
Performing Group�By before Join

Weipeng P� Yan and Per��Ake Larson �

Department of Computer Science

University of Waterloo

Waterloo� Ontario

Canada N�L �G�

Abstract

Assume that we have an SQL query containing joins and a group�by� The
standard way of evaluating this type of query is to �rst perform all the
joins and then the group�by operation� However� it may be possible to
perform the group�by early� that is� to push the group�by operation past
one or more joins� Early grouping may reduce the query processing cost
by reducing the amount of data participating in joins� We formally de�
�ne the problem� adhering strictly to the semantics of NULL and dupli�
cate elimination in SQL�� and prove necessary and su�cient conditions
for deciding when this transformation is valid� In practice� it may be ex�
pensive or even impossible to test whether the conditions are satis�ed�
Therefore� we also present a more practical algorithm that tests a sim�
pler� su�cient condition� This algorithm is fast and detects a large sub�
class of transformable queries�

�Authors� email addresses� fpwyan�palarsong�bluebox�uwaterloo�ca

� Yan and Larson

� Introduction

SQL queries containing joins and group�by are fairly common� The standard
way of evaluating such a query is to perform all joins �rst and then the group�
by operation� However� it may be possible to interchange the evaluation or�
der� that is� to push the group�by operation past one or more joins�

Example � � Assume that we have the two tables�

Employee�EmpID� LastName� FirstName� DeptID�

Department�DeptID� Name�

EmpID is the primary key in the Employee table and DeptID is the pri�
mary key of Department� Each Employee row references the department �Dep�
tID� to which the employee belongs� Consider the following query�

SELECT D�DeptID� D�Name� COUNT�E�EmpID�

FROM Employee E� Department D

WHERE E�DeptID � D�DeptID

GROUP BY D�DeptID� D�Name

Plan 	 in Figure 	 illustrates the standard way of evaluating the query� fetch
the rows in tables E and D� perform the join� and group the result by D�DeptID
and D�Name� while at the same time counting the number of rows in each
group� Assuming that there are 	

 employees and 	

 departments� the
input to the join is 	

 Employee rows and 	

 Department rows and the
input to the group�by consists of 	

 rows� Now consider Plan � in Fig�
ure 	� We �rst group the Employee table DeptID and perform the COUNT� then
join the resulting 	

 rows to the 	

 Department rows� This reduces the join
from �	

� 	

� to �	

� 	

�� The input cardinality of the group�by re�
mains the same� resulting in an overall reduction of query processing time�
�

In the above example� it was both possible and advantageous to perform
the group�by operation before the join� However� it is also easy to �nd ex�
amples where this is �a� not possible or �b� possible but not advantageous�
This raises the following general questions�

	� Exactly under what conditions is it possible to perform a group�by op�
eration before a join�

�� Under what conditions does this transformation reduce the query pro�
cessing cost�

This paper concentrates on answering the �rst question� Our main theo�
rem provides su�cient and necessary conditions for deciding when this trans�
formation is valid� The conditions cannot always be tested e�ciently so we

Performing Group�By before Join

Join

Plan 1: Group by after join

Group By Join

100 100

COUNT

100x100

Plan 2: Group by before join

E.DeptID=D.DeptID

E.DeptID=D.DeptID

D: 10010000

E: 10000D: 100E: 10000

10000 x 100

10000
COUNT

E.DeptID,D.Name

E.DeptID

100

Group By

Figure 	� Two access plans for Example �

also propose a more practical algorithm which tests a simpler� su�cient con�
dition�

The rest of the paper is organized as follows� Section � summarizes related
research work� Section � presents the formalism that our results are based on�
Section
 de�nes the class of queries that we consider� Section ��	 presents
an SQL� algebra whose operations are de�ned strictly in terms of SQL�� Sec�
tion ��� discusses the semantics of NULLs in SQL�� Section ��
 formally de�nes
functional dependencies using strict SQL� semantics taking into account the
e�ect of NULLs� and discusses derived functional dependencies� Section � in�
troduces and proves the main theorem� which states necessary and su�cient
conditions for performing the proposed transformation� Section � proposes an
e�cient algorithm for deciding whether group�by can be pushed past a join�
Section � continues some observations about the trade�o�s of the transforma�
tion� Section � points that out that the reverse direction of the transforma�
tion is also possible and sometimes can be bene�cial� Section � concludes the
paper�

� Related Work

We have not found any papers dealing with the problem of performing group�
by before joins� However� some results have been reported on the processing
of queries with aggregation� It is widely recognized that the aggregation com�
putation can be performed while grouping�which is usually implemented by
sorting�� This can save both time and space since the amount of data to be
sorted decreases during sorting� This technique is referred to as pipelining�

Klug��� observed that in some cases� the result from a join is already
grouped correctly� Nested�loop and sort merge joins� the most widely used
join methods� both have this property� In this case� explicit grouping is not

� Yan and Larson

needed and the join can be pipelined with aggregation� Dayal�
� stated� with�
out proof� that the necessary condition for such technique is that the group�
by columns must be a primary key of the outer table in the join� This is the
only work we know of which attempts to reduce the cost of group�by by uti�
lizing information about primary keys�

Several researchers ���� �� �� 	�� 		�� have investigated when a nested query
can be transformed into a semantically equivalent query that does not con�
tain nesting� As part of this work� techniques to handle aggregate functions
in the nested query were discussed� However� none considered interchanging
the order of joins and group�by�

� Class of Queries Considered

A table can be a base table or a view in this paper� Any column occur�
ring as an operand of an aggregation function �COUNT� MIN� MAX� SUM� AVG�
in the SELECT clause is called an aggregation column� Any column occur�
ring in the SELECT clause which is not an aggregation column is called a se�
lection column� Aggregation columns may be drawn from more than one
table� Clearly� the transformation cannot be applied unless at least one ta�
ble contains no aggregation columns� Therefore� we partition the tables in
the FROM clause into two groups� those tables that contain at least one aggre�
gation column and those that do not contain any such columns� Technically�
each group can be treated as a single table consisting of the Cartesian prod�
uct of the member tables� Therefore� without loss of generality� we can as�
sume that the FROM clause contains only two tables� R� and R�� Let R� de�
note the table containing aggregation columns and R� the table not contain�
ing any such columns�

The search conditions in the WHERE clause can be expressed as C��C��C��
where C�� C�� and C� are in conjunctive normal form� C� only involves columns
in R�� C� only involves columns in R�� and each disjunctive component in C�

involves columns from both R� and R�� Note that subqueries are allowed�
The grouping columns mentioned in the GROUP BY clause may contain

columns from R� and R�� denoted by GA� and GA�� respectively� According
to SQL����� the selection columns in the SELECT clause must be a subset of
the grouping columns� We denote the selection columns as SGA� and SGA��
subsets of GA� and GA�� respectively� For the time being� we assume that the
query does not contain a HAVING clause� The columns of R� participating in
the join and grouping is denoted by GA�

� � and the columns of R� participating
in the join and grouping is denoted by GA�

� �
In summary� we consider queries of the following form�

SELECT �ALL�DISTINCT� SGA�� SGA�� F �AA�
FROM R�� R�

Performing Group�By before Join �

WHERE C� � C� � C�
GROUP BY GA�� GA�

where�

GA�� grouping columns of table R��

GA�� grouping columns of table R�� GA� and GA� cannot both be empty� If
they are	 the query does not contain a group
by clause�

SGA�� selection columns	 must be a subset of grouping columns GA��

SGA�� selection columns	 must be a subset of grouping columns GA��

AA� aggregation columns of table R��may be � or empty��

C�� conjunctive predicates on columns of table R��

C�� conjunctive predicates on columns of table R��

C�� conjunctive predicates involving columns of both tables R� and R�	 e�g�	
join predicates�

��C��� columns involved in C��

F � array of aggregation functions and�or arithmetic aggregation expressions
applied on AA �may be empty��

GA�

� � � GA� ���C���R�	 i�e�	 the columns of R� participating in the join and
grouping�

GA�

� � � GA� ���C���R�	 i�e�	 the columns of R� participating in the join and
grouping

Our objective is to determine under what conditions the query can be eval�
uated in the following way�

SELECT �ALL�DISTINCT� SGA�� SGA�� FAA

FROM R�
�� R�

�

WHERE C�
where

R�
��GA��� FAA� ��

SELECT ALL GA��� F �AA�
FROM R�

WHERE C�
GROUP BY GA��

and
R�
��GA��� ��

SELECT ALL GA��
FROM R�

WHERE C�

In SQL�� F �AA� transfers a group of rows into one single row� even when
F �AA� is empty� Therefore� through out this paper� the only assumption we
make about F �AA� is that it produces one row for each group�

� Yan and Larson

� Formalization

In this section we de�ne the formal �machinery� we need for the theorems
and proofs to follow� This consists of an algebra for representing SQL queries
and clari�cation of the e�ect of NULLs on comparisons� duplicate eliminations�
and functional dependencies when using strict SQL� semantics�

��� An Algebra for Representing SQL Queries

Specifying operations using standard SQL is tedious� As a shorthand notation�
we de�ne an algebra whose basic operations are de�ned by simple SQL state�
ments� Because all operations are de�ned in terms of SQL� there is no need
to prove the semantic equivalence between the algebra and SQL statements�
Note that transformation rules for �standard� relational algebra do not nec�
essarily apply to this new algebra� The operations are de�ned as follows�

� G�GA�R� Group tableR on grouping columnsGA � fGA�� GA�� ���� GAng�
This operation is de�ned by the query � SELECT � FROM R ORDER BY

GA� The result of this operation is a grouped table�

� R� �R�� The Cartesian product of table R� and R��

� ��C�R� Select all rows of table R that satisfy condition C� Duplicate
rows are not eliminated� This operation is de�ned by the query SELECT

� FROM R WHERE C�

� �d�B�R� where d � A orD� Project table R on columns B� without elim�
inating duplicates when d � A and with duplicate elimination when d
� D� This operation is de�ned by the query SELECT �ALL �DISTINCT�

B FROM R�

� F �AA�R� F �AA� � �f��AA�� f��AA�� ���� fn�AA��� where AA � fA��
A�� ���� Ang� and F � ff�� f�� ���� fng� AA are aggregation columns of
grouped table R and F are arithmetic expressions operating on AA� For
i � 	� �� ���� n� fi is an arithmetic expression�which can just be an aggre�
gation function� applied to some columns in AA of each group of R and
yields one value� An example of fi�AA� is COUNT�A�� � SUM�A� � A���
Duplicates in the overall result are not eliminated� This operation is
de�ned by the query SELECT GA� F�AA� FROM R GROUP BY GA� where
GA is the grouping columns of R�

�Certainly� this query does more than GROUP BY by ordering the resulting groups� How�
ever� this appears to be the only valid SQL query that can represent this operation� It is ap�
propriate for our purpose as long as we keep the di�erence in mind�

Performing Group�By before Join �

We also use �� ��� � and � to represent logical implication� logical
equivalence� logical conjunction and logical disjunction respectively� Then�
the class of SQL queries we consider can be expressed as ��

F �AA��d�SGA�� SGA�� AA�G�GA�� GA����C� � C� � C���R� �R���

Our objective is to determine under what conditions this expression is equiv�
alent to

�d�SGA�� SGA�� FAA�

��C���F �AA��A�GA��� AA�G�GA����C��R� � �A�GA�����C��R��

where FAA are the columns generated by applying the arithmetic expressions
F to columns AA�

��� The Semantics of NULL in SQL�

SQL���� 	
� �� represents missing information by a special value NULL� It adopts
a three�valued logic in evaluating a conditional expression� having three possi�
ble truth values� namely true� false and unknown� Figure � shows the truth
tables for the Boolean operations AND and OR� Testing the equality of two val�

AND true unknown false

true true unknown false

unknown unknown unknown false

false false false false

OR true unknown false

true true true true

unknown true unknown unknown

false true unknown false

Figure �� The semantics of AND and OR in SQL�

ues in a search condition returns unknown if any one of the values is NULL or
both values are NULL� A row quali�es only if the condition in the WHERE clause
evaluates to true� that is� unknown is interpreted as false�

However� the e�ect of NULLs on duplicate operations is di�erent� Dupli�
cate operations include DISTINCT� GROUP BY� UNION� EXCEPT and INTERSECT�
which all involve the detection of duplicate rows� Two rows are de�ned to
be duplicates of one another exactly when each pair of corresponding column

�In the case that there exists fi�Ai	 � COUNT��	 � F �AA	� we can replace it with
COUNT�GA
	 without changing the result of the query�

� Yan and Larson

values are duplicate� Two column values are de�ned to be duplicates exactly
when they are equal and both not NULL or when they are both NULLs� In other
words� SQL� considers �NULL equal to NULL�� when determining duplicates�

Note that we do not include the UNIQUE predicate among the duplicate
operations� SQL� uses �NULL not equal to NULL� semantics when considering
UNIQUE�

We need� some special �interpreters� capable of transferring the three�
valued result to the usual two�valued result based on SQL� semantics in or�
der to formally de�ne functional dependencies and SQL operations� We adopt
two interpretation operators bP c and dPe speci�ed in Figure
 for interpret�
ing unknown to false and true respectively� In addition� a special equal�
ity operator�

n
�� which is also speci�ed in Figure
� is proposed to re�ect the

�NULL equal to NULL� characteristics of SQL duplicate operations�

Operation Result

P is a predicate P is true P is unknown P is false
P true unknown false

bPc true false false

dPe true true false

X� Y are variables X is NULL � Y is NULL Otherwise

X
n
� Y true bX � Y c

Figure
� The de�nition of interpretation operators

��� Functional Dependencies

SQL� ��� provides facilities for de�ning �primary� keys of base tables� Note
that a key de�nition implies two constraints� �a� no two rows can have the
same key value and �b� no column of a key can be NULL� We can exploit knowl�
edge about keys to determine whether the proposed transformation is valid�

De�ning a key implies that all columns of the table are functionally de�
pendent on the key� This type of functional dependency is called a key de�
pendency� Keys can be de�ned for base tables only� For our purpose� derived
functional dependencies are of more interest� A derived table is a table de�
�ned by a query �or view�� A derived functional dependency is a functional
dependency that holds in a derived table� Similarly� a derived key dependency
is a key dependency that holds in a derived table� The following example il�
lustrates derived dependencies�

�There certainly exist other solutions to this problem� We just present the one we think
is most appropriate for our purpose�

Performing Group�By before Join �

Example � � Assume that we have the following two tables�

Part�ClassCode� PartNo� PartName� SupplierNo�

Supplier�SupplierNo� Name� Address�

where�ClassCode� PartNo� is the key of Part and SupplierNo is the key of
Supplier� Consider the derived table de�ned by

SELECT P�PartNo� P�PartName� S�SupplierNo� S�Name

FROM Part P� Supplier S

WHERE P�ClassCode � �� and P�SupplierNo � S�SupplierNo

We claim that PartNo is a key of the derived table� The reasoning goes
as follows� Clearly� PartNo is a key of the derived table T de�ned by T �
��ClassCode � ����Part�� When T is joined with Supplier� each row joins
with at most one Supplier row because SupplierNo is the key of Supplier�
�If P�SupplierNo is NULL� the row does not join with any Supplier row��
Consequently� PartNo remains a key of the joined table and also of the �nal
result table obtained after projection�

In Supplier� Name is functionally dependent on SupplierNo because
SupplierNo is a key of Supplier� It is obvious that this functional depen�
dency must still hold in the derived table� That is� a key dependency in one
of the source tables resulted in a non�key functional dependency in the de�
rived table� �

Even though SQL does not permit NULL values in any columns of a key�
columns on the right hand side of a key dependency may allow NULL values�
In a derived dependency� columns allowing NULL values may occur on both
the left and the right hand side of a functional dependency� The essence of
the problem is how to de�ne the result of the comparison NULL � NULL�

Consider a row t � r� where r is an instance of a table R� Assuming that
a is an column of R� we denote the value of a in t as t�a��
De�nition ���Row Equivalence�� Consider a table scheme R����� A� ����� where
A is a set of columns fa�� a�� ���� ang� and an instance r of R� Two rows t� t� �
r are equivalent with respect to A if�

�

i�������n

�t�ai�
n
� t��ai���

which we also write as t�A�
n
� t��A��

De�nition �� �Functional Dependency� Consider a table R�A�B� ����� where
A � fA�� A�� ���� Ang is a set of columns and B is a single column� Let r be
an instance of R� A functionally determines B� denoted by A �	 B� in r if
the following condition holds�

t� t� � r� f�t�A�
n
� t��A��� �t�B�

n
� t��B��g�

	
 Yan and Larson

Let Key�R� denote a candidate key of table R� We can now formally spec�
ify a key dependency as

r�R��
t� t� � r� ft�Key�R��
n
� t��Key�R��� t���R��

n
� t����R��g�

Note that� since NULL is allowed for a candidate key� we need to consider the
�NULL equals to NULL� condition in the statement�

The basic data type in SQL is a table� not relation� A table may contain
duplicate rows and is therefore a multiset� In this paper� we use the term
�set� to refer to �multiset�� In order to distinguish the duplicates in a table in
our analysis� we assume that there always exists a column in each table called
�RowID�� which can uniquely identify a row� It is not important whether this
column is actually implemented by the underlining database system� We use
RowID�R� to denote the RowID column of a table R�

We use the notation E�r�� r�� to denote the result generated by an SQL

expression E evaluating on instances r� and r� of tables R� and R�� respec�
tively� We summarize all symbols de�ned in Section ��� and this section in
Figure �� The symbol ��� is also de�ned as the concatenation operator�

Symbol De�nitions

r�� r� Instances of table R� and R�

A �B the concatenation of two rows A and B into one row

g �B the concatenation of a grouped table g and a row B into one
new grouped table� Each row in the new grouped table is the
result of a row in g concatenates with B�

T �S� shorthand for �A�S�T � where S is a set of columns and T is a
grouped or ungrouped table� or a row�

E�r�� r�� the result from applying E on instances r� and r��

RowID�R� the RowID of table R

Figure �� Summary of symbols

� Theorems and Proofs

Theorem � �Main Theorem�� The expressions

E� � F �AA��A�GA�� GA�� AA�G�GA�� GA����C� � C� � C���R� �R��

and

E� � �A�GA�� GA�� FAA�

��C���F �AA��A�GA��� AA�G�GA�����C��R� � �A�GA�����C��R��

Performing Group�By before Join 		

are equivalent if and only if the following two functional dependencies hold
in the join of R� and R�� ��C� � C� � C���R� �R���

FD� � �GA�� GA�� �	 GA��

FD� � �GA��� GA�� �	 RowID�R���

FD� means that for all valid instances r� and r� of R� and R�� respec�
tively� if two di�erent rows in ��C� � C� � C���r�� r�� have the same value
for columns �GA��� GA��� then the two rows must be produced from the join
of one row in ��C��r� and two rows �could be duplicates� in ��C��r��

Note that R� does not necessarily have to include a column RowID� The
notation ��GA��� GA�� �	 RowID�R�� in the join of R� and R�� is simply a
shorthand for the requirement that �GA��� GA�� uniquely identi�es a row of
R� in the join of R� and R��

The intuitive meaning of FD� and FD� is as follows� FD� ensures that
each group in G�GA�� GA����C��C��C���R��R�� �grouped by GA�� GA� on
the join result of R� and R�� using E� for the query� corresponds to exactly
one group in G�GA�����C��R� �grouped by GA�� on the selection result of
R�� using E� for the query�� Exact correspondence means that there is an
one to one matching between rows in the two groups� with matching rows
having the same value for the columns of R�� This condition guarantees that
these two groups� based on E� and E� respectively for the query� produce the
same aggregation value� Note that the aggregation functions and arithmetic
expressions only operate on columns of R��

FD� ensures that each row in F �AA��A�GA��� AA�G�GA�����C��R� �group�
ing and aggregating on R�� using E� for the query� contributes at most one
row in the overall result of E� by joining with at most one row from ��C��R��
In other words� FD� prevents such a row from contributing two or more rows
in the overall result of E�� The rationale of FD� is that if such a row does
contribute two or more rows in the overall result of E�� then� since �a� the
rows corresponding to these rows before the aggregation will belong to the
same group in G�GA�� GA����C� � C� � C���R� � R�� �grouped by GA�� GA�

on the join result of R� and R�� using E� for the query�� and �b� each group
in G�GA�� GA����C� � C� � C���R� � R�� yields one row in the overall result
of E�� therefore� E� contains one row correspodning to more than one rows in
E�� and consequently the transformation cannot be valid�

Lemma � � The expression

E�

� � �A�GA�� GA�� FAA�

��C���F �AA��A�GA��� AA�G�GA�����C��R� � ��C��R��

is equivalent to E��

	� Yan and Larson

The di�erence between E� and E
�

� is that E
�

� does not remove the columns
other than GA�� of table ��C��R� before the join� In practice� the optimizer
usually removes these unnecessary columns to reduce the data volume�
Proof� The only di�erence between E� and E �

� is the change from �A�GA���
��C��R� to ��C��R�� Since the columns in R� other than GA�� do not partic�
ipate in any of the operations in the expressions and the �nal projection is on
columns �GA�� GA�� FAA�� this change does not a�ect the result of the ex�
pression� Consequently the two expressions are equivalent� �

It follows from Lemma 	 that we only need to prove that E� is equiva�
lent to E�

�
if and only if FD� and FD� hold in ��C��C��C���R��R��� Lem�

mas � � � essentially prove the Main Theorem in the case when GA�� and
GA�� are both non�empty� The proof is derived into several steps� Lemma �
and Lemma
 show the necessity of FD� and FD�� Lemma � and Lemma �
demonstrate that there are no duplicates in the result of E� and E

�

�� Lemma �
proves the su�ciency� Finally we prove the Main Theorem based on these
lemmas�

��� Necessity

Lemma � � If the two expressions E� and E�

�
are equivalent� and GA��

and GA�� are both non�empty� then FD� holds in ��C� � C� �C���R��R���

Proof� We prove the lemma by contradiction� Assume that E� and E �

�

are equivalent� and GA�� and GA�� are both non�empty� but FD� does
not hold in ��C� � C� � C���R� � R��� Then there must exist two valid in�
stances r� and r� of R� and R�� respectively� with the following properties� �a�
E��r�� r�� and E�

�
�r�� r�� produce the same result and �b� there exist two rows

t and t� � ��C� � C� � C���r�� r�� such that t�GA�� GA��
n
� t��GA�� GA�� but

t�GA��� �
n
� t��GA���� Clearly� t and t� are produced from the join of two sets�

S� � ft���R���� t
����R���g
 ��C��r� and S� � ft���R���� t

����R���g
 ��C��r��
Note that t���R��� and t����R��� must be two di�erent rows whereas t���R���
and t����R��� might be the same row�

Consider E��r�� r�� �rst� Since t�GA�� GA��
n
� t��GA�� GA��� t and t� will

be grouped into the same group in G�GA�� GA����C� � C� � C���r� � r��� All
rows sharing the same value t�GA�� GA�� in ��C� � C� � C���r� � r�� will be
grouped into this group� In E��r�� r��� there is therefore exactly one row whose
value for columns �GA�� GA�� is t�GA�� GA���

Now consider E�

�
�r�� r��� Since t�GA��� �

n
� t��GA���� t���R��� and

t����R��� will be grouped into two di�erent groups in G�GA�����C��r�� De�
note these groups as g� and g� respectively� Therefore� F �AA��A�GA��� AA�
G�GA�����C��r� must contain the following two rows� F �AA��A�GA��� AA�g�
and F �AA��A�GA��� AA�g�� whose values for columns GA�� are t�GA��� and
t��GA���� respectively� Since t and t� are in the join result ��C� � C� � C��

Performing Group�By before Join 	

�r� � r��� and GA	� are the only columns of R� participating in the join� it
follows that �F �AA��A�GA��� AA�g�� �t���R��� and �F �AA��A�GA��� AA�g��
�t����R��� must be in the join result ��C���F �AA��A�GA��� AA� G�GA���
��C��r����C��r��� Therefore� there are �at least� two rows� in E�

��r�� r��� with
the same value �t�GA	� GA��� for columns �GA	� GA��� Since there is only
one row in E��r�� r�� with the value �t�GA	� GA��� for columns �GA	� GA���
E��r�� r�� and E��r�� r��

� cannot be equivalent� This proves the lemma� �

Lemma � � If the two expressions E� and E�

� are equivalent� and GA��
and GA�� are both non�empty� then FD� holds in ��C� � C� �C���R��R���

Proof� We prove the lemma by contradiction� Assume that E� and E �

� are
equivalent� and GA�� and GA�� are both non�empty� but FD� does not hold
in ��C��C��C���R��R��� Then� there must exist two valid instances r� and
r� of R� and R�� respectively� with the following properties� �a� E��r�� r�� �
E�

��r�� r��� and �b� there exist two rows t and t� � ��C��C��C���r��r�� such
that t�GA��� GA��

n
� t��GA��� GA�� but t���R��� �

n
� t����R���� Clearly� t and

t� are produced from the join of two sets� S� � ft���R���� t
����R���g
 ��C��r�

and S� � ft���R���� t����R���g
 ��C��r�� Note that t���R��� and t����R���
can be the same row but t���R��� and t����R��� must be di�erent rows�

First consider E��r�� r��� Since t�GA�� GA��
n
� t��GA�� GA��� t���R��� and

t����R��� will be grouped into the same group in G�GA�� GA����C� � C� �
C���r� � r��� All rows sharing the same value t�GA�� GA�� in ��C� � C� �
C���r� � r�� will be grouped into this group� In E��r�� r�� there is therefore
exactly one row whose value for columns �GA�� GA�� is t�GA�� GA���

Now consider E �

�
�r�� r��� Since t�GA���

n
� t��GA���� t and t� will

be grouped into the same group in G�GA�����C��r�� Therefore� there is
exactly one row in F �AA��A�GA��� AA�G�GA�����C��r� having the value
t�GA��� for columns GA��� Denote this row by t�� Since t and t�

are in the join result ��C� � C� � C���r� � r��� and GA�� are the only
columns of R� participating in the join� t��t���R��� and t��t

����R��� are in
the join result ��C���F �AA��A�GA��� AA�G�GA�����C��r�� ��C��r��� There�
fore� there are �at least� two rows� �A�GA�� GA�� FAA� �t��t���R���� and
�A�GA�� GA�� FAA� �t��t

����R���� in E
�

��r�� r��� having the value t�GA�� GA��
for columns �GA�� GA��� Since there is only one row in E��r�� r�� having the
value t�GA�� GA�� for columns �GA�� GA��� E��r�� r�� and E

�

��r�� r�� cannot be
equivalent� This proves the lemma� �

Lemma � and Lemma
 prove that FD� and FD� must hold in ��C� �
C��C���R��R�� if E� and E�

� are equivalent and GA�� and GA�� are both
non�empty�

��� Distinctness

Lemma 	 � The table produced by expression E� contains no duplicate rows�

	� Yan and Larson

Proof� Clearly� �GA�� GA�� is the key of the derived table resulting from
applying E� to valid instances r� and r� of R� and R� respectively� Therefore
there are no duplicate rows in E�� �

Lemma
 � If FD� and FD� hold in ��C��C��C���R��R��� and GA��
and GA�� are both non�empty� then there are no duplicate rows in the table
produced by expression E�

��

Proof� We prove the lemma by contradiction� Assume that there exist two
valid instances r� and r� of R� and R�� respectively� such that� FD� and FD�

hold in ��C� � C� � C���r� � r��� but there exist two di�erent rows t� t� �
E�

��r�� r�� which are duplicates of each other� that is� t
n
� t�� Then there must

exist two rows� t�� t�� � ��C���F �AA��A�GA��� AA�G�GA�����C��r����C��r���
such that t � t��GA�� GA�� FAA�� and t

� � t���GA�� GA�� FAA�� t� and t
�

� must
be produced by the join between rows in F �AA��A�GA��� AA�G�GA�����C��r�
and ��C��r�� Assume t� � t�� � t�� and t�� � t��� � t

�

��� where t��� t
�

�� �
F �AA��A�GA��� AA�G�GA�����C��r� and t��� t

�

�� � ��C��r�� There are two
cases to consider�

Case 	� Assume that t���GA��� �
n
� t����GA���� Clearly� t���GA��

n
�

t����GA�� and t���GA��
n
� t����GA��� Since FD� holds in ��C��C��C���r��r���

�GA�� GA�� functionally determines GA�� in ��C� � C� � C���r�� r��� Con�
sider the grouping and aggregation in F �AA��A�GA��� AA�G�GA�����C��r��
these operations only merge several rows with the same value for columns
GA�� in ��C��r� into one row� consequently the number of rows can�
not increase and there is no new value for columns GA�� in all resulting
rows� It follows that �GA�� GA�� must still functionally determine GA�� in
��C���F �AA��A�GA��� AA�G�GA�����C��r�� ��C��r��� Since t��GA�� GA��

n
�

t���GA�� GA��� t��GA���
n
� t���GA��� must hold� Therefore� t���GA���

n
�

t����GA���� which is a contradiction�
Case �� Assume that t���GA���

n
� t����GA���� Since the grouping in

G�GA�����C��r� is on GA��� t�� and t��� must be the same row� which is de�
noted by T�� Since FD� holds in ��C��C��C���r�� r��� �GA��� GA�� func�
tionally determines RowID�R�� in ��C� � C� � C���r� � r��� Similarly due to
the reasons above� �GA�� GA�� must still functionally determine RowID�R�� in
��C���F �AA��A�GA��� AA�G�GA�����C��r�� ��C��r��� Since t��GA�� GA��

n
�

t���GA�� GA��� t�� and t��� must be the same row� which is denoted as T�� The
join between T� and T� can only generate one row� Therefore� t� and t�

�
are

the same row� Hence t and t� must be the same row� a contradiction�
The two cases above are the only possible cases and they both lead to

contradictions� This proves the lemma� �

��� Su�ciency

Lemma � � If FD� and FD� hold in ��C��C��C���R��R��� and GA��

Performing Group�By before Join 	�

and GA�� are both non�empty� then the two expressions E� and E
�

� are equiv�
alent�

Proof� Lemma � and Lemma � guarantee that neither E� nor E�

�
produces

duplicate rows if GA�� and GA�� are both non�empty� Let r� and r� be valid
instances ofR� and R� respectively� All we need to prove is that� provided that
GA�� and GA�� are both non�empty� if t � E��r�� r��� then t � E�

��r�� r���
and vice versa�

Case 	� t � E��r�� r�� � t � E�

��r�� r��� Consider a row t � E��r�� r���
There exists a group g � G�GA�� GA����C� � C� � C���r� � r�� such that
t � F �AA��A�GA�� GA�� AA�g� Since �GA�� GA�� �	 RowID�R�� �follows
from FD� and FD�� in ��C� � C� � C���r� � r��� there is exactly one row
t� � ��C��r� which joins with a subset g� of rows in ��C��r� to form g� We
can therefore write g � g� � t�� Clearly� every row tp � g� has the property
that tp�GA��

n
� t�GA�� and C��tp� t�� is true� Furthermore� all rows in g� have

the same values for columns GA�� because �GA�� GA�� �	 �GA��� holds in
��C��C��C���r��r��� Therefore� for every row to � ��C��C��C���r��r���
if to�GA���

n
� t�GA���� then to�GA��

n
� t�GA��� and consequently to � g� and

to���R��� � g��
Now consider E�

��r�� r��� Clearly� there must exist a group g�� � G�GA���
��C��r� containing all rows in ��C��r� having the value t�GA��� for columns
GA��� Therefore� g�
 g�

�
� The rows in g� and g�

�
all have the same value for

columns GA�� but may di�er on other columns� In the same way as above�
every row tq � g�

�
has the property that tq �GA��

n
� t�GA�� and C��tq� t�� is

true� �Recall that GA�� are the only columns of R� involved in C��� Conse�
quently� g�

�
consist of exactly those rows in ��C��r� that satisfy C� when con�

catenate with t� and therefore g� � g���
Therefore� the row t� � �A�GA�� GA�� FAA���C���F �AA��A�GA��� AA�g��

t�� must then exist in E�

��r�� r�� and� since g� � g��� t
n
� t��� In other words�

t � E�

��r�� r���
Case �� t � E�

��r�� r�� � t � E��r�� r��� Consider a row t �
E�

��r�� r��� There must exist a group g� � G�GA�����C��r� such that t �
��A�GA�� GA�� FAA���C���F �AA��A�GA��� AA�g�� � t��� for some t� � r��
For every row t� � g�� C��t�� t�� is true and consequently �t� � t�� �
��C� � C� � C���r� � r��� Since all such �t� � t�� rows have the same value
of �GA�� GA��� they all belong to the same group g � G�GA�� GA����C� �
C� � C���r� � r��� From the fact that �GA�� GA�� �	 RowID�R�� holds in
��C� � C� � C���r�� r��� it follows that there exists exactly one row in ��C��r�
that join with some set of rows in ��C��r� to form g� Clearly this row must be
t�� In other words� there exists a subset g��
 ��C��r� such that g � g�� � t��

Now g�
 g�� because

�a� for any row tp � ��C��r�� if tp�GA��
n
� t�GA�� and C��tp� t�� is true� then

tp must be in g���

	� Yan and Larson

�b� if a row tp � g�� then tp�GA��
n
� t�GA�� and C��tp� t�� is true�

Since �GA�� GA�� �	 �GA���� all rows in g�� have the same value for
columns �GA���� Therefore� the rows in g� and g�� all have the same value for
columns GA�� but may di�er on other columns� Since g� contains all rows in
��C��r� having the value t�GA��� for columns �GA���� the rows in g�� must all
be in g�� In other words� g��
 g�� Therefore g� � g��� It follows that the row
t� � �A�GA�� GA�� FAA� ��F �AA��A�GA��� AA�g��� � t�� � E �

��r�� r��� Since
g� � g�

�
� t � t�� In other words� t � E�� �

Proof of the Main Theorem�

For the case that GA�� and GA�� are both non�empty� Lemma � and
Lemma
 prove that FD�� FD� must hold in ��C� � C� � C���r�� r�� if E�

and E�

�
are equivalent�necessity�� Lemma � shows that E� and E

�

�
are equiva�

lent if FD� and FD� hold in ��C� � C� � C���r� � r���su�ciency�� Lemma 	
ensures that E� � E�

�
� These lemmas together prove the theorem for case

that GA�� and GA�� are both non�empty� GA�� and GA�� cannot both be
empty because in that case �GA�� GA�� would be empty and the query does
not belong to the class of queries we consider� Therefore there are two cases
left to consider�

Case 	� GA�� is empty but GA�� is not empty� Since GA�� is empty�
GA� and C� must be empty� Consequently the join must be a Cartesian prod�
uct� But GA� cannot be empty because in that case the grouping columns in
query E� is empty and the query does not belong to the class of queries we
consider� Therefore� E� and E�

�
degenerate to�

E� � F �AA��A�GA�� AA�G�GA����C� � C���R�� R��

and

E� � �A�GA�� FAA��F �AA��A�AA���C��R� � �A�GA�����C��R���

Similarly� FD� and FD� degenerate to �GA�� �	 � and �GA�� �	
RowID�R�� respectively� Note that� FD� is always true� Thus the necessary
and su�cient condition is that FD� holds in ��C� � C���R�� R���

Since there is no grouping operation in E�� F �AA��A�AA���C��R� can
yield only one row of result� Therefore its Cartesian product with R� pro�
duces j��C��R�j rows� If FD� holds in ��C� � C���R� � R��� then �GA�� �	
RowID�R�� in ��C��r� because the join is a Cartesian product� Therefore� the
grouping in E� is actually based on every row of R�� Therefore� E� and E� are
equivalent� If FD� does not hold in ��C��C���R��R��� then there must ex�
ist an instance of table R� in which GA� is not unique� It follows that E�

must produce a table with cardinality less than jR�j� and E� must produce a

Performing Group�By before Join 	�

table with cardinality equal to jR�j� Therefore E� and E� cannot be equiva�
lent� Therefore� if and only if FD� holds in ��C� �C���R��R��� E� is equiv�
alent to E�� Consequently our Main Theorem holds when GA�� is empty�

Case �� GA�� is empty but GA�� is not empty� Since GA�� is empty�
GA� and C� must be empty� Therefore the join is a Cartesian product� Since
C� is empty� GA�� must be the same as GA��

Hence� E� and E� degenerate to�

E� � F �AA��A�GA�� AA�G�GA����C� � C���R�� R��

and

E� � �A�GA�� FAA���C���F �AA��A�GA�� AA�G�GA����C��R� � ��C��R��

respectively� and FD� and FD� degenerate to �GA�� �	 GA� and �GA�� �	
RowID�R�� respectively�

FD� always holds� Therefore� we only need to determine whether FD�

is a necessary and su�cient condition� Since the join is merely a Cartesian
product� this condition means that ��C��r� can contain no more than one
row�

Clearly� if FD� holds in ��C��C���r��r��� then E� and E� are equivalent�
If FD� does not hold in ��C� � C���r� � r��� that is� ��C��r� contains more
than one row� then� for every t� � ��C��r�� E� must contain more rows with
the value t��GA�� for columns GA� than E� does� Hence E� and E� cannot be
equivalent� Consequently� our main theorem holds also when GA�� is empty�
�

Theorem � � Consider the following two expressions�

F �AA��d�SGA�� SGA�� AA�G�GA�� GA����C� � C� � C���R� �R��

and

�d�SGA�� SGA�� FAA�

��C���F �AA��A�GA��� AA�G�GA�����C��R� � �A�GA�����C��R���

where d is either A or D� The two expressions are equivalent if FD� and FD�

hold in ��C� � C� � C���R�� R���

Note that� the Main Theorem assumes that the �nal selection columns
are the same as the grouping columns�GA�� GA�� and the �nal projection
must be an ALL projection� this theorem relaxes these two restrictions� i�e��
the �nal selection columns can be a subset�SGA�� SGA�� of the grouping
columns�GA�� GA��� and the �nal projection can be a DISTINCT projection�
Consequently� the two conditions FD� and FD� become su�cient but not nec�
essary�

	� Yan and Larson

Proof� If FD� and FD� hold in ��C� � C� � C���R� �R��� then�

F �AA��A�GA�� GA�� AA�G�GA�� GA����C� � C� � C���R� �R��

and

�A�GA�� GA�� FAA�

��C���F �AA��A�GA��� AA�G�GA�����C��R� � �A�GA�����C��R��

are equivalent according to our main theorem� Therefore�

F �AA��A�SGA�� SGA�� AA�G�GA�� GA����C� � C� � C���R�� R��

and

�A�SGA�� SGA�� FAA�

��C���F �AA��A�GA��� AA�G�GA�����C��R� � �A�GA�����C��R��

are equivalent because �A�Att�Ra � �A�Att�Rb provided that Ra � Rb� where
Att are some common columns of Ra and Rb� Therefore� when d � A� the
two expressions in the theorem are equivalent� Also�

F �AA��D�SGA�� SGA�� AA�G�GA�� GA����C� � C� � C���R� �R��

and

�D�SGA�� SGA�� FAA�

��C���F �AA��A�GA��� AA�G�GA�����C��R� � �A�GA�����C��R��

are equivalent because �D�Att�Ra � �D�Att�Rb provided that �A�Att�Ra �
�A�Att�Rb� where Att are some common columns of Ra and Rb� Therefore�
when d � D� the two expressions in the theorem are also equivalent� This
proves the theorem� �

� Algorithms to Test the Conditions

To apply the transformation in Theorem �� i�e�� to push grouping past a join�
we need an algorithm to test whether the functional dependencies FD� and
FD� are guaranteed to hold in the join result of R� and R�� To achieve this�
we can make use of semantic integrity constraints and the conditions speci�
�ed in the query� SQL� ��� allows users to specify integrity constraints on the
valid state of SQL data and these constraints are enforced by the SQL imple�
mentation� Therefore� in any valid database instance� we can assume that all
integrity constraints hold in the join result of R� and R�� Similarly� the con�
ditions of the query also hold in the join result� We can make use of this in�
formation to determine whether the functional dependencies FD� and FD�

hold�

Performing Group�By before Join 	�

	�� Constraints in SQL�

In SQL���� 	
� ��� a users can specify several kinds of semantic integrity con�
straints on tables and columns� For our purpose� we classify SQL� constraints
into �ve classes� column constraints� domain constraints� key constraints� ref�
erential integrity constraints and assertion constraints� We will use the table
speci�ed in Figure � as an example as we brie�y explain these constraints�

CREATE DOMAIN DepIdType SMALLINT

CHECK VALUE 	
 AND VALUE � �

CREATE TABLE Department 	
EmpID INTEGER CHECK �EmpID 	
��
EmpSID INTEGER UNIQUE�

LastName CHARACTER�

� NOT NULL�

FirstName CHARACTER�

��

DeptID DepIdType CHECK �DeptID	���

PRIMARY KEY �EmpID��

FOREIGN KEY �DeptID� REFERENCES Dept�

Figure �� SQL constraints

Column constraints include NOT NULL and CHECK constraints� A column can
be speci�ed as NOT NULL� A CHECK constraint can also be added to a column
of a table� In Figure �� the statement LastName CHARACTER�

� NOT NULL

speci�es that LastName cannot be NULL� and the statement EmpID INTEGER

�CHECK EmpID 	
� speci�es that EmpID must be positive�
A domain constraint speci�es a constraint on a domain� and all columns

de�ned on the domain must satisfy the constraint� In Figure �� the state�
ment CREATE DOMAIN DepIdType SMALLINT CHECK VALUE 	
 AND VALUE �

�

 speci�es the domain name DepIdType and its constraint� Then the state�
ment DeptID DepIdType speci�es that DepID should satisfy the constraint�
Note that domain constraints are equivalent to column constraints on the ap�
propriate columns�

Key constraints include primary key and candidate key constraints� Pri�
mary key and candidate keys are de�ned by the statement PRIMARY KEY and
UNIQUE respectively in a base table de�nition� A primary key cannot con�
tain NULL� whereas a candidate key may contain NULL� In Figure �� the state�
ment PRIMARY KEY �EmpID� speci�es that �EmpID� is the primary key� and the
statement EmpSID INTEGER UNIQUE speci�es that EmpSID is a candidate key�

A referential integrity constraint is a foreign key constraint which speci�
�es a constraint between two tables� A foreign key is a list of columns in one
table whose values must either be NULL or match the values of some candi�

�
 Yan and Larson

date key or primary key in some table�may be the same as the original ta�
ble�� In Figure �� the statement FOREIGN KEY �DeptID� REFERENCES Dept

is an example of a referential integrity constraint�

An assertion constraint speci�es a restriction which possibly several
columns in possibly several tables must satisfy� It is de�ned by the state�
ment CREATE ASSERTION outside of the table de�nition�

Observe that all constraints must be satis�ed in every valid instance of
the database� We can therefore add these constraints into the WHERE clause
of a query without changing the result of the query� Therefore these con�
straints must be satis�ed in the join result� Because each primary candidate
key functionally determines all columns in a table� we can use the notation de�
�ned in Section ��
 to represent these conditions as Boolean expressions� NOT
NULL and CHECK constraints on a column can also be easily represented as
Boolean expressions� Each domain constraint can be treated as a CHECK con�
straint on a column de�ned over the domain� Referential integrity and asser�
tion constraints can also be expressed as Boolean expressions�

The detailed method to translate domain� column� referential integrity
and assertion constraints into Boolean expressions is not the focus of this pa�
per and will not be discussed further here� We use T� and T� to denote the
Boolean expressions representing domain� column� referential integrity and as�
sertion constraints in table R� and R�� respectively� We use H to denote the
set of host variables in a query predicate� Ki�R� to denote the ith candi�
date�primary� key of table R� and jRj to denote the cardinality of a table R�
These symbols are summarized in Figure ��

Symbol De�nitions

Ki�R� The ith candidate	primary
 key of table R

T� Column� domain� referential integrity and assertion constraints
on table R�

T� Column� domain� referential integrity and assertion constraints
on table R�

H The set of host variables in a query predicate

jRj the cardinality of a table R

Figure �� Summary of Symbols

	�� Using Semantic Constraints to Test the Conditions

There can be many ways to test the conditions FD� and FD�� The semantic
constraints in SQL we discuss in Section ��	 can be used to determine whether

Performing Group�By before Join �	

FD� and FD� are true�

Theorem � � FD� and FD� hold in ���C��R� � �A�GA�����C��R�� if
Condition �A��

h � H�
t� t� � Domain�R� �R��

fbC��t� h�� C��t
�� h�� C��t� t

�� h�� C��t� t
�� h�� C��t� h�� C��t

�� h�

�T��t� h� � T��t
�� h�c

��
�

�i

�t�Ki�R���
n
� t��Ki�R���� t���R���

n
� t����R�����

��
�

�i

�t�Ki�R���
n
� t��Ki�R���� t���R���

n
� t����R�����g

� f�t�GA	� GA��
n
� t��GA	� GA��� t�GA	��

n
� t��GA	���g

and Condition �B��

h � H�
t� t� � Domain�R� �R��

fbC��t� h�� C��t
�� h�� C��t� t

�� h�� C��t� t
�� h�� C��t� h�� C��t

�� h�

�T��t� h� � T��t
�� h�c

��
�

�i

�t�Ki�R���
n
� t��Ki�R���� t���R���

n
� t����R�����

��
�

�i

�t�Ki�R���
n
� t��Ki�R���� t���R���

n
� t����R�����g

� f�t�GA	�� GA��
n
� t��GA	�� GA��� t�RowID�R���

n
� t��RowID�R����g

hold�

Condition �A� and �B� correspond to FD� and FD� respectively� The
consequences of Condition �A� and �B�� �t�GA	� GA��

n
� t��GA	� GA�� �

t�GA	��
n
� t��GA	��� and �t�GA	�� GA��

n
� t��GA	�� GA�� � t�RowID�R���

n
� t��RowID�R����� are actually FD� and FD� according to our de�nition on
functional dependency� There are three parts in each of the antecedents of
Condition �A� and �B�� In the Cartesian product of R� and R�� part one�
bC��t� h� � C��t

�� h� � C��t� t
�� h� � C��t� t

�� h� � C��t� h� � C��t
�� h� � T��t� h� �

T��t�� h�c� states that all host variables and rows satisfy the join condition
C��C��C� and all the semantic constraints except the key constraints of ta�
ble R� and R�� part two and three� �

V
�i�t�Ki�R���

n
� t��Ki�R���� t���R���

n
�

t����R����� and �
V

�i�t�Ki�R���
n
� t��Ki�R��� � t���R���

n
� t����R������ state

that all rows satisfy the key constraints of table R� and R�� Therefore� the
proof of this theorem is straightforward�
Proof� Assume that the conditions stated in the theorem hold� In the join
result ��C� � C� � C���R��R��� all semantic constraints �key constraints� T�

�� Yan and Larson

and T�� and all join conditions C�� C�� C� must be satis�ed� that is� the an�
tecedents of both conditions are true� Therefore the two consequents�

t�GA	�� GA��
n
� t��GA	�� GA��� t�RowID�R���

n
� t��RowID�R���

and

t�GA	� GA��
n
� t��GA	� GA��� t�GA	��

n
� t��GA	��

are both true� According to our de�nition of functional dependency� this
means that FD� and FD� hold in ��C� � C� � C���R�� R��� �

If we can design an e�cient algorithm to test the satis�ability of the con�
ditions in Theorem
� we can use it to determine the validity of the trans�
formation� Note that� when the algorithm returns true� the transformation is
valid� but when the algorithm returns false� the transformation is not neces�
sary invalid�

An example of such an algorithm is the satis�ability algorithm in �	��
This algorithm can be used to test the satis�ability of a restricted class of
Boolean expressions� Hence we can simplify the conditions stated in Theo�
rem
 into a stronger condition which contains only Boolean expressions be�
longing to the restricted class� If the simpli�cation cannot be done� it imme�
diately returns false� If it can be done then we apply that satis�ability algo�
rithm to test the simpli�ed condition and if the algorithm returns true� the
transformation is valid�

	�� TestFD� A Fast Algorithm

In this section� we will present an e�cient algorithm that handles a large sub�
class of queries� This algorithm returns YES when it can determine that FD�

and FD� hold in the join result ��C� � C� � C���R� � R��� and returns NO

when it cannot�

Atomic conditions not involving ��� are seldom useful for generating new
functional dependencies� Therefore� we designed an algorithm that exploits
only information about primary�candidate� keys and equality conditions in
the WHERE clause� column and domain constraints� We de�ne two types of
atomic conditions� Type 	 of the form �v � c� and Type � of the form �v	 �
v��� where v	� v�� v are columns and c is a constant or a host variable� A
host variable can be handled as a constant because its value is �xed when
evaluating the query� The algorithm follows�

� �

Algorithm TestFD� determine whether group�by can be performed before join�

Input� Predicates C�� C�� C�� T�� T�� key constraints of R� and R��

Output� YES or NO�

Performing Group�By before Join �

A2

A4
c

a

a

a

A1 b

A3

Known conditions and constraints�
a � A� � ��� b � A� �	 A�� c � A� � A�

Conclusion� A� �	 A�

Figure �� Illustration of Algorithm TestFD

�� Convert C� � C� � C� � T� � T� into conjunctive normal form� C � D� �
D� � ����Dm�

�� For each Di� if Di contains an atomic condition not of Type � or Type ��
delete Di from C�

�� If C is empty� return NO and stop� Otherwise convert C into disjunctive
normal form� C � E� �E� � ��� �En�

� For each conjunctive component Ei of C do

	a
 Create a set S containing all columns in GA� and GA��

	b
 For each atomic condition of Type � 	v � c
 in Ei� add v into S�

	c
 Compute the transitive closure of S based on Type � atomic conditions
in Ei and the key constraints� That is� perform the operation� while
		� a Type � condition v	 � v� � C such that v	 � S and v� �� S

or 	�Key�R�� � S and v� � R� and v� �� S
 or 	�Key�R�� � S and
v� � R� and v� �� S

� add v� to S�

	d
 If a 	primary or candidate
 key of R� is in S� proceed� Otherwise re�
turn NO and stop�

	e
 Create a set S containing all columns in GA� and GA��

	f
 For each atomic condition of Type � 	v � c
 in Ei� add v into S�

	g
 Compute the transitive closure on S based on Type � atomic condi�
tions and key constraints in Ei	see Step 	c

�

	h
 If GA�� is in S� proceed� Otherwise return NO and stop�

�� Return YES and stop�

� �

�� Yan and Larson

The idea of TestFD is explained as follows� Step 	 and � �rst discard all
non�equality conditions in the join conditions and semantic constraints� The
rest is best illustrated by Figure �� Assume that the conditions and con�
straints fa � A� � ��� b � A� �	 A�� c � A� � A�g are satis�ed in the join
result� Then� since A� is a constant in the join result� every column function�
ally determines A�� These functional dependencies are represented by the di�
rected arcs marked by a in Figure �� Furthermore� since A� equals to A�� they
functionally determine one another� This is illustrated by a bi�directed arc
marked by c in Figure �� A� �	 A� is also shown as a directed arc marked
by b in the �gure� Due to the transitive property of functional dependen�
cies� we can draw the conclusion that A� �	 A�� Therefore� in TestFD� if
Ai �	 Aj is to be tested� where Ai and Aj are some sets of columns� one can
start up with a set containing Ai� then perform a transitive closure on the set
until no new column is added� If Aj is in the �nal set� then Ai �	 Aj is true�
This is essentially what one iteration of Step � does� determining whether
FD� � �GA�� GA�� �	 GA�� and FD� � �GA��� GA�� �	 RowID�R�� are
true� If each iteration of Step � returns true� then the whole condition C can
imply that FD� and FD� hold in the join result�

Theorem 	 � If the algorithm TestFD returns YES� FD� and FD� hold in
��C� � C� � C���R�� R���

Proof� We prove the theorem by showing that Conditions �A� and �B� in
Theorem
 hold when algorithm TestFD returns YES� TestFD tests simpler
and stronger conditions than Conditions �A� and �B�� It drops the non�equality
atomic conditions in C�� C�� C�� T� and T� by deleting Di�s in C� This weak�
ens the Boolean expression C and thus strengthens the whole conditions� As�
suming that the algorithmTestFD returns YES� consider one iteration of Step
�� Since Step ��d� for Ei returns true� the expression

h � H�
t� t� � Domain�R� �R��

fbEi�t� t
��c � �

�

�i

�t�Ki�R���
n
� t��Ki�R���� t���R���

n
� t����R�����

��
�

�i

�t�Ki�R���
n
� t��Ki�R���� t���R���

n
� t����R�����g

� ft�GA��� GA��
n
� t��GA��� GA�� � t�RowID�R���

n
� t��RowID�R���g

is also true� Because Step��� is true for all Ei� i � i� ���� n� we know that the
above expression is true when Ei is replaced with C and thus Condition �B�
is true� Condition �A� can be proved to be true in the same way� �

Example � � Assume that we have three tables�

Performing Group�By before Join ��

UserAccount�UserId� Machine� UserName�

PrinterAuth�UserId� Machine� PNo� Usage�

Printer�PNo� Speed� Make�

The UserAccount table stores information about user accounts� �UserId�
Machine� is the primary key� The PrinterAuth table records which printers
each user is authorized to use and his her total usage of each printer� The pri�
mary key is �UserId� Machine� PNo�� The Printer table maintains informa�
tion about the speed and make of each printer� PNo is the primary key�

Consider the query� for each user on machine �dragon�� �nd the UserId�
UserName� his her total printer usage� and the maximum and minimum
speeds of printers accessible to the user� This query can be expressed in SQL as

SELECT U�UserId� U�UserName� SUM�A�Usage�� MAX�P�Speed��

MIN�P�Speed�

FROM UserAccount U� PrinterAuth A� Printer P

WHERE U�UserId � A�UserId and U�Machine � A�Machine

and A�PNo � P�PNo and U�Machine � �dragon�

GROUP BY U�UserId� U�UserName

Because AA � �A�Usage� P�Speed� we partition the tables in the FROM

clause into� R� � �A� P � and R� � �U�� Consequently� SGA� � GA� � ��
SGA� � GA� � �U�UserId� U�UserName��GA�� � �A�UserId� A�Machine��
GA�� � �U�UserId� U�Machine� U�UserName�� F � �SUM�A�Usage�� MAX�
P�Speed�� MIN�P�Speed��� C� � �U�UserId � A�UserId �U�Machine �
A�Machine�� C� � �A�PNo � P�PNo�� and C� � �U�Machine �� dragon���
We now apply algorithm TestFD�

Step �� C �� U�UserId � A�UserId�U�Machine � A�Machine�A�PNo �
P�PNo � U�Machine �� dragon�

Step �� C remains unchanged�

Step �� C is not empty so continue�

Step
� E� �� U�UserId � A�UserId � U�Machine � A�Machine �
A�PNo � P�PNo � U�Machine �� dragon��

Step a� S � fU�UserId� U�UserNameg�

Step b� Add U�Machine to S due to U�Machine �� dragon�� yielding

S � fU�UserId� U�UserName� U�Machineg�

Step c� The result after the transitive closure is�

S � fA�UserId� A�Machine� U�UserName�

U�Machine� U�UserIdg�

�� Yan and Larson

Step d� S contains the primary key �U�Machine� U�UserId� of table U

	i�e� R�
�

Step e� S � fU�UserId� U�UserNameg�

Step f� Add U�Machine to S due to U�Machine �� dragon�� yielding

S � fU�UserId� U�UserName� U�Machineg�

Step g� The result after the transitive closure is�

S � fU�UserId� U�UserName� U�Machine�

A�Machine� A�UserIdg�

Step h� S contains GA�� � �A�Machine� A�UserId��

Step
� No more disjunctive components in C� go to Step ��

Step �� Return YES and stop�

Therefore� the query can be evaluated as follows�

SELECT UserId� UserName� TotUsage� MaxSpeed� MinSpeed

FROM R�
�� R�

�

WHERE R�
��UserId � R�

��UserId and

R�

��Machine � R�

��Machine

where
R�
� �UserId� Machine� TotUsage� MaxSpeed� MinSpeed� �

SELECT A�UserId� A�Machine� SUM�A�Usage�� MAX�P�Speed�

MIN�P�Speed�

FROM PrinterAuth A� Printer P

WHERE A�PNo � P�PNo

GROUP BY A�UserId� A�Machine

and
R�
� �UserId� Machine� UserName� �

SELECT UserId� Machine� UserName

FROM UserAccount U

WHERE U�Machine � �dragon�

The reader may have noticed that further optimization is possible� In par�
ticular� it is wasteful to perform the grouping for all users in PrinterAuth be�
cause we are only interested in those on machine dragon� Hence� we can add
the predicate A�Machine � �dragon� to the query computing R�

�� This type
of optimization �predicate expansion� is routinely used but outside the scope
of this paper� �

Performing Group�By before Join ��

� When Is the Transformation Advantageous�

Example 	 � Figure � shows two access plans for a query� The two in�
put tables� A and B� consist of 	

 and 	

 rows� respectively� In Plan 	�
the �	

� 	

� join yields only �
 rows� which are then grouped into 	

groups� In Plan �� we �rst group the 	

 rows of A into �

 groups and
then perform a ��

� 	

� join� The input cardinalities of the join have not
changed signi�cantly but the input cardinality of the group�by operation in�
creased from �
 to �

� Most likely� Plan � is more expensive than Plan 	�
�

Group By

10

50

10000x100

900050

Join

A: 10000 B:100

Plan 1: Group by after join

10

Join 9000 x 100

Group By 10000 B:100

:10000A

Plan 2: Group by before Join

Figure �� Is Plan � better than Plan ��

This example may be somewhat contrived but it shows that the transfor�
mation does not always produce a better access plan� Ultimately� the choice
is determined by the estimated cost of the two plans� However� we have some
observation regarding the e�ect of the transformation�

� It cannot increase the input cardinality of the join�

� It may increase or decrease the input cardinality of the group�by oper�
ation� This depends on the selectivity of the join�

� It restricts the choice of join orders� We �rst have to perform all joins
required to create R	 so we can perform the grouping� However� the
join order of R	 with members of R� is not restricted�

� In a distributed database� it may reduce the communication cost� In�
stead of transferring all of R	 to some other site to be joined with R�� we
transfer only one row for each group of R�� Since communication costs
often dominate the query processing cost� this may reduce the overall
cost signi�cantly�

�� Yan and Larson

� After the grouping and aggregation operation� the resulting table is nor�
mally sorted based on the grouping columns in most of the existing im�
plementation of database systems� This fact can be exploited to reduce
the cost of subsequent joins�

	 Performing Join before Group
by

Consider a query that involves one or more joins and where one of the ta�
bles mentioned in the from�clause is in fact an aggregated view� An aggre�
gated view is a view obtained by aggregation on a grouped view� In a straight�
forward implementation� the aggregated view would �rst be materialized and
the result then joined with other tables in the from�clause� In other words�
group�by is performed before join� However� it may be possible �and bene��
cial� to reverse the order and �rst perform the joins and then the group�by�
The theorems and algorithms developed in this paper allow us to determine
whether the order can be reversed�

Example
 � Assuming we have the same tables in Section ��
� consider
the same query� for each user on machine �dragon�� �nd the UserId� User�
Name� his her total printer usage� and the maximum and minimum speeds of
printers accessible to the user� In addition� we assume that there exists an ag�
gregated view�

CREATE VIEW UserInfo �

UserId� Machine� TotUsage� MaxSpeed� MinSpeed�

AS SELECT A�UserId� A�Machine� SUM�A�Usage�� MAX�P�Speed��

MIN�P�Speed�

FROM PrinterAuth A� Printer P

WHERE A�PNo � P�PNo

GROUP BY A�UserId� A�Machine

on table PrinterAuth and Printer� which� for each user� lists the UserId�
Machine� his her total printer usage� and the maximum and minimum speeds
of printers accessible to the user� Therefore� the query can be written as�

SELECT UserId� UserName� TotUsage� MaxSpeed� MinSpeed

FROM UserInfo I� UserAccount U

WHERE I�UserId � U�UserId AND

I�Machine � U�Machine AND

U�Machine � 	dragon	

The standard evaluation process for this query is to �rst materialize
the view UserInfo by the join and aggregation and then join it with the
UserAccount table� Using TestFD as we did in Section ��
� we know that this
query is equivalent to�

Performing Group�By before Join ��

SELECT U�UserId� U�UserName� SUM� A�Usage�� MAX�P�Speed��

MIN�P�Speed�

FROM UserAccount U� PrinterAuth A� Printer P

WHERE U�UserId � A�UserId and U�Machine � A�Machine

and A�PNo � P�PNo and U�Machine � �dragon�

GROUP BY U�UserId� U�UserName

Thus� the optimizer has two choices to consider for the query� It is possible
that in the latter query expression� the number of rows resulting from the
�
table join is much smaller than the number of rows resulting from the ��table
join in the aggregated view� If this is the case� then the grouping operation
will operate on a much smaller input in the latter query than in the former
query� and the latter query can be better than the former query� Therefore�
the reverse transformation can be bene�cial�

� Concluding remarks

We proposed a new strategy for processing SQL queries containing group�by�
namely� pushing the group�by operation past one or more joins� This trans�
formation may result in signi�cant savings in query processing time� We de�
rived conditions for deciding whether the transformation is valid and showed
that they are both necessary and su�cient� The conditions were also shown to
be su�cient for the more general transformation speci�ed in Theorem �� Be�
cause testing the full conditions may be expensive or even impossible� a fast
algorithm was designed that tests a simpler� su�cient condition� The reverse
of the transformation is also shown to be possible�

All queries considered in this paper were assumed not to contain a HAVING

clause� Further work includes relaxing those conditions and �nding necessary
and su�cient conditions for the transformation speci�ed in Theorem �� An�
other important issue under study is how to partition all tables for a query
into two sets of tables� R� and R�� with R� containing aggregation columns
and R� not� Some queries may not be transformable because� �a� no parti�
tioning is possible� i�e�� all tables contain some aggregation columns� or �b�
it can be somehow partitioned but the testing algorithm returns NO� Column
substitution can be used to improve the chance of a query being tested trans�
formable� First� column substitution can be employed to obtain a set of equiv�
alent queries� Based on this set� all possible partitions of the tables can be
performed and the resulting queries can all be tested� This technique not only
increases the chance of a query being tested transformable� but also provides
the optimizer more choices of execution plans for a query� In addition� we are
investigating algorithms for performing grouping and how to detect when the
group�by operation can be pipelined with other operations ���
��

 Yan and Larson

References

�	� Jos�e A� Blakeley� Neil Coburn� and Per�!Ake Larson� Updating derived
relations� Detecting irrelevant and autonomously computable updates�
ACM Transactions on Database Systems� 	��
��
��"�

� September 	����

��� C� J� Date and Hugh Darwen� A Guide to the SQL Standard� a user�s
guide� Addison�Wesley� Reading� Massachusetts� third edition� 	��
�

�
� Umeshwar Dayal� Of nests and trees� A uni�ed approach to process�
ing queries that contain nested subqueries� aggregates� and quanti�ers�
In Proceedings of the 	
th International Conference on Very Large Data
Bases� pages 	��"�
�� Brighton� England� August 	���� IEEE Computer
Society Press�

��� Johann Christoph Freytag and Nathan Goodman� On the translation
of relational queries into iterative programs� ACM Transactions on
Database Systems� 	��	��	"��� March 	����

��� Richard A� Ganski and Harry K� T�Wong� Optimization of nested queries
revisited� In Proceedings of ACM SIGMOD International Conference on
Management of Data� pages �
"

� San Francisco� California� May 	����

��� ISO IEC� Information Technology � Database languages � SQL� Refer�
ence number ISO IEC �
���	����E�� November 	����

��� Werner Kiessling� On semantic reefs and e�cient processing of corre�
lation queries with aggregates� In Proceedings of the 		th International
Conference on Very Large Data Bases� pages ��	"���� Stockholm� Swe�
den� August 	���� IEEE Computer Society Press�

��� Won Kim� On optimizing an SQL�like nested query� ACM Transactions
on Database Systems� ��
����
"���� September 	����

��� A� Klug� Access paths in the �abe� statistical query facility� In Pro�
ceedings of ACM SIGMOD International Conference on Management of
Data� pages 	�	"	�
� Orlendo� Fla�� June ��� 	����

�	
� Jim Melton and Alan R� Simon� Understanding the new SQL� A Com�
plete Guide� Morgan Kaufmann� 	��
�

�		� M� Negri� G� Pelagatti� and L� Sbattella� Formal semantics of SQL
queries� ACM Transactions on Database Systems� 	��
���	
"�
��
September 	��	�

�	�� G#unter von B#ultzingsloewen� Translating and optimizing SQL queries
having aggregates� In Proceedings of the 	
th International Conference
on Very Large Data Bases� pages �
�"��
� Brighton� England� August
	���� IEEE Computer Society Press�

