the drawn scores,
resulting in a valid linear extension.

A crucial point is determining whether the chains have
mixed with the target distribution (i.e., whether the current
status of the simulation closely approximates the target distri-
bution). At mixing time, the Markov chains produce samples
that closely follow the target distribution and hence can be
used to infer distribution characteristics. In order to judge
chains mixing, we used the Gelman-Rubin diagnostic [21], a
widely-used statistic in evaluating the convergence of multiple
independent Markov chains [22]. The statistic is based on the
idea that if a model has converged, then the behavior of all
chains simulating the same distribution should be the same.
This is evaluated by comparing the within-chain distribution
variance to the across-chains variance. As the chains mix with
the target distribution, the value of the Gelman-Rubin statistic
approaches 1.0.

At mixing time, which is determined by the value of
convergence diagnostic, each chain approximates the distri-
bution’s mode as the most probable visited state (similar to
simulated annealing). The l most probable visited states across
all chains approximate the l-UTop-Prefix (or l-UTop-Set )
query answers. Such approximation improves as the simulation
runs for longer times. The question is, at any point during
simulation, how far is the approximation from the exact query
answer?

We derive an upper-bound on the probability of any possible
top-k prefix/set as follows. The top-k prefix probability of a
prefix 〈t(1), . . . , t(k)〉 is equal to the probability of the event
e = ((t(1) ranked 1st)∧ · · · ∧ (t(k) ranked kth)). Let λi(t) be
the probability of record t to be at rank i. Based on the prin-
ciples of probability theory, we have Pr(e) ≤ mink

i=1 λi(t(i)).
Hence, the top-k prefix probability of any k-length prefix
cannot exceed mink

i=1(maxn
j=1 λi(tj)). Similarly, Let λ1,k(t)

be the probability of record t to be at rank 1 . . . k. It can
be shown that the top-k set probability of any k-length set

cannot exceed the kth largest λ1,k(t) value. The values of
λi(t) and λ1,k(t) are computed as discussed in Section VI-C.
The approximation error is given by the difference between the
top-k prefix/set probability upper-bound and the probability of
the most probable state visited during simulation.

We note that the previous approximation error can overesti-
mate the actual error, and that chains mixing time varies based
on the fluctuations in the target distribution. However, we show
in Section VII that, in practice, using multiple chains can
closely approximate the true top-k states, and that the actual
approximation error diminishes by increasing the number of
chains. We also comment in Section VIII on the applicability
of our techniques to other error estimation methods.
• Caching. Our sample generator mainly uses 2-dimensional
integrals (Equation 1) to bias generating a sample by its prob-
ability. Such 2-dimensional integrals are shared among many
states. Similarly, since we use multiple chains to simulate the
same distribution from different starting points, some states
can be repeatedly visited by different chains. Hence, we cache
the computed Pr(ti > tj) values and state probabilities during
simulation to be reused at a small cost.

E. Computing RANK-AGGREGATION-QUERIES

Rank aggregation is the problem of computing a consensus
ranking for a set of candidates C using input rankings of C
coming from different voters. The problem has immediate
applications in Web meta-search engines [23].

While our work is mainly concerned with ranking under
possible worlds semantics (Section II-B), we note that a strong
resemblance exists between ranking in possible worlds and the
rank aggregation problem. To the best of our knowledge, we
give the first identified relation between the two problems.

Measuring the distance between two rankings of C is central
to rank aggregation. Given two rankings ωi and ωj , let ωi(c)
and ωj(c) be the positions of a candidate c ∈ C in ωi and ωj ,
respectively. A widely used measure of the distance between
two rankings is the Spearman footrule distance, defined as
follows:

F (ωi, ωj) =
∑

c∈C
|ωi(c) − ωj(c)| (8)

The optimal rank aggregation is the ranking with the mini-
mum average distance to all input rankings.

Optimal rank aggregation under footrule distance can be
computed in polynomial time by the following algorithm [23].
Given a set of rankings ω1 . . . ωm, the objective is to find
the optimal ranking ω∗ that minimizes 1

m

∑m
i=1 F (ω∗, ωi).

The problem is modeled using a weighted bipartite graph G
with two sets of nodes. The first set has a node for each
candidate, while the second set has a node for each rank.
Each candidate c and rank r are connected with an edge (c, r)
whose weight w(c, r) =

∑m
i=1 |ωi(c) − r|. Then, ω∗ is given

by “the minimum cost perfect matching” of G, where a perfect
matching is a subset of graph edges such that every node is
connected to exactly one edge, while the matching cost is the
summation of the weights of its edges. Finding such matching
can be done in O(n2.5), where n is the number of graph nodes.
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Fig. 6. Bipartite Graph Matching

In our settings, viewing each linear extension as a voter
gives us an instance of the rank aggregation problem on a
huge number of voters. The objective is to find the optimal
linear extension that has the minimum average distance to all
linear extensions. We show that we can solve this problem
in polynomial time, under footrule distance, given λi(t) (the
probability of record t to appear at each rank i, or, equivalently,
the summation of the probabilities of all linear extensions
having t at rank i).

Theorem 2: For a PPO(R,O,P) defined on n records,
the optimal rank aggregation of the linear extensions, under
footrule distance, can be solved in time polynomial in n using
the distributions λi(t) for i = 1 . . . n. !

Proof: For each linear extension ωi of PPO, assume that
we duplicate ωi a number of times proportional to Pr(ωi).
Let Ώ = {ώ1, . . . , ώm} be the set of all linear extensions’
duplicates created in this way. Then, in the bipartite graph
model, the edge connecting record t and rank r has a
weight w(t, r) =

∑|Ώ|
i=1 |ώi(t) − r|, which is the same as∑n

j=1(nj × |j − r|), where nj is the number of linear
extensions in Ώ having t at rank j. Dividing by |Ώ|, we get
w(t,r)

|Ώ| =
∑n

j=1(
nj

|Ώ| × |j − r|) =
∑n

j=1(λj(t) × |j − r|).
Hence, using λi(t)’s, we can compute w(t, r) for every edge
(t, r) divided by a fixed constant |Ώ|, and thus the polynomial
matching algorithm applies.

The intuition of Theorem 2 is that λi’s provide compact
summaries of voter’s opinions, which allows us to efficiently
compute the graph edge weights without expanding the space
of linear extensions. The distributions λi’s are obtained by
applying Equation 7 at each rank i separately, yielding a
quadratic cost in the number of records n.

Figure 6 shows an example illustrating our technique. The
probabilities of the depicted linear extensions are summarized
as λi’s without expanding the space (Section VI-C). The λi’s
are used to compute the weights in the bipartite graph yielding
〈t1, t2, t3〉 as the optimal linear extension.

VII. EXPERIMENTS

All experiments are conducted on a SunFire X4100 server
with two Dual Core 2.2GHz processors, and 2GB of RAM. We
used both real and synthetic data to evaluate our methods under
different configurations. We experiment with two real datasets:
(1) Apts: 33,000 apartment listings obtained by scrapping the
search results of apartments.com, and (2) Cars: 10,000 car
ads scrapped from carpages.ca. The rent attribute in Apts

is used as the scoring function (65% of scrapped apartment
listings have uncertain rent values), and similarly, the price
attribute in Cars is used as the scoring function (10% of
scrapped car ads have uncertain price).

The synthetic data sets have different distributions of score
intervals’ bounds: (1) Syn-u-0.5: bounds are uniformly dis-
tributed, (2) Syn-g-0.5: bounds are drawn from Gaussian
distribution, and (3) Syn-e-0.5: bounds are drawn from expo-
nential distribution. The proportion of records with uncertain
scores in each dataset is 50%, and the size of each dataset is
100,000 records. In all experiments, the score densities (fi’s)
are taken as uniform.

A. Shrinking Database by k-Dominance

We evaluate the performance of the database shrinking
algorithm (Algorithm 2). Figure 7 shows the database size
reduction due to k-dominance (Lemma 1) with different k
values. The maximum reduction, around 98%, is obtained with
the Syn-e-0.5 dataset. The reason is that the skewed distribu-
tion of score bounds results in a few records dominating the
majority of other database records.

Figure 8 shows the number of record accesses used to find
the pruning position pos∗ in the list U (Section VI-A). The
logarithmic complexity of the algorithm is demonstrated by the
small number of performed record accesses, which is under
20 accesses in all datasets. The time consumed to construct
the list U is under 1 second, while the time consumed by
Algorithm 2 is under 0.2 second, in all datasets.

B. Accuracy and Efficiency of Monte-Carlo Integration

We evaluate the accuracy and efficiency of Monte-Carlo
integration in computing UTop-Rank queries. The probabilities
computed by the BASELINE algorithm are taken as the ground
truth in accuracy evaluation. For each rank i = 1 . . . 10, we
compute the relative difference between the probability of
record t to be at rank i, computed as in Section VI-C, and the
same probability as computed by the BASELINE algorithm.
We average this relative error across all records, and then
across all ranks to get the total average error. Figure 9 shows
the relative error with different space sizes (different number
of linear extensions’ prefixes processed by BASELINE). The
different space sizes are obtained by experimenting with
different subsets from the Apts dataset. The relative error is
sensitive to the number of samples, and not to the space size.
For example, increasing the number of samples from 2,000 to
30,000 diminishes the relative error by almost half, while for
the same sample size, the relative error only doubled when the
space size increased by 100 times.

Figure 10 compares (in log-scale) the efficiency of Monte-
Carlo integration against the BASELINE algorithm. While the
time consumed by Monte-Carlo integration is fixed with the
same number of samples regardless the space size, the time
consumed by the BASELINE algorithm increases exponentially
when increasing the space size. For example, for a space of
2.5 million prefixes, Monte-Carlo integration consumes only
0.025% of the time consumed by the BASELINE algorithm.
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C. Scalability with respect to k

We evaluate the efficiency of our query evaluation for UTop-
Rank(1, k) queries with different k values. Figure 11 shows
the query evaluation time, based on 10,000 samples. On the
average, query evaluation time doubled when k increased by
20 times. Figure 12 shows the time consumed in drawing and
ranking the samples. We obtain different sampling times with
different datasets due to the variance in the reduced sizes of
the datasets based on the k-dominance criterion.

D. Markov Chains Convergence

We evaluate the Markov chains mixing time (Section VI-D).
For 10 chains and k = 10, Figure 13 illustrates the Markov
chains convergence based on the value of Gelman-Rubin
statistic as time increases. While convergence consumes less
than one minute in all real datasets, and most of the synthetic
datasets, the convergence is notably slower for the Syn-u-
0.5 dataset. The interpretation is that the uniform distribution
of the score intervals in Syn-u-0.5 increases the size of the
prefixes space, and hence the Markov chains consume more
time to cover the space and mix with the target distribution.
In real datasets, however, we note that the score intervals are
mostly clustered, since many records have similar or the same
attribute values. Hence, such delay in covering the space does
not occur.

E. Markov Chains Accuracy

We evaluate the ability of Markov chains to discover states
whose probabilities are close to the most probable states. We
compare the most probable states discovered by the Markov
chains to the true envelop of the target distribution (taken as
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the 30 most probable states). After mixing, the chains produce
representative samples from the space, and hence states with
high probabilities are frequently reached. This behavior is
illustrated by Figure 14 for UTop-Prefix(5) query on a space
of 2.5 million prefixes drawn from the Apts dataset. We
compare the probabilities of the actual 30 most probable states
and the 30 most probable states discovered by a number of
independent chains after convergence, where the number of
chains ranges from 20 to 80 chains.

The relative difference between the actual distribution en-
velop and the envelop induced by the chains decreases as the
number of chains increase. The relative difference goes from
39% with 20 chains to 7% with 80 chains. The largest number
of drawn samples is 70,000 (around 3% of the space size), and
is produced using 80 chains. The convergence time increased
from 10 seconds to 400 seconds when the number of chains
increased from 20 to 80.

VIII. RELATED WORK

Several recent works have addressed query processing in
probabilistic databases. The TRIO project [1], [2] introduced
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different models to capture data uncertainty on different levels
focusing on relating uncertainty with lineage. The ORION
project [12], handles constantly evolving data using efficient
query processing and indexing techniques designed to manage
uncertain data in the form of continuous intervals. The prob-
lems of score-based ranking and top-k processing have not
been addressed in these works.

Probabilistic top-k queries have been first proposed in [15],
while [16], [17] proposed other query semantics and efficient
processing algorithms. The uncertainty model in all of these
works assume that records have deterministic single-valued
scores, and they are associated with membership probabilities.
The proposed techniques assume that uncertainty in ranking
stems only from the existence/non-existence of records in
possible worlds. Hence, these methods cannot be used when
scores are in the form of ranges that induce a partial order on
database records.

Dealing with the linear extensions of a partial order has been
addressed in other contexts (e.g., [11], [24]). These techniques
mainly focus on the theoretical aspects of uniform sampling
from the space of linear extensions for purposes like estimating
the count of possible linear extensions. Using linear extensions
to model uncertainty in score-based ranking is not addressed
in these works. To the best of our knowledge, defining a
probability space on the set of linear extensions to quantify
the likelihood of possible rankings is novel.

Monte-Carlo methods are used in [25] to compute top-
k queries, where the objective is to find the top-k probable
records in the answer of conjunctive queries that do not have
the score-based ranking aspect discussed in this paper. Hence,
the data model, problem definition, and processing techniques
are quite different in both papers. For example, the proposed
Monte-Carlo multi-simulation method in [25] is mainly used to
estimate the satisfiability ratios of DNF formulae correspond-
ing to the membership probabilities of individual records,
while our focus is estimating and aggregating the probabilities
of individual rankings of multiple records.

The techniques in [26] draw i.i.d. samples from the un-
derlying distribution to compute statistical bounds on how
far is the sample-based top-k estimate from the true top-k
values in the distribution. This is done by fitting a gamma
distribution encoding the relationship between the distribution
tail (where the true top-k values are located), and its bulk
(where samples are frequently drawn). The gamma distribution
gives the probability that a value that is better than the sample-
based top-k values exists in the underlying distribution. In
our TOP-k-QUERIES, it is not straightforward to draw i.i.d.
samples from the top-k prefix/set distribution. Our MCMC
method produces such samples using independent Markov
chains after mixing time. This allows using methods similar
to [26] to estimate the approximation error.

IX. CONCLUSION

In this paper, we introduced a novel probabilistic model that
extends partial orders to represent the uncertainty in the scores
of database records. The model encapsulates a probability

distribution on all possible rankings of database records. We
formulated several types of ranking queries on such model.
We designed novel query processing techniques including
sampling-based methods based on Markov chains to compute
approximate query answers. We also gave a polynomial time
algorithm to solve the rank aggregation problem in partial
orders, based on our model. Our experimental study on both
real and synthetic datasets demonstrates the scalability and
accuracy of our techniques.
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