Computing All Factorizations in Z y[z]

*
Howard Cheng
Department of Computer Science
University of Waterloo
Waterloo, Canada

hchcheng@scg.math.uwaterloo.ca

ABSTRACT

We present a new algorithm for determining all factoriza-
tions of a polynomial f in the domain Z n[z], a non-unique
factorization domain, given in terms of parameters. From
the prime factorization of N, the problem is reduced to fac-
torization in Z,r[x] where p is a prime and k > 1. If p* does
not divide the discriminant of f and one factorization is
given, our algorithm determines all factorizations with com-
plexity O(n® M (klogp)) where n denotes the degree of the
input polynomial and M (t) denotes the complexity of mul-
tiplication of two t-bit numbers. Our algorithm improves
on the method of von zur Gathen and Hartlieb, which has
complexity O(n"k(klogp + logn)?). The improvement is
achieved by processing all factors at the same time instead
of one at a time and by computing the kernels and determi-
nants of matrices over Z,« in an efficient manner.

Categories and Subject Descriptors
1.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms

Keywords

Polynomial factorization, structured matrices

1. INTRODUCTION

The factorization of a polynomial f in Zn[z] is well under-
stood in the case when N is a prime. Methods for comput-
ing such a factorization include Berlekamp’s algorithm, the
algorithm of Cantor and Zassenhaus, and others [8]. How-
ever, when N is not a prime the situation is considerably
more complex. Because the domain 7 n[z] is not a unique
factorization domain, it is not sufficient to obtain a single
factorization. Rather, we wish to compute all factorizations
of a polynomial. The result of such a factorization is given

*Supported by a Natural Sciences and Engineering Research
Council Postgraduate Scholarship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSAC 2001, UWO, Canada

(©2001ACM 1-58113-218-2/00/ 0008 $5.00

George Labahn
Department of Computer Science
University of Waterloo
Waterloo, Canada

glabahn@scg.math.uwaterloo.ca

in terms of parameters. For example, one can show that
#’ +18 = (z+ 3 +9a) (¢ + 244 18a) mod 3°

with 0 < a < 3 gives all factorizations into monic irreducible
factors for the polynomial #? 4+ 18 in Zss[z].

In [6, 7] von zur Gathen and Hartlieb present an algorithm
which produces all factorizations of f into irreducible factors
in 7 ,«[x], provided that p* does not divide the discriminant
of f and one factorization of f is known. When the prime
factorization of N is known, their algorithm can be used
to obtain all factorizations of f in Z n[z] using the Chinese
Remainder Theorem. Their algorithm finds all factoriza-
tions of f in Zpk[iﬂ] by finding parameterized solutions for
the kernels of one or more Sylvester matrices in Z,r where
1 < r < k. The parameterized solution for a kernel is ob-
tained from a Smith Normal Form computation over 7Z. If
f is factored into m > 2 irreducible factors, their algorithm
examines one factor at a time, computing the kernels of
m — 1 Sylvester matrices. The bit complexity of their algo-
rithm is O(n"k(klogp + logn)?). The complexity remains
the same even if a faster Smith Normal Form algorithm is
used. Although the upper bound may not be tight [6], sev-
eral important improvements can be made.

In this paper we present a new algorithm for finding all fac-
torizations of a polynomial in Z [z] from one factorization
of f. As in [6, 7], we solve the problem by reducing it to
a problem in linear algebra, and require that p* does not
divide the discriminant of f. By processing all factors of a
factorization at the same time, the linear algebra problem
becomes one of finding parameterized solutions of a kernel
of a single striped Sylvester matrix (when there are only
two factors then such a matrix is the same as a Sylvester
matrix). This approach leads to a faster and simpler al-
gorithm, and also a simplified proof of its correctness. We
note that our algorithm does not eliminate the requirement
to have a prime factorization of N nor one factorization of
f, which are the main bottlenecks in factoring polynomials

in Zn[=] [7]-

In order to compute the parameterized solutions for the ker-
nel of a striped Sylvester matrix, we use matrix triangular-
ization algorithms such as those of Buchmann and Neis [3]
and Storjohann [10], instead of the Smith Normal Form com-
putation used in [6, 7]. This improves the complexity of the
kernel computation. Finally, both the algorithm in [6, 7]
and our algorithm require the computation of the determi-

nants of striped Sylvester matrices. By taking advantage
of the matrix structure, we improve such computation us-
ing a variant of the fraction-free elimination algorithm of
Beckermann and Labahn [1].

The remainder of the paper proceeds as follows. Section 2
gives an overview of the problem as well as the algorithm
of von zur Gathen and Hartlieb [6, 7]. A generalization of
Sylvester matrices for more than two polynomials is given
in Section 3. In Section 4, we explain how all the factors
of a factorization of f can be processed at the same time,
leading to a simplified algorithm that is given and analyzed
in Section 5. In Section 6, we discuss how to improve the
computation of the kernel and the determinants in our al-
gorithm. The final section includes a conclusion and topics
for future research.

2. PRELIMINARIES

In this section, we define the problem of factorization in
Zn[z] and provide a description of the approach taken by
von zur Gathen and Hartlieb. We follow [6, 7] in the presen-
tation of this section. We also define notation used in the
remainder of this paper.

Let f € Zn[z] be a polynomial of degree n. We wish to

compute all factorizations of f into irreducible factors in

Zn[z]. That is,

u; mod N,

o

1]
-

i

where u; € Zn[z] are irreducible. We may assume that f
and u; (1 <1 < m) are monic [6, 7]. If N = H1<,'<1pfi is
the prime factorization of N, we can reduce the problem to
factoring f over Zp{ei for 1 < 1 <! by the Chinese Remainder

Theorem. It is neéessary to assume that the factorization
of N is known, as Shamir [9] has shown that the problem of
factoring N is polynomial-time reducible to the problem of
factoring polynomials in Z n[z].

Given an integer ¢, we define its p-adic valuation, v,(t), to
be the largest power of p dividing ¢ (v,(0) = oc0). We also
define Z ;) to be the p-adic integers [2]. For two polynomials
a =y a;z' and b = > bg:ui, with dega = n, and
deg b = ny, we define the Sylvester matrix of a and b to be
the following square matrix of order n, + ns.

ag bO i

An bO

a

S(a,b) =

ag bnb

Gn

bnb J

ny ng

The resultant of a and b is res(a,b) = det S(a,b). We also
define r(a, b) = vy(res(a, b)).

Let p be a prime, and suppose that p* t disc(f), where

disc(f) denotes the discriminant of f. Let

m
f= H gi mod pk

i=1
be one factorization of f in Z[z] into irreducible factors
that are pairwise relatively prime, with n; = degg;. As
in [6, 7], we will assume that g; is monic for the remainder
of this paper. Such a factorization of f can be obtained by
some other means, such as Chistov’s algorithm [4, 5]. The
algorithm in [6, 7] can now be described.

ALGORITHM 2.1. Algorithm to compute all factorizations
in Z[z].

Input: a monic polynomial f € Z[z], k such that k >
vp(disc(f)), and pairwise relatively prime, monic irre-
ducible polynomials g1,... ,gm such that f =T["", g
mod p*.

Output: all factorizations of f over Z,. into monic irre-
ducible factors.

1. If m = 1, then output “f s irreducible” and stop.
2. If vp(disc(f)) = 0, then output “f =[], gi mod p*”

and stop.
3. wy f.
4. Forl=1,... ,m—1do

(a) Let hy = H1<j§mgj; and r = T(gzyhl)-

(b) Lift the factorization w; = gih; mod ph X< T
to a factorization wi; = aib; mod pk, where a1 =
g, b = h; mod pk_21SJ'Sl "i. Note that there
may be parameters in wi, ar, b;.

(¢) Compute the kernel of S(gi, hi) over Zyr, which
gives all factorizations wi = wywi41 mod pk such
that

k—
w =a; modp" "

wi+1 = b mod pk_r’,

where u; and wiy1 may have parameters.
5. Um wm. Output “f = [[/2, ui mod p*” along with
the ranges of the parameters in u; (1 <1 < m). |

The algorithm uses the fact that to find all factorizations
of [[72,gi in Zk[z], it is equivalent to find all factoriza-
tions]2, 9; = ab mod p* such that @ = g; and b = I
mod p*~", and then process b recursively. Finding a and b
is equivalent to solving for ¢,4 € Zx[z] such that

gihi = (g1 +p* 7" ¢)(hi + p*~"'¢p) mod p*,

with deg¢ < deggi and degy < deghi. Equating coeffi-
cients of like powers, this reduces to solving for the kernel
of S(gi,hi) over Z,~. Note that the kernel is a submodule,
not a vector space, of a Z,~-module.

In [6, 7], the kernel is obtained by computing the Smith
Normal Form of S(gi,hi) over Z. This gives unimodular
matrices P, Q over 7 such that

P. S(glyhl) . Q = diag(dl7 N 7dnl+deghl) = D7

where d; divides d;41 for 1 < 7 < n; + degh;. A basis for
the kernel of S(gi, ki) is then Q- B where B is a basis of the
kernel of D over Z,~. A basis for the kernel of D can be
obtained by examining vp(d;) for 1 < i < n; + deg h.

3. THE STRIPED SYLVESTER MATRIX

In this section, we recall the striped Sylvester matrix of m
polynomials, which is a generalization of the Sylvester ma-
trix of two polynomials. The striped Sylvester matrix will
be used to improve the running time of Algorithm 2.1 by
removing the loop in step 4.

For 1 <4< m,let hi = ([I/2, 9;)/9: = E;’;O h;i)xj where
n; = deg h; = n — n;. The striped Sylvester matrix (which
is a special case of Krylov matrices [1]) is the following n xn

matrix:

K(hi,... yhm) =
h.(()l) h(()m)
YN PR Y R T
Rl B
1y Nm
7 m

Note that when m = 2, K(hi,h2) = S(g2,01). We also
define r(hy,... ,hm) = vp(det K(h1,... ,hm)). If the poly-
nomials hi,...,hm are understood, we will use the abbre-

viation K = K(h1,... ,hm) and r =r(h1,... ,hm).

The main result in this section is given in Lemma 3.3, which
relates det K and disc(f). This result is used in the devel-
opment of our algorithm. We first state several properties
of K to prove the result. These results are generalizations
of similar properties of Sylvester matrices (see, for example,
[11]). We are not aware of these results in the literature,
although we remark that they are not difficult to derive.

LeMMA 3.1. det K = 0 if and only if deg(ged(ga,gs)) > 0
for somel <a<b<m.

Proof. First, note that det K = E:’;l ¢ihi for some ¢; €
Z[z] (not all zero) such that deg ¢; < n; (Theorem 7.1 of [8]).

Suppose det K = 0, and deg(gcd(ga,gs)) = 0 for all 1 <
a < b < m. Then for any 1 < a < n, we have —¢sh, =
Ei#aqfnh;. Since gq | hi for 7 # a, it follows that —¢aha =
gal for some | € Z[z]. But ga does not have a nontrivial
common factor with g for j # a, so ga | $a. By the degree
constraint, it follows that ¢, = 0. Thus, ¢, = 0 for all
1 < a < n, a contradiction.

Conversely, if g, and g5 have a nontrivial common factor
@, then ¢ | hi for all 1 < 7 < m because at least one of
ga and gp divides h;. Thus, ¢ | det K. If det K # 0, then
deg det K = 0, contradicting that deg¢ > 0. a

LEMMA 3.2. Let «;; be indeterminates, and g; =

ITi,(z — aij). Then

atk = [11 [ITL@s -0 @

i=1 j=i+1 k=11=1

Proof. Each coefficient of h; is an elementary symmetric
function of oj; for 5 # i. Now, det K is a homogeneous
polynomial of the coefficients of h; (of degree n;), so it must
be a symmetric function of «; j. Therefore each «;; has
degree at most E;"zl nr — n; in det K.

By Lemma 3.1, det K = 0 if and only if g.,gs have a
nontrivial common factor. That is, they have a common
root. Thus, det K is divisible by (o x —aj) for 1 <1< j <
m, 1 <k<ni 1<1l<n;. Hence, it is also divisible by the
RHS of (1) since the factors are relatively prime. Since the
RHS of (1) has degree >.;., nr — n; for each a; j, it follows
that the degree of each «; j on the LHS is also >, nx—n
Thus, the two sides differ by at most a constant factor.

To see that both sides are indeed equal, we note that both
sides have the term

m—1 n;
i1 J1CH T
i=1 k=1

This can be seen on the RHS of (1) by expanding the prod-
uct. For the LHS, we note that the coeflicients of h; are ele-
mentary symmetric functions of o ;. We examine the term
in the expansion of det K with entries of degree E‘<k n;
(in o]) for the stripe of hr. The sign in the expansion is
(- 1) i) =i nd g Furthermore, this is the only
p0551b1e way to obtain this term in the expansion for the
determinant. In the first n,, rows, we must choose entries
from the last n,, columns. For the next n,,_1 rows, again,
we must choose the second last stripe of n,—1 rows. Con-
tinuing this way, we see that this is the only way to produce
this term, so the coefficient of the term must be 1. a

LemMA 3.3. If f =TI, gi, then

disc(f) = (det K‘)2 H disc(gi).

i=1
Proof. By Lemma 3.2,

11T T - oo

i=1 j=i+1 k=11=1

(det K)

which is the product of squared differences of roots of g; and
gj for 1 # j. Since the product of squared differences of roots
of g; is disc(gi), the product of squared differences of the
roots in gi,g; for 1 < i < j < mis (det K)* 1, disc(gi).
The result now follows from the fact that the roots of f are
the roots of g; for 1 <1 < m. a

4. PROCESSING ALLFACTORS OF AFAC-
TORIZATION AT THE SAME TIME

When we examine Algorithm 2.1, we see that one factor is
processed in each loop iteration of step 4, and the kernels of
m — 1 Sylvester matrices are computed. We now show how

to process all factors of a factorization at the same time and
solve for the kernel of a matrix over Zpr only once. The
main tool we use is the striped Sylvester matrix described
in the previous section. The results given here are similar
to those given in [6, 7].

The next result relates the problem of linear diophantine
equations to a linear algebra problem.

PRrROPOSITION 4.1. Suppose det K # 0. Let 1 € Z[z] with
degl! < n. Then there exist unique polynomials ¢; € Z[z]
with deg ¢; < n; (1 <1< m) such that

(det K) = i dihi. (2)

i=1

Proof. We write I = 37" Iz’ where l; € Z, and ¢; =

Eyigl éi ;z'. Then (2) is equivalent to

K¢ = (det K) I, (3)
where f = [lo"-ln_l]T and ¢_; = [¢1,0"'¢1,n1—1"‘

bm,o - -¢m7nm_1]T. Since det K # 0, we can write
¢ = (det K) K7'I. (4)

The entries of (det K) K™ are in Z, so the unique solution
to (2) is ¢; € Z[z]for 1 < i < m. m

Suppose that det K = p“b for some b € 7Z such that
p | b. Applying the above proposition modulo p**' and
noting that b is invertible mod p™*!, we get the following
corollary.

COROLLARY 4.2. In order to compute ¢; € Z[z] such that
deg¢i < ni and p°l = 3.7, ¢ihi mod P, it suffices to
determine K mod p*t!.

The following is a technical lemma that is required in the
proof of our algorithm.

LEMMA 4.3. Let gi,u; € Z[z] (1 <1 < m) be monic poly-
nomials such that det K # 0 and g; = u; mod pr+1 . Then
r=r(d1,... ,4m), where 4; = (H;"=1 uj)/ui.

Proof. Since det K(d1,...,4m) = det K + p"t1 for
some | € Z, we have det K(d1,...,%m) = p*(b + pl) for
some b € Z with p 1 b. It follows that p { (b + pl) and
hence det K(@1,...,4m) = p"B where p { B. Thus, r =

I‘(’al,...,’am). i
The following theorem provides a characterization of all fac-
torizations of f in 7 «[z], leading directly to our algorithm.

THEOREM 4.4. Let p € 7 be prime, k € N, and f,g1,...,
gm be monic polynomials in Z[z]. Suppose that:

1. f=T1I2, gi mod p*;
2. det K # 0;
3. k> vp(disce(f)).

Then there exist monic uy,. ..

yum € Zypy[z] such that f =
II72, ui in Zpy[#], ui = gi mod pFT.

Proof. First, Lemma 3.3 remains true for factorizations
modulo p*, so

dise(f) = (det K)* [] disc(gi) + "1

i=1

for some | € Z. Now, k > vp(disc(f)) and hence k& >
vp((det K) []2, disc(gi)). But 2r = vp((det K)?), so k >
2r.

Now, we show by induction on 7z > 1 how to construct
¢;i € Z[z] with deg ¢;,i < nj, such that if

f= H A; mod pEti—t (5)
Jj=1
with A4; € Z[z], A; = g; mod p*~™, and A4; is monic, then

F=Tl4 +05 7 ¢;:) mod p*ti.

—

1

J

Note that A; +p* "t 714, ; is monic since deg; ; < n;.

From (5), f = [[j~, A; + p**=1] where | € Z[z] and
degl < 7L, nj = n (f and [];Z, A; are monic). Since
A; =g; mod p* " and k > 2r, we have r = r(fi],. .. ,Am)
by Lemma 4.3. By Corollary 4.2, there exist ¢;,; € Z[z] with
deg ¢; ;i < mj such that

pl= i bji H A: mod p~tt.

=1 t#§
Then
m
k—rti— \
F=TJA+p" 7 50
j=1
m . m .
=f-[[4 -7 D ¢ [[4 mod p**
j=1 j=1 t#£j
m
— pk—rti-1 "1 _Z HA d k+i
=p p b ¢ mod p
=1 t#§
=0 mod pk+i.

Thus, u; = gj + 35, 0* T 7 ¢;.i € Zp[z] have the desired
properties. - |

By Theorem 4.4, given a factorization f = [['2, gi; mod p*

into monic irreducible factors, all factorizations into monic
irreducible factors must have the form

f= H(g, —|—pk_r¢,') mod pk. (6)

i=1

To find all solutions ¢; of (6), we see that
f= ﬁgi +p"" (i qﬁnh,) mod p*
i=1 i=1
s0=p"" (i ¢,»h,») mod p*
i=1
e0= (i qS,'h,') mod ¥,
i=1

which is equivalent to computing the kernel of K modulo p*.
Note that p* is smaller than p*, and is bounded by prk/ﬂ .
Therefore, we only need to compute K mod prk/ﬂ .

5. ALGORITHM

We now state the algorithm to handle all factors at the same
time.

ALGORITHM 5.1. Algorithm to compute all factorizations
in Z[z]-

Input: a monic polynomial f € Z[z], k such that k >
vp(disc(f)), and pairwise relatively prime, monic irre-
ducible polynomials g1,... ,gm such that f =[]~ gi
mod p*.

Output: all factorizations of f in Z,[z] into monic drre-
ducible factors.

1. If m = 1, then output “f is irreducible” and stop.

2. If vp(disc(f)) = 0, then output “f = [[ir, gi modp®”
and stop.

3. Compute hi = flgi for 1 < i < m, and form the
striped Sylvester matriz K mod prk/ﬂ .

4. Compute r = vp(det K).

5. Compute the kernel of K over Zpr, which gives all fac-
torizations
m
f= Hugal"” @) mod pk
i=1
such that

u(.al"” aj) =g; mod pk_r,

i

along with the ranges of the parameters aq,...,a;. O

Note that our algorithm is much simpler than Algorithm 2.1.
In Algorithm 2.1, the lifting step dominates the running time
of each iteration. By processing all factors at the same time,
the lifting step is eliminated and we need to solve for the
kernel only once. The size of the matrix is the same as that
formed in the first iteration of Algorithm 2.1. Therefore,
our approach requires no more work than one iteration of
Algorithm 2.1.

EXAMPLE 5.2. Let us consider the example from [6, 7]. Let
f=2z%+9z* +152% + 542% + 36z + 81, p = 3, and k = 15.
One factorization of f in Zk[z] is f = g1g2gs mod p* where
g =x+3, g2 =z + 6006780,
gs = z? + 8342136z + 6483495.

We get

hi =z +92° + 12z + 27,
ho =z +31052% + 12302® + 2754z + 3681,
hs = z° + 3465z° + 3z + 3834,

and so

27 0 3681 3834 0

12 27 2754 3 3834
K=|9 12 1230 3465 3 s

1 9 3105 1 3465

0 1 1 0 1

all modulo prk/ﬂ. We find that v = 6, and a basis of
the kernel of K over Zp- 1s seen to be {35 -[0,2,1,0,0]7,
3*.[8,0,0,1,0]",3% - [0,4,24,0,26]" }. Thus, we can write
all 729 factorizations of f as f =[]~ ui mod p* where

w =g1 +3°((2-3°a1 +4-3° -a3)z + 8- 3"a),
w = g2 +3° (3% + 24 - 3%),
u = gs + 39(26 -3z + 34052),
and 0 < a1 <3,0< a2 <9,0<as <27. 0

The problem of finding all factorizations of f in Z,[z] re-
duces to the problem of computing the kernel of K over Zr.
The complexity of the reduction is simply the complexity of
forming K mod prk/ﬂ . To simplify our complexity results,
we define M (t) to be the complexity of multiplication of two
t-bit integers.

THEOREM 5.3. The entries of K mod prk/ﬂ can be com-
puted in O(n®> M(klogp)) bit operations.

Proof. For 1 < i < m, we compute h; = f/g; in O(nn;)
multiplications, each involving coefficients of size O(klog p).
Thus, to compute all the coefficients in K mod prk/ﬂ, we
need to perform a total of O(n*M (klogp)) bit operations.
[}

6. TRIANGULARIZATION OF STRIPED
SYLVESTER MATRICES OVER Zpk

It is possible to find parameterized solutions of the kernel of
K modulo p* by using the Smith Normal Form as done in
[6, 7]. The fastest Smith Normal Form algorithm that we
are aware of [10] can be used to compute the Smith Normal

Form of K in
O(n” log nlog B + n” log nlog M (log B))

bit operations, where 8 = (1/np")" and O(n") is the arith-
metic complexity of multiplying two n X n matrices. As
such, we can find a basis for the kernel in the same number
of operations, and the complexity of Algorithm 5.1 becomes

O(n” log nlog B + n” log nlog BM (log 8)),

which is already a significant improvement over Algorithm
2.1 of von zur Gathen and Hartlieb.

In fact, the Smith Normal Form provides more information
about the matrix than is required for our kernel computation
problem. Instead, we can apply the algorithms of Buchmann
and Neis [3] or Storjohann (Chapter 4) [10] to triangularize
matrices into special forms over Zpr in O(n® M (rlog p)) and
O(n“ M(rlogp)) bit operations, respectively. Using these
algorithms, we can obtain the kernel of a matrix over Zyr in
the same time. Thus, we can further reduce the complexity

of Algorithm 5.1 to O(n* M (klogp)) because r < k.

The dominant cost of our algorithm is no longer attributed
only to the kernel computation. It is now important to also
consider the cost of computing the discriminant and det K,
both of which are determinants of structured matrices. The
determinant of a matrix over Z x can also be obtained once a
triangular form over Z .« is determined. Thus, the problems
of computing the kernel of K, computing det K, and deter-
mining whether k > vp(disc(f)) = vp(det K(f, f')) have the
same complexity as triangularizing matrices over Z . Using
the matrix triangularization algorithms mentioned above,
the overall complexity of Algorithm 5.1 is O(n* M (klog p)).

6.1 Computing Determinants of Striped
Sylvester Matrices

The triangularization algorithms mentioned above work on
general matrices and do not take advantage of the structure
present in the striped Sylvester matrix. We now present an
algorithm which takes advantage of the special structure to
compute the determinants of striped Sylvester matrices over
Z pk. As such, the algorithm is more efficient than algorithms
for general matrices. We note that the computation of the
kernel is still the dominant cost of the algorithm.

If we relate the columns of the ith stripe of K as the poly-
nomials z’h;(z) (0 < j < n;) and the rows of K as the
coefficients of z’, then kernel of K is the same as the solu-
tions 4(z) = (u1(z),... ,um(z)) to the polynomial equation

ur(z)hi(z) + - - + tm(z)hm(z) = ord(z"), (7)
where degu;(z) < n; and ord(z") denotes a power series
r(z) whose coefficients for 1,z,... ,z" ! are zero. More
generally, we have the polynomial equation

ur(z)h1(z) + -+« + um(z)hm(z) = ord(z?), (8)

where deg u;(z) < n; and 0 < o < n.

If the polynomials in (8) have coefficients over the quo-
tient field F of an integral domain, the FFFG (Fraction-Free
Fast Gaussian) elimination algorithm of Beckermann and
Labahn [1] solves the equation by computing a module basis
of the solutions. That is, it computes a set of polynomials

{(0) = @ @)....
such that all solutions #(z) can be expressed as
() = cx()ita (o) + -+ + ()i (o),

with ¢;(z) € F[z]. The module basis is given by the columns
of a unimodular matrix polynomial M, computed by the
algorithm. We can view the solutions to (8), and hence
the columns of My, as the column operations required to
eliminate the columns for the first ¢ rows. By increasing
the value of o, we can view (8) as a matrix triangularization
problem.

,ufm) (z)) : di(z) satisfies (8)},

We now give a brief overview of a simplified version of the
FFFG elimination algorithm modified to work over Z,s for
s > 1 (Algorithm 6.1). Asnoted above, the algorithm can be
viewed as a matrix triangularization algorithm. Instead of
performing the elimination in a fraction-free way, we choose
pivots based on the p-adic valuation of the non-zero elements
to ensure that all operations can be performed in Zps and
are invertible. We set the multi-index 7 = (n1,... ,nm)

where n; = deggi. The ith component of 7 indicates the
number of columns in the ¢th stripe of K. In the algorithm,
the 7th component of the vector ¥, records the number of
columns from the ¢th stripe that have been used as pivots
in the elimination process after o steps. At each step, the
degree of the (7, j)th entry of M, is bounded by i 1445,
where 17,(,1) denotes the ith component of ¥, and §;; is the
Kronecker delta.

The algorithm maintains only one column in each stripe to
improve efficiency. The column maintained for stripe ¢ is

the one corresponding to :Ba‘(’l)h.-. Once a column has been
chosen as a pivot, the next column in the stripe can be com-
puted. This can be done efficiently by multiplying by z and
then subtracting a proper multiple of the current columns
from the remaining stripes to satisfy the degree constraints.
Thus, we can view the ith column of M, as the linear com-
bination of the pivot columns to eliminate the first o rows
of the current column in the ¢th stripe. To simplify the al-
gorithm, we do not maintain the matrix K itself, but rather
the transformation matrix M, to triangular form as in [1].
We also compute only +det K as we are only interested in
the p-adic valuation of det K.

In steps 1-5, a non-zero element with the least p-adic val-
uation is chosen among the current columns of each stripe
as the pivot. The determinant of the matrix is simply the
product of all the entries used as pivots during the elimi-
nation process. In step 8, row o of the current column in
each non-pivot stripe is eliminated, and in step 9, the next
column in the pivot stripe is eliminated and updated to be-
come the current column in that stripe. We refer the reader
to [1] for more details on the FFFG elimination algorithm.

ALGORITHM 6.1. Modified FFFG elimination over Zps.

Input: a vector of polynomials h= (h1,... yhm), a mult:-
indez 1 = (n1,... ,nm), n =deg f, and s > 1.

Output: d = +det K mod p°.
Initialization: Mo < I,,, d < 1, 7 0.
Iterative Step: foroc =10,1,2,... ,n —1:
1. Calculate for £ =1,... ,m:

r coefficient (ﬁ ML ,z7).

2. Let t = minj<s<m vp(r(l)).

3. Define set A = Ay = {£ € {1,...
0, vp(ry=t, 79 < 7},

4. If A = {} thend « 0, return.

5. Otherwise, let Upp1 < Do + €x, where m € A, and
€x 1S the wth unit vector.

6. Updated: d « d-r'™ mod p°.
7. Calculate for £ = 1,... ,m, £ # w, the leading
coefficients:

,m} : r8) #

(£) _q.
PO coeﬁicient(M,(,fg’"),mﬂ" _1).
8. Increase order for£ =1,... ,m, £ # w:
MU e MO — MO - (2O fpt) - (1)

mod p°.

9. Increase order for £ = m and adjust degrees:
MUT ez MO =3 MU PO mod p.
t#r

Return: d (which is £ det K mod p*®). o

ExaMPLE 6.2. Consider the polynomials in Ezample 5.2:
hi =2 +92° + 12z + 27,
ho =z +31052% + 12302% + 2754z + 3681,
hs = ©° + 3465z + 3z + 3834,
modulo prk/ﬂ = 3%, We wish to compute r, so we compute
+det K over Zgs. We run Algorithm 6.1 with i = (2,1,2)

and n = 5.
When o = 0, we have

- Mo = (h1,hs,hs).

We now eliminate the coefficients corresponding to ©° = 1.
We see that ho has the least p-adic valuation in its constant
coefficient, so that t = v,(3681) = 2 and m = 2. Using
the constant coefficient of ha as a pivot, we eliminate the
constant coefficients of h1 and hs to get

1 0 0
M,; = |5406 =z 15
0 0 1

Then
F-M; = (5406z" + 2593z° + 3096z> + 1227z,
z° + 3105z + 1230z° + 27542 + 3681z,
152" 4 649z° 4 223227 + 1947z),

and d = 3681.

In the nest iteration, o = 1, we see that vp(1227) =
vp(1947) = 1 has the least p-adic valuation in the coefficient
of ¢, and step 5 of the algorithm chooses 1 = 1 to break
the tie. Using the first element of h-M; to eliminate the
coefficient of = in the remaining elements, we obtain

z 4 3096 6558 6014
M, = 6426 r 43465 1944|
0 0 1

where now
h-M, = (6427z" + 3834z° + 6168z”,
z° + 9z* + 1222 + 27:1:2,
1944z" + 60152° + 1458z%),

and d = 810.
The intermediate results obtained for the remaining val-
ues of o are:

o=2 h-M, = (6427z" + 3834z> + [6168]z,2° + 9z +
122° 4 272%,19442* + 6015z° 4 14582°), n = 1, d =
810,

o =3: h-Ms = (2°4+3105z" +12272°, 25 + 3105z +12272°,

5103z* 4| 6015®), # = 3, d = 3888.
o =4: h-M4 = (z° +189z", 2% + 189z*,[6015]"), = = 3,

d = 2916.

Thus, r = vp(d) = 6.

We can also view the elimination process in terms of ma-
triz triangularization. After the elimination step for o = 0,
we obtain the matrix

0 o0 [3681] 0o 0

1227 27 2754 1947 3834
3096 12 1230 2232 3)
2693 9 3105 649 3465
5406 1 1 15 1

where the bozed element is the pivot chosen during the elim-
ination process. After the elimination step for o = 1, we

obtain the matriz
0 0 3681 0 0

0 2754 0 0

3096 6168 1230 1458 1542
25693 3834 3105 6015 2052
5406 6427 1 1944 514

Continuing on, the final triangular matriz obtained by the
algorithm is

0o o [5es]
0

0
2754 0
3096 1230 0

2593 3834 3105
5406 6427 1 5103

0
0
0
0

The bit complexity of the FFFG elimination algorithm is
O(mn® M (slogp)) [1], which is better than the triangular-
ization algorithms for general matrices when m is small.
This should not be surprising—K has more structure when
m is small relative to n. Therefore, we should use this algo-
rithm to compute the determinant when m is small.

THEOREM 6.3. The bit complexity of computing whether
k > vp(disc(f)) is O(n* M(klogp)) and the complexity of
computing r is O(mn* M(klogp)).

Proof. Each of these quantities can be obtained by
computing the determinant of a striped Sylvester matrix
over Z,.. Applying Algorithm 6.1 gives the bit complexity
O(mn®*M(klogp)). To compute k > v,(disc(f)), we only
have to compute det K(f, f') over Zpky 80 m = 2 is a con-
stant. 0O

THEOREM 6.4. All factorizations of f in Z x[z] can be com-
puted by Algorithm 5.1 in O((n* + n’*m)M (klogp)) bit op-
erations.

Proof. The computation of the kernel of K over Z,r can
be computed by Storjohann’s algorithm (Chapter 4, [10])
in O(n” M(rlogp)) bit operations. The result now follows
from r < k and Theorem 5.3. a

We note that if we take w = 3, the cost of the kernel compu-
tation is still the dominant cost, so the overall complexity of
our factorization algorithm is O(n® M(klogp)) in this case.

7. CONCLUSIONS AND FUTURE WORK

We have described an algorithm for factoring a polynomial f
in 7 ,«[z], which can be used to factor polynomials in Z n{z].
Our algorithm improves over that of von zur Gathen and
Hartlieb [6, 7] by processing all factors of a factorization at
the same time and computing the kernel and determinants of
matrices over Z ,» more efficiently. Although our algorithms
have been stated for polynomials over Z n[z], they can easily
be adapted to any coefficient ring R with the same properties
as those stated in [6, 7]. For example, we can have R =
Fq[y], the univariate polynomials over a finite field. The
complexity results will be different, but our algorithm is
still more efficient than that in [6, 7] because our algorithm
performs no more operations than the first iteration of their
algorithm.

One of the computational bottlenecks of our algorithm is
the computation of the kernel of a structured matrix over
Zipe. It would be of interest to compute the kernel by taking
advantage of the matrix structure. Unfortunately, the tri-
angular matrix obtained by the modified FFFG elimination
algorithm does not appear to help in computing the kernel
of K over Zpr, except when r = 1 so that Zpr is a field. A
difficulty in taking advantage of the structure of K in ker-
nel computation algorithms is that the order of the columns
used as pivots in the elimination process is typically dictated
by some variant of an extended Euclidean algorithm.

We would also like to investigate algorithms to obtain all
factorizations in other non-unique factorization domains. In
particular, we are interested in efficiently finding all factor-
izations over a differential polynomial domain.

8. ACKNOWLEDGEMENTS
The authors would like to thank the referees for their helpful
suggestions and corrections.

9. REFERENCES
[1] BECKERMANN, B., AND LABAHN, G. Fraction-free
computation of matrix rational interpolants and
matrix GCDs. SIAM J. Matriz Analysis and
Applications 22, 1 (2000), 114-144.

[2] BorkvicH, Z. I., AND SHAFAREVICH, . R. Number
Theory. Academic Press, 1966.

[3] BucHMANN, J., AND NEIs, S. Algorithms for linear
algebra problems over principal ideal rings. Tech. rep.,
Technische Hochschule Darmstadt, 1996.

[4] CuisTov, A. L. Efficient factorization of polynomials
over local fields. Soviet Mathematics, Doklady 35, 2
(1987), 430-433.

[5] CuisTov, A. L. Algorithm of polynomial complexity
for factoring polynomials over local fields. Journal of
Mathematical Sciences 70, 4 (1994), 1912-1933.

[6] vON ZUR GATHEN, J., AND HARTLIEB, S. Factoring
modular polynomials. In International Symposium on
Symbolic and Algebraic Computation (1996),
pp- 10-17.

[7] vON ZUR GATHEN, J., AND HARTLIEB, S. Factoring
modular polynomials. Journal of Symbolic
Computation 26, 5 (1998), 583-606.

[8] GEDDES, K. O., CzaPOR, S. R., AND LaBAHN, G.
Algorithms for computer algebra. Kluwer Academic
Publishers, 1992.

[9] SHAMIR, A. On the generation of polynomials which
are hard to factor. In Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing (1993),
pp- 796-804.

[10] STORIOHANN, A. Algorithms for Matriz Canonical
Forms. PhD thesis, Department of Computer Science,
Swiss Federal Institute of Technology—ETH, 2000.

[11] vaAN DER WAERDEN, B. L. Algebra, vol. 1.
Springer-Verlag, 1970.

