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ABSTRACT 
To support the rapid growth of the web and e-commerce, W3C 
developed DOM as an application programming interface that 
provides the abstract, logical tree structure of an XML document. 
In this paper, we propose ordered-set-at-a-time extensions for 
DOM while maintaining its tightly managed navigational nature. 
In particular, we define the NodeSequence interface with 
functions that filter, navigate, and transform sequences of nodes 
simultaneously. The extended DOM greatly simplifies writing 
some application code, and it can reduce the communications 
overhead and response time between a client application and the 
DOM server to provide applications with more efficient 
processing. As validation of our proposals, we present application 
examples that compare the convenience and efficiency of DOM 
with and without extensions.   

Categories and Subject Descriptors 
I.7.1 [Document and Text Processing]: Document and text 
editing– document management, languages, DOM; H.2.4 
[Database Management]: Systems– textual databases, DOM.  

General Terms 
Design, Standardization, Languages. 

Keywords 
DOM, set-at-a-time, navigation, XML, application program 
interface. 

1. INTRODUCTION 
W3C, the World Wide Web Consortium, proposed XML to 
facilitate information interchange and integration from 
heterogeneous systems [14]. XML is a semantics-independent 
markup language useful for data that may or may not conform to a 
rigid and predefined schema. It is being developed by industry as 
a universal data representation format. Two APIs (application 
programming interfaces) are commonly used to process XML 
documents: SAX (Simple API for XML) and DOM (Document 
Object Model). A SAX parser provides a simple interface that 
does not pass information to applications about the nesting in a 

document [5]. On the other hand, the DOM interface represents a 
parsed XML document as an abstract tree structure that consists 
of objects [11]. As a result DOM trees can be directly stored in an 
object database, and an application can access the XML data in 
any order, update the content as needed, and restructure the 
document via this interface.  

DOM provides access to XML data through a set of interfaces that 
allows an application to traverse the DOM tree beginning from 
the document root. For example, by calling various methods an 
application can move from any node to its children, parent, or 
immediate siblings, one step at a time. However, although DOM 
can identify one node’s children as a NodeList through a single 
method call, it cannot get all those children’s children in one 
additional operation. Therefore the application programmer must 
write a loop to process each node in turn. For example, assume an 
application is using a catalog illustrated as a simplified DOM tree 
in Figure 1. To obtain a list of all book authors, it could invoke 
C++ code as follows (using the Apache Recommended C++ 
Language bindings [1]): 

DOM_Document  doc = par ser . get Document ( ) ;  
DOM_NodeLi st  books = doc.  
                     get El ement sByTagName( " book" ) ;  
unsi gned i nt  numBooks = books. get Lengt h( ) ;  
DOM_Node bookAut hor s [ MAX_NUM] ;  
i nt  k=0;  
f or  ( i nt  i =0;  i <numBooks;  i ++)  
{  DOM_Node aut hor s = books. i t em( i ) .  
                   get El ement sByTagName( " aut hor " ) ;  
  unsi gned i nt  numAut hor s = aut hor s. get Lengt h( ) ;  
  f or  ( i nt  j =0;  j <numAut hor s;  j ++)  
    bookAut hor s[ k++]  = aut hor s. i t em( j ) ;      
}   

In this example, a list of all books can be retrieved in one 
operation, but each book’s author list and subsequently each 
individual author must be retrieved by looping. (A nested loop is 
also required for the complementary approach: retrieve all author 
elements directly and then check the tag name of each parent for a 
match to “book.” ) Furthermore, for an application to produce 
robust code, checks must also be included to ensure that the result 
array size is sufficiently large. Such a situation often arises, where 
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Figure 1. Element relationship in simple structure 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
DocEng’03, November 20–22, 2003, Grenoble, France. 
Copyright 2003 ACM 1-58113-724-9/03/0011…$5.00. 



we need to manipulate all elements of a node collection in a 
similar loop, and it would be useful to express this as a single 
operation. In this paper we provide some extensions to DOM for 
operating on collections of nodes. 

The idea to support operations for sequences of nodes comes from 
other environments in which set-at-a-time data access has been 
shown to be worthwhile. The best-known examples include 
relational and object-relational database systems (as opposed to 
earlier, navigational hierarchic and network systems) and array-
processing languages such as APL (as opposed to earlier 
languages such as Fortran and Cobol).  These systems support 
operations for collections of data that do not require a user to 
iterate through the collection element by element.  

For XML, W3C produced the XQuery language [16], which is 
based on processing collections of nodes and includes subtree 
matching and extractions through XPath [15] and operations to 
construct and combine node sequences [17]. XQuery is designed 
for applications that need complex extractions from large XML 
collections, and it requires that the data be fully validated using 
XML Schema. DOM, on the other hand, is tailored for 
applications that maintain (query, manipulate, and update) 
individual documents, whether or not they have an associated 
schema. Whereas W3C is considering a candidate 
recommendation to support XPath from within the DOM 
framework [13], operations such as concatenate, distinct, insert, 
sublist, intersect, except, filter, and sort are not provided in the 
DOM interface.  

For applications that use DOM, we propose to add new light-
weight functions that operate on simple sequences. Obvious 
advantages of such a solution are flexible application, ease of use, 
efficiency, and tight integration with the application environment. 

After defining the extensions in Sections 2 and 3, we present the 
results of experiments and analysis in Section 4 to demonstrate 
the efficiency gains from this approach. 

2. DESIGNING EXTENSIONS TO DOM 

2.1 Set-at-a-time Processing  
The Core DOM interface provides an application with a sequence 
of child nodes for a given parent through the NodeList interface, 
which provides only two limited operations: the attribute length 
holds the number of nodes in a list, and the method item(i) returns 
the i th item in a list [11]. This idea is extended in DOM Level 3 to 
a sequence of names and a sequence of strings through the 
NameList and DOMStringList interfaces, respectively [12]. The 
DOM Level 3 XPath specification includes the XPathResult 
interface, which provides a sequence of matched nodes through an 
iterator [13]. However, there is no interface in DOM that provides 
a rich set of operators on an application-defined collection of 
nodes. 

Our proposal defines the NodeSequence interface in order to 
provide two types of methods based on the Core’s NodeList 
interface:   

• mapping Node operations to every node in a NodeSequence: 
These methods operate on each node in the NodeSequence 
<n1, n2, … ,nk> and produce a sequence of nodes <f(n1), 
f(n2), … ,f(nk)>. For example, getParents() extends the 

attribute parentNode for one node to achieve that effect for 
each node in a given collection.  

• manipulating the NodeSequence itself: Such methods include 
concatenating two sequences of nodes, sorting a sequence of 
nodes, extracting a subsequence of nodes, transforming a 
sequence of nodes, eliminating duplicates, and so on. 

The NodeSequence interface is described more fully in Section 3. 

2.2 Detailed Design Considerations 
In designing extensions to a language or API, it is important to 
respect its modality. For DOM, this means close coupling of an 
application with document access, so that “programmers can build 
documents, navigate their structure, and add, modify, or delete 
elements and content”  [11].  In fact, a major reason for the paucity 
of operations on a NodeList is so that it can be “ live, that is, 
changes to the underlying document structure are reflected in all 
relevant NodeList … objects.”  

It is intended that the NodeSequence interface provide 
applications with more convenience at the cost of sacrificing 
liveness. However we need to strike a balance between the 
convenience provided to an application when operators are high 
level and potentially highly optimizable (typical of XQuery, for 
example) and the close integration provided by the DOM Core. 

2.2.1 Include Copies or References 
In the DOM Core, navigation is restricted to one node at a time. It 
is left to the application to determine whether to copy this node 
(e.g., via cloneNode) or to reference the original (via a reference 
or pointer). In the NodeSequence interface, a collection of nodes 
is returned at one time. When an operation concatenates two 
NodeSequences, for example, should the new sequence contain 
copies or references to the nodes in the arguments? As explained 
below, it is usually preferable to return references. 

• Access to context 

Duplicate nodes as defined by cloneNode have no parents. Thus, 
access to their ancestors or siblings is not preserved. 

• Updatability 

A collection of references to nodes can be used as a handle to 
manipulate those nodes. For example, an application that wishes 
to delete the referenced nodes from the DOM tree can remove 
them directly. If, however, the application is given a sequence of 
copies, it must traverse the DOM tree to locate those nodes that 
have equal values to the nodes in the sequence.  Even so, in the 
presence of duplicate structures such an application cannot 
identify which structure is intended to be deleted, even if it uses a 
deep equality test. 

• Storage consumption  

When the node size is large, storing references rather than copies 
will save significant storage. 

• Speed 

Creating a sequence of  node references is efficient and easy to 
implement. If we instead make a copy of each node, and 



especially if we choose to make a deep copy, more execution time 
is required. 

• Well-formedness 

Of course, if an application inserts a single node or a sequence of 
nodes into a DOM tree, it must ensure that the nodes are not 
already present elsewhere in the tree. The simplest approach is to 
use a copy of these nodes so that the result is guaranteed to be a 
tree. 

2.2.2 Comparison Among Nodes 
In the NodeSequence interface, many operations compare 
collections of nodes. For text and attributes nodes, comparisons 
based on values are often required by applications. For other types 
of nodes, such as element nodes, applications typically require 
object identity. Thus, we provide a parameter to allow 
applications to choose whether comparisons are to be done by 
object or by value.   

2.2.3 White Space Consideration 
White space is often used in well-formed and valid XML 
documents to set apart markup for better readability and clarity. 
Although such white space is neither data nor markup, in the 
absence of validation, XML parsers must process all white space 
as data. This can occasionally cause surprising results. 

For example, a section of an XML document and a corresponding 
NodeSequence <1,6> may be represented by a simplified DOM 
tree structure as shown as Figure 2. A naïve use of the method 
mapChildNodes would return a NodeSequence whose length is 8, 
if it were to mimic the childNodes attribute defined for a single 
node in DOM. Most users, however, would expect the result to 
have 3 children only, corresponding to nodes 2, 3, and 7. The 
reason for the unexpected result is that five text nodes containing 
white space only are (correctly) included as children. To avoid 
such surprising results and to simplify application programming 
without resorting to element-at-a-time navigation, a parameter for 
node type is provided in our proposed method mapChildNodes. 

Thus, a call of mapChildNodes(ELEMENT_NODE) will return 
only nodes of type “element”  and therefore the expected result. 

3. The NodeSequence Interface 

3.1.1 Basic Operations 
The NodeSequence interface starts with the same definition as 
NodeList interface, except that the requirement for liveness is 
removed. In particular, the attribute length holds the number of 
nodes in a sequence, and the method item(i) returns the i th item. 

3.1.2 NodeSequence constructors 
Two constructors are defined: the first converts an individual 
node into a NodeSequence, and the second converts a NodeList 
into a NodeSequence. In particular, 

NodeSequence cr eat eNodeSequence ( i n unsi gned shor t  
num) ;  

is added to the Node interface. A NodeSequence is constructed 
with num (repeated) references to the object Node. 

NodeSequence cr eat eNodeSequence( ) ;  
is added to the NodeList interface. A NodeSequence is 
constructed containing the sequence of items included in the 
object NodeList. 

3.1.3 Mapping Node Operations to Sequences 
Table 1 summarizes operations of the NodeSequence interface 
that simply extend attributes and methods of the Node interface. 

For Node operations of the form fi: Node → Node (that is,  
parentNode, firstChild, lastChild, previousSibling, nextSibling 
and cloneNode), the corresponding newly defined operations for 
sequences Fi: NodeSequence → NodeSequence will include null 
in the resulting sequence wherever the object node is null or the 
returned value corresponding to that object node is null.  Thus, for 
example, given the node sequence s = <2, null, 3, 6> 
corresponding to Figure 2(b), s.mapParentNode() will return the 
sequence <1, null, 1, null>. This ensures that the object and 
resulting NodeSequences are aligned. 

On the other hand, for operations that return either a NodeList or 
NamedNodeMap (that is, childNodes and attributes) where no 
alignment is possible, the corresponding resulting NodeSequence 
will contain the concatenation of the underlying result collections 
with no null values included. Looking again at Figure 2(b) and 
assuming s contains the sequence <1, null, 3, 6, 8>, 
s.mapChildNodes(ELEMENT_NODE) will return the sequence 
<2, 3, 5, 7>. 

For those operations that match nodes in the argument with nodes 
in the object NodeSequence, namely mapAppendChild and 
mapRemoveChild, if the lengths of the two lists are not equal, an 
exception is thrown. 

In consideration of increasing expressitivity for this type of 
mapped operations, a discussion about including a generalized 
map operator is included in Section 5 below. 

3.1.4 Collection Operations on Sequences 
Table 2 summarizes operations that manipulate NodeSequences 
independently of the values of the nodes in the collection. The 
first two (concatenate and reshape) build new sequences from 

 
<name> 
      <surname> Prime </surname> 
      <forename>Tom </forename> 
</name> 
<name> 
       <surname> Robus </surname> 
</name> 

(a) Document fragment 
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(b) Structure corresponding to NodeSequence <1,4>  

Figure 2. Simplified DOM representation of XML 



existing ones.  Given the node sequence s = <2, null, 3, 6>, 
s.concatenate(s) produces the sequence <2, null, 3, 6, 2, null, 3, 
6> and s.reshape(6) produces the sequence <2, null, 3, 6, 2, null>. 
The next five functions (subList, filterNodeType, filterTagName, 
filterValue, and filterNonNull) extract subsequences based on 
position, type, tag, value, and whether or not the value is null, 
respectively.  Sort and distinct are complementary operations 
commonly provided in database languages. The final two 
operations (subtract and intersect) are adapted from set operators 
to work on sequences.  (Note that the effect of union can be 
achieved by applying concatenate followed by distinct.) 

3.1.5 Example 
Consider again the example given in Section 1. Obviously, much 
of the code when using the DOM Core is for looping over a 
collection of nodes, which is simplified with the NodeSequence 
interface, as follows: 

 

DOM_Document  doc = par ser . get Document ( ) ;  
DOM_NodeLi st  books = doc.  
                     get El ement sByTagName( " book" ) ;  
DOM_NodeSequence names = books.  
                  cr eat eNodeSequence( ) .  
                  mapChi l dNodes( ELEMENT_NODE) .  
                  f i l t er TagName( " aut hor " ) ;  
 
Consider next the communication messages exchanged between 
the client and the DOM server. Let m be the number of books and 
n be the number of authors in the catalog. Using the DOM Core, 
the number of method invocations, each of which might require a 
message sent to the server and a reply back to the client, is 
2m+n+3. Using NodeSequence, the number of messages is 
always constant, 5. Therefore, the extensions also reduce the 
communications overhead and response time between a client and 
a DOM server. 

Table 1. Map Node operations to NodeSequence  

mapPar ent Node( )  ≡ return a NodeSequence referencing each 
node’s parent 

mapFi r st Chi l d ( i n unsi gned shor t  t ype)  ≡ return a 
NodeSequence referencing each node’s first child of the 
specified node type. 

mapLast Chi l d ( i n unsi gned shor t  t ype)  ≡ return a 
NodeSequence referencing each node’s last child of the 
specified node type. 

mapPr evi ousSi bl i ng ( i n unsi gned shor t  t ype)  ≡ 
return a NodeSequence referencing the closest preceding 
node of the specified node type. 

mapNext Si bl i ng ( i n unsi gned shor t  t ype)  ≡ return a 
NodeSequence referencing the closest following node of the 
specified node type. 

mapChi l dNodes ( i n unsi gned shor t  t ype)  ≡ return all 
of this NodeSequence’s children having the specified node 
type.  

mapAt t r i but es( ) ≡ return all of the attributes of a 
NodeSequence (as a sequence of nodes). 

mapAppendChi l d ( i n NodeSequence chi l dr en)  ≡ 
append a copy of the subtree rooted by each node of 
children to the end of the list of children for the 
corresponding node in the object NodeSequence. 

mapRemoveChi l d ( i n NodeSequence chi l dr en)  ≡ for 
each node of children, remove it from the children of the 
corresponding node in the object NodeSequence. 

appendChi l dr en( i n NodeSequence chi l dr en)  ≡ append 
copies of the complete NodeSequence children to the list of 
children of each node in the object NodeSequence.  

r emoveChi l dr en( i n NodeSequence chi l dr en)  ≡ remove 
all occurring nodes of children from the list of children of 
each node in the object NodeSequence. 

mapCl oneNode ( i n bool ean deep)  ≡ return a 
NodeSequence in which each node is a new copy by value 
of the object NodeSequence. 

 

         Table 2. Manipulate NodeSequences 

concat enat e ( i n NodeSequence nodes)  ≡ return the 
concatenation of all members of the object NodeSequence 
with all members of nodes appended. 

r eshape ( i n unsi gned l ong num)  ≡ generate a 
NodeSequence equal to the first num members of the 
repeated concatenation of the object NodeSequence with 
itself. Adopted from APL. 

subLi st  ( i n unsi gned l ong st ar t i ndex,  i n 
unsi gned l ong l engt h)  ≡ return a section of this 
NodeSequence beginning at position startindex and ending 
at startindex+length-1. 

f i l t er NodeType ( i n unsi gned shor t  t ype)  ≡ return 
the subsequence of nodes matching type. 

f i l t er TagName ( i n st r i ng t ag)  ≡ return the 
subsequence of element nodes having tag name tag. 

f i l t er Val ue ( i n st r i ng val ue)  ≡ return the 
subsequence of text nodes matching the string value. 

f i l t er NonNul l  ( )  ≡ return the subsequence of non-null 
nodes. 

di st i nct  ( i n bool ean byVal ue)  ≡ return a 
NodeSequence that retains the first copy of each node in the 
object NodeSequence in order. If byValue is true, eliminate 
duplicate text nodes by value, otherwise eliminate duplicates 
based on reference (i.e., object identity). 

sor t  ( i n bool ean or der )  ≡ return the sequence of nodes 
in document order if order is  true or reverse document 
order if false, preserving duplicates. Nodes not in the 
document (for example, cloned nodes not added to the DOM 
tree), are placed at the end in their original order in the 
object NodeSequence. 

subt r act  ( i n NodeSequence nodes,  i n bool ean 
byVal ue)  ≡ return a NodeSequence containing the nodes 
in the object NodeSequence, but not in the argument nodes. 
If byValue is true, text nodes are compared by value. 

i nt er sect  ( i n NodeSequence nodes,  i n bool ean 
byVal ue)  ≡ return a NodeSequence containing the nodes 
in the object NodeSequence if they also appear in nodes. If 
byValue is true, text nodes are compared by value. 

 



4. EXPERIMENTS AND ANALYSIS 

4.1 Prototype System Environment 
The prototype system supports a server-client architecture (Figure 
3) in which the executable program comprising the extended 
DOM and all XML documents are installed on a server, the 
applications are executed in the client, and each time the client 
calls the extended DOM interface, communication messages are 
exchanged between the client and server.  We have implemented 
the NodeSequence interface on the server by extending the Xerces 
C++ parser [1]. We expect that the performance gains we observe 
will also be obtainable by similarly extending other DOM 
implementations.

 

DOM Server 

Applications 

XML 

 

Figure 3. Target architecture 

4.2 XML Sample Data 
With the extensive usage of XML in various application domains, 
several XML benchmarks have been created to measure, evaluate 
and optimize the performance of proposed approaches to deal 
with XML documents. Since the broad scope of XML makes it 
difficult to cover all varieties and characteristics of XML data, 
each family of XML benchmarks can be used to assess specific 
classes of applications. 

Among the principal benchmarks, the Michigan benchmark is a 
“micro”  benchmark in which the data is designed to test basic 
query operations [9]. Thus the structure of XML data generated is 
relatively simple, and each item is only suitable for a few 
operations. The data generated by XOO7 has few hierarchical 
element structures [4], also making it unsuitable for testing our 
extensions. The XMach-1 multi-user benchmark is based on a 
web application and includes a variety of XML data forms: text 
documents, schema-less data, and structured data [3]. It provides 
hierarchical element structures in each kind of XML document 
but has few cross-references. XBench data is categorized as data-
centric and text-centric [18], but again each kind of data has too 
simple a structure to meet our needs. The XMark benchmark 
represents an auction application combining text and non-text 
data for items, persons, open auctions, closed auctions, categories, 
bidders, sellers, and buyers [10]. The relationships between them 
are expressed through cross-references.  

The XMark benchmark satisfies four characteristics proposed by 
Gray [7]:  application benchmarks should be scalable (applicable 
to different size of computer systems), portable (available to 
implement on different systems), simple (credible), and relevant 
(performing typical operations for the respective domain).  

• It provides a unified XML document named “auction.xml”  
that covers our requirements. The structure of the sub-tree 
rooted at description elements is similar to that of the XML 
data in XOO7, and its hierarchical structure is similar to that 
of the XML data in XMach-1. Its definition in terms of one 
unified document make it simple to understand, yet varied 
enough to capture a wide variety of applications.  

• It includes a random data generator to create a single 
document with a size range from several kilobytes to 10Gb. 
The XML generator for XMark considers the tree fanout, 
tree depth, and the relationships among different elements 
through references, which can be found at a variety of 
locations throughout an XML tree. These make generated 
documents rich in structure so it can test our extended 
DOM’s ability to query efficiently. 

4.3 Application Examples 
We use some practical application examples, listed in Table 3, to 
evaluate our system. For example, application Q9 needs to extract 
two sublists from the “closed auctions”  in order to find their 
difference.  The DOM solution requires either sorting or nested 
loop comparisons to be coded (Figure 4a), but the application is 
encoded directly using the proposed extensions (Figure 4b). Note 
in particular, that the use of the subtract method eliminates both 
the nested loop for comparing sellers to buyers and the nested 
loop for checking for duplicate sellers.The implementations of all 
11 examples using DOM with or without the NodeSequence 
interface are given in detail elsewhere [6]. 

4.4 Experiments and Analysis 
In addition to making the API simpler, storage space and running 
time are important measures of performance.  The NodeSequence 
interface does not affect the amount of space needed for the DOM 
structures themselves. However, it does affect the running time of 
the entire system, including the processing time on the server and 

            Table 3. Application examples 

Update a collection Q1: Delete all descriptions of items 
Q2: Remove open auctions whose initial 

price is 0 

Select a collection 
based on structure 

Q3: Get all intervals in all open auctions 
Q4: Get names of items 

Select a collection 
based on value 

Q5: Count the number of bidders whose 
id are “person0”  

Q6: List open auctions whose bidder’s id 
is “person0”  

Selection via a join Q7: Get bidders’  name nodes in the 
private open auctions 

Q8: Get the number of persons who bid 
on items from Africa 

Difference Q9: List all ids of persons who are sellers 
and do not buy other items in closed 
auctions 

Sort Q10: List  in document order open 
auctions in which all buyers watch  

Construct 
collections 

Q11: List the first five and last five closed 
auctions in document order 

 



client and communication overhead between client and server. 

We implemented the extended DOM for a single machine 
environment (Pentium IV CPU clocked at 2.4GHz with 512Mb of 
main memory, a 10Gb hard disk, and running Windows2000) and 
conducted experiments to test the processing time based on the 
applications in Table 3. Using XMark we generated various sizes 

of documents from 100Kb to 50Mb to evaluate performance (see 
Table 4). 

Before running the applications, a generated document is parsed 
and converted to a tree structure in main memory. The time for 
this preprocessing is linear in the size of the data (from 78ms for 
the smallest sample to 22.2s for the largest), and it is unaffected 
by the introduction of the NodeSequence interface (Figure 5).  

DOM_Document  doc = par ser . get Document ( ) ;  
DOM_El ement  si t e = doc. get Document El ement ( ) ;  
DOM_NodeLi st  c l osed_auct i ons = si t e. get El ement sByTagName( " cl osed_auct i ons" ) . i t em( 0) . get Chi l dNodes( ) ;  
unsi gned i nt  c l osedCount  = cl osed_auct i ons. get Lengt h( ) ;  
DOM_Node sel ect ed_i ds[ MAXLENGTH] ;  
unsi gned i nt  sel ect Count =0, i , j ;  
DOM_Node sel l er At t r ;  
f or (  i =0;  i <cl osedCount ;  i ++)  
 {  DOM_Node cl osedEl em = cl osed_auct i ons. i t em( i ) ;  
   i f  ( c l osedEl em. get NodeType( )  == ELEMENT_NODE)    / *   1 r epr esent s  * /  
    {  DOM_Node sel l er =( ( DOM_El ement  &) cl osedEl em) . get El ement sByTagName( " sel l er " ) . i t em( 0) ;  
      sel l er At t r  = sel l er . get At t r i but es( ) . i t em( 0) ;  
      DOMSt r i ng sel l er _i d = sel l er At t r . get NodeVal ue( ) ;  
      f or  ( j =0;  j <cl osedCount ;  j ++)  
       {  DOM_Node cl osedNode = cl osed_auct i ons. i t em( j ) ;  
         i f  ( c l osedNode. get NodeType( )  == ELEMENT_NODE)  
          {  DOM_Node buyer  = ( ( DOM_El ement  &) ( cl osedNode) ) . get El ement sByTagName( " buyer " ) . i t em( 0) ;    
            DOMSt r i ng buyer _i d = buyer . get At t r i but es( ) . i t em( 0) . get NodeVal ue( ) ;  
            i f  ( sel l er _i d. equal s( buyer _i d) )  br eak;  
          }  
       }  
      i f  ( j  == cl osedCount )   
       {  f or  ( j =0;  j <sel ect Count ;  j ++)  
            i f  ( sel l er _i d. equal s( sel ect ed_i ds[ j ] . get NodeVal ue( ) ) )  br eak;  
          i f  ( j  == sel ect Count )  sel ect ed_i ds[ sel ect Count ++]  = sel l er At t r ;  
       }  
    }  
 }  

(a) Using DOM without the NodeSequence interface 
 
DOM_Document  doc = par ser . get Document ( ) ;  
DOM_El ement  si t e = doc. get Document El ement ( ) ;  
DOM_NodeSequence cl osed_auct i on = si t e. get El ement byTagName( " cl osed_auct i ons" ) . cr eat eNodeSequence. 
                                 mapChi l dNodes( ELEMENT_NODE) . mapChi l dNodes( ELEMENT_NODE) ;  
DOM_NodeSequence sel l er s = cl osed_auct i on. f i l t er TagName( " sel l er " ) . mapAt t r i but es( ) . mapChi l dNodes( 0) ;  
DOM_NodeSequence buyer s = cl osed_auct i on. f i l t er TagName( " buyer " ) . mapAt t r i but es( ) . mapChi l dNodes( 0) ;  
DOM_NodeSequence sel ect ed_i ds = sel l er s. subt r act ( buyer s, t r ue) ;  

(b) Using the NodeSequence interface 

Figure 4. Coded solutions for application Q9 

 

  Table 4. Generated data sizes and numbers of nodes 

Data 
size 

Open 
auction 
nodes 

Closed 
auction 
nodes 

Item 
nodes 

Person 
nodes 

Bidder 
nodes 

116 Kb 12 10 22 25 60 

211 Kb 24 19 43 51 81 

460 Kb 48 38 86 102 196 

906 Kb 96 77 173 204 439 

2.45 Mb 240 195 435 510 1140 

5.7 Mb 600 489 1087 1275 2989 

11.6 Mb 1200 975 2175 2550 6182 

23.5 Mb 2400 1950 4350 5100 12097 

46.5 Mb 4800 3900 8700 10200 23521 
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Figure 5. Parsing times 



When the size of data is less than 900Kb, the processing time for 
each example application is less than 1ms whether the 
implementation is based on the Core or on NodeSequences. Table 
5 shows the processing times with the remainder of the data sizes, 
and, as an example, the times for the 11.6 Mb document are 
graphed in Figure 6. (For Q10, we do not give the processing time 
for the Core implementation when the size of data is larger than 
2.45Mb because it is unacceptably large as a result of 
implementation by nested loop joins.) All times include the 
processing in the server and in the client as well as procedure calls 
between them, but not any communication delays.  

As DOM features main-memory processing and both the server 
and client are on the same processor, the operations are quite fast 
when the size of data is under 1Mb. For data sizes over 1Mb, the 
processing times of the two systems for the first four examples are 
comparable, with the NodeSequence extension outperforming the 
Core for Q1 and Q3 for the largest data size only. However, the 
processing times for the last seven examples are improved with 
the NodeSequence interface, and the differences increase with the 
size of XML data and complexity of query. This reflects the 
earlier observation that implementations based on the Core take 
time processing the nested loop structures.  

In a distributed environment, communication overhead impacts 
the application performance because of latency inherent in the 
network bandwidth. Fewer message exchanges between client and 
server reduce total remote access delays and thus improve system 

throughput. We compare the number of message pairs required by 
an application of the DOM to the number required for our 
extension, assuming that each method call requires a message to 
be sent and returned.  

When using DOM, the communication messages between client 
and server typically vary with the amount of XML data and the 
complexity of queries. However, since our extension provides 
operations on node sequences, applications can manipulate 
collections of nodes in one operation directly. Thus, 
communication messages will be reduced sharply. Interestingly, 
for all of our sample queries, the number of communication 
messages is independent of the document size.  

Table 6 lists a comparative analysis, where let n1 is the number of 
items, n2 is the number of open_auctions, n3 is the number of 
persons, n4 is the number of closed auctions, n5 is the number of 
bidders, and the notation a ··· b denotes lower and upper bounds 
on the number of messages (depending on the outcomes of 
various conditional expressions).    

Consider the communication messages based on the DOM Core. 
Since the original DOM provides operations based on one node, 
when applications need to get node sets with repeated features, 

   

Table 5. Processing times with various sizes of data 

(times in ms except where explicitly marked as seconds) 

Size (Mb) 0.9 2.3 5.7 11.6 23.5 46.7 

Core 0 31 62 125 282 735 

Q
1 

Seq. 0 31 76 149 309 657 

Core 0 15 31 62 141 297 

Q
2 

Seq. 0 24 57 109 225 469 

Core 0 16 31 94 171 375 

Q
3 

Seq. 0 16 39 83 167 330 

Core 0 8 15 32 78 203 

Q
4 

Seq. 0 16 57 109 219 469 

Core 16 31 71 172 375 1000 

Q
5 

Seq. 0 28 68 141 281 578 

Core 15 16 63 172 375 968 

Q
6 

Seq. 0 24 73 141 281 580 

Core 32 266 2672 10.8s 39.6s 164s 

Q
7 

Seq. 0 31 203 1s 6.1s 28.3s 

Core 16 47 203 657 2735 10.4s 

Q
8 

Seq. 0 63 157 367 930 2.8s 

Core 32 250 1672 7984 38.7s 225s 

Q
9 

Seq. 0 31 78 281 1.4s 6.2s 

Core 2440 150s — — — — 

Q
10

 

Seq. 31 0.1s 0.5s 1.8s 8.3s 39.7s 

Core 31 250 1750 7875 38.5s 205s 

Q
11

 

Seq. 16 46 218 781 3.3s 14s 
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Figure 6. Comparative times for 11.6 Mb document 

 

  

 Table 6. Message pairs between client and server 

 DOM Core NodeSequence 
Q1 7n1+80 9 
Q2 13n2+8 ··· 14n2+8 11 
Q3 6n2+8 5 
Q4 6n1+80 7 
Q5 7n5 +6n2+8 11 
Q6 10+6n2 ··· 7n5 +3n2+6 13 
Q7 12+6n2 ··· 14n5n3+22n2+14n5+12 28 
Q8 O(n2 n1 n3) 34 
Q9 17 n4+8 ··· 10n4

2+9 n4+8 12 
Q10 O(n2 n4 n3) 28 
Q11 17n4+8 ··· 10n4

2+12n4+8 25 ··· 28 
 



they have to use loops to process each of these nodes. The first 
four examples are relatively simple to analyze. Examples Q1 and 
Q4 contain nested loops, where the outer loop iterates on six 
regions, but seven extra iterations are also needed to process 
white space. They also scan each item node in the inner for loop. 
Therefore, the number of communication messages is directly 
proportional to the number of items. For Q1, for example, when 
updating a 11.4Mb document having 2175 items, 15,305 
communication messages are required (Figure 7). Similarly, in Q2 
and Q3, the number of communication messages is directly 
proportional to the number of open auctions.  

For examples Q5 and Q6 the number of messages varies with the 
size of open_auction and item. For example, for a 460Kb 
document, 1668 communication messages are required for Q5, 
which is greater than what is needed for any of the first four 
examples for a document twice as large. The last five examples 
require merges or joins on various sub-trees, and thus these 
applications need to use more loops and handle more nodes. 
Consequently, many messages have to be conveyed back and forth 
between the client and the server processes.  

Thus we conclude that when the amount of XML data is large, the 
running time of most applications using the NodeSequence 
interface will be reduced greatly if any DOM implementation is 
extended with our proposed operators. This benefit is obtained at 
the same time that our extended DOM greatly simplifies coding 
and thus is more convenient and less error-prone for application 
programmers. 

5. CONCLUSIONS AND FUTURE WORK 
DOM models an XML document as a virtual tree structure. 
Applications access and update the content and structure of 
documents dynamically through this platform-neutral and 
language-neutral interface. Such applications visit objects of the 
trees through the Node interface and use loops to visit all children 
of a node. In this paper, we propose the NodeSequence interface 
to manipulate collections of nodes without requiring node-at-a-
time navigation.  

The extended DOM provides significant benefits to applications. 
Application code can be simplified greatly, processing time is 
reduced, and communication messages between client and server 
are significantly decreased. Through an implementation and 

experimentation, we have validated our ideas and demonstrated 
the resulting gains for a variety of simple applications. 

Since our extension only adds a new interface, it does not change 
any properties of the DOM Core, and thus all of the methods in 
the original DOM interfaces can still be used. In addition, the 
extensions fit the same navigational philosophy of DOM, thus 
making it natural to use them with DOM. This is in marked 
difference to abandoning DOM in favour of a high-level database 
language or implementing high-level query facilities on top of 
(but independently) of DOM [2]. 

We expect our research work to continue along these lines. In the 
short term, we wish to define additional functions for the 
NodeSequence interface to provide more capabilities, as follows.  

• Originally, we intended to adopt the mapcar operator from 
LISP and other functional programming languages, where 
mapcar(f,v1,...,vn) returns the list obtained by applying the n-
ary function f to successive elements taken from vectors v1 
through vn. In order to avoid requiring explicit support for 
second-order functions, however, we anticipated passing the 
name of the function as a string. Thus, for example, using the 
definition 

appl y ( i n st r i ng f unct i onName)  
if NodeSequence s = <n1,...,nk>, then s.apply(“getParent” ) 
returns the sequence <getParent(n1),...,getParent(nk)>.  With 
such a method, not only would applications be able to map 
any user-defined functions available for nodes, but the 
specification of NodeSequence could be simplified by 
eliminating individual definitions for each built-in function 
as in Table 1.  

We considered several potential design solutions. Initially, 
we expected a C++ mapping such as: 

NodeSequence appl y ( char  * f uncname, …) ;  

having a variable argument list as the second parameter. 
However, such a variable list is not a fundamental parameter 
type in IDL [8], the specification language for DOM. 

An alternative is to define the IDL interface to include: 

appl y ( i n st r i ng * f uncname,  i n st r i ng * par a)  

which requires an application to marshal the variable number 
of arguments into a string before calling apply and the server 
to recover the arguments in their original form. Obviously, 
this solution incurs some inconvenience and processing cost. 

Another alternative is to define a family of functions 
differing from each other by the number and types of 
arguments. Three such apply functions appear as follows: 

appl y( i n st r i ng f name)  
appl y( i n st r i ng f name,  i n unsi gned shor t  t ype)  
appl y( i n st r i ng f name,  i n NodeLi st  nodes)  

where the second form would pass the second parameter with 
each function call and the third form could be defined either 
to pass the whole NodeList as a parameter to each 
application of the function or, alternatively like mapcar, to 
pass only the i th node from the NodeList to the corresponding 
application of the function. This solution is cumbersome to 
define and will limit the flexibility and scalability of the 
apply function. 
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Figure 7. DOM communications messages for Example 1 

 



Consequently, although the apply function could well be 
useful for the extended DOM interface, more design work is 
required first.  

• Three methods are defined with the capability to compare 
text nodes based on value. These should be extended to 
provide value-based comparisons for other types of nodes as 
well. 

di st i nct  ( bool  byVal ue,  unsi gned shor t  
nodet ype)  

subt r act  ( NodeSequence l i st ,  bool  byVal ue,  
unsi gned shor t  nodet ype) ;  

i nt er sect  ( NodeSequence l i st ,  bool  byVal ue,  
unsi gned shor t  nodet ype) ;  

        In all three cases, the subsequence of nodes of the given type 
is first selected, and then the operation is applied using 
equality (perhaps as defined for XQuery) for comparing 
nodes if byValue is true, and object identity otherwise. 

 
• The sort function allows applications to reorder node sets by 

document order only. Many applications may need to order 
elements by value, especially when text nodes in a node set 
contain numeric or date values. In addition, an application 
may again want to operate a specific type of nodes other than 
text. Consequently, we should modify the method sort (bool 
order) to give more functionality: 

sor t  ( bool  or der ,  unsi gned shor t  nodet ype,  
bool  byVal ue)  

This operation will select the subsequence of nodes having 
type nodetype, and sort them into increasing or decreasing 
order, according to order. If the nodetype is “ text node” (or 
some other type with comparators defined) and byValue is 
true, then the nodes are ordered by node value rather than by 
position.   

More importantly, however, communication and processing costs 
based on a practical system in a distributed environment remains 
to be tested, and a quantitative analysis of the relationship 
between communication messages and throughput needs to be 
evaluated. It is hoped that the resulting system will find 
applications in areas that require high performance processing of 
XML documents.   

Finally, a change proposal should be submitted to W3C’s DOM 
Working Group to incorporate these extensions into a future level 
of DOM. 
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