
Set-at-a-time Access to XML through DOM
Hai Chen Frank Wm. Tompa

School of Computer Science
University of Waterloo
Waterloo,ON,Canada

+1-519-888-4567
{h24chen,fwtompa}@db.uwaterloo.ca

ABSTRACT
To support the rapid growth of the web and e-commerce, W3C
developed DOM as an application programming interface that
provides the abstract, logical tree structure of an XML document.
In this paper, we propose ordered-set-at-a-time extensions for
DOM while maintaining its tightly managed navigational nature.
In particular, we define the NodeSequence interface with
functions that filter, navigate, and transform sequences of nodes
simultaneously. The extended DOM greatly simplifies writing
some application code, and it can reduce the communications
overhead and response time between a client application and the
DOM server to provide applications with more efficient
processing. As validation of our proposals, we present application
examples that compare the convenience and efficiency of DOM
with and without extensions.

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document and text
editing– document management, languages, DOM; H.2.4
[Database Management]: Systems– textual databases, DOM.

General Terms
Design, Standardization, Languages.

Keywords
DOM, set-at-a-time, navigation, XML, application program
interface.

1. INTRODUCTION
W3C, the World Wide Web Consortium, proposed XML to
facilitate information interchange and integration from
heterogeneous systems [14]. XML is a semantics-independent
markup language useful for data that may or may not conform to a
rigid and predefined schema. It is being developed by industry as
a universal data representation format. Two APIs (application
programming interfaces) are commonly used to process XML
documents: SAX (Simple API for XML) and DOM (Document
Object Model). A SAX parser provides a simple interface that
does not pass information to applications about the nesting in a

document [5]. On the other hand, the DOM interface represents a
parsed XML document as an abstract tree structure that consists
of objects [11]. As a result DOM trees can be directly stored in an
object database, and an application can access the XML data in
any order, update the content as needed, and restructure the
document via this interface.

DOM provides access to XML data through a set of interfaces that
allows an application to traverse the DOM tree beginning from
the document root. For example, by calling various methods an
application can move from any node to its children, parent, or
immediate siblings, one step at a time. However, although DOM
can identify one node’s children as a NodeList through a single
method call, it cannot get all those children’s children in one
additional operation. Therefore the application programmer must
write a loop to process each node in turn. For example, assume an
application is using a catalog illustrated as a simplified DOM tree
in Figure 1. To obtain a list of all book authors, it could invoke
C++ code as follows (using the Apache Recommended C++
Language bindings [1]):

DOM_Document doc = par ser . get Document () ;
DOM_NodeLi st books = doc.
 get El ement sByTagName(" book") ;
unsi gned i nt numBooks = books. get Lengt h() ;
DOM_Node bookAut hor s [MAX_NUM] ;
i nt k=0;
f or (i nt i =0; i <numBooks; i ++)
{ DOM_Node aut hor s = books. i t em(i) .
 get El ement sByTagName(" aut hor ") ;
 unsi gned i nt numAut hor s = aut hor s. get Lengt h() ;
 f or (i nt j =0; j <numAut hor s; j ++)
 bookAut hor s[k++] = aut hor s. i t em(j) ;
}

In this example, a list of all books can be retrieved in one
operation, but each book’s author list and subsequently each
individual author must be retrieved by looping. (A nested loop is
also required for the complementary approach: retrieve all author
elements directly and then check the tag name of each parent for a
match to “book.”) Furthermore, for an application to produce
robust code, checks must also be included to ensure that the result
array size is sufficiently large. Such a situation often arises, where

catalog

title author +

(book | article) +

Figure 1. Element relationship in simple structure

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’03, November 20–22, 2003, Grenoble, France.
Copyright 2003 ACM 1-58113-724-9/03/0011…$5.00.

we need to manipulate all elements of a node collection in a
similar loop, and it would be useful to express this as a single
operation. In this paper we provide some extensions to DOM for
operating on collections of nodes.

The idea to support operations for sequences of nodes comes from
other environments in which set-at-a-time data access has been
shown to be worthwhile. The best-known examples include
relational and object-relational database systems (as opposed to
earlier, navigational hierarchic and network systems) and array-
processing languages such as APL (as opposed to earlier
languages such as Fortran and Cobol). These systems support
operations for collections of data that do not require a user to
iterate through the collection element by element.

For XML, W3C produced the XQuery language [16], which is
based on processing collections of nodes and includes subtree
matching and extractions through XPath [15] and operations to
construct and combine node sequences [17]. XQuery is designed
for applications that need complex extractions from large XML
collections, and it requires that the data be fully validated using
XML Schema. DOM, on the other hand, is tailored for
applications that maintain (query, manipulate, and update)
individual documents, whether or not they have an associated
schema. Whereas W3C is considering a candidate
recommendation to support XPath from within the DOM
framework [13], operations such as concatenate, distinct, insert,
sublist, intersect, except, filter, and sort are not provided in the
DOM interface.

For applications that use DOM, we propose to add new light-
weight functions that operate on simple sequences. Obvious
advantages of such a solution are flexible application, ease of use,
efficiency, and tight integration with the application environment.

After defining the extensions in Sections 2 and 3, we present the
results of experiments and analysis in Section 4 to demonstrate
the efficiency gains from this approach.

2. DESIGNING EXTENSIONS TO DOM

2.1 Set-at-a-time Processing
The Core DOM interface provides an application with a sequence
of child nodes for a given parent through the NodeList interface,
which provides only two limited operations: the attribute length
holds the number of nodes in a list, and the method item(i) returns
the i th item in a list [11]. This idea is extended in DOM Level 3 to
a sequence of names and a sequence of strings through the
NameList and DOMStringList interfaces, respectively [12]. The
DOM Level 3 XPath specification includes the XPathResult
interface, which provides a sequence of matched nodes through an
iterator [13]. However, there is no interface in DOM that provides
a rich set of operators on an application-defined collection of
nodes.

Our proposal defines the NodeSequence interface in order to
provide two types of methods based on the Core’s NodeList
interface:

• mapping Node operations to every node in a NodeSequence:
These methods operate on each node in the NodeSequence
<n1, n2, … ,nk> and produce a sequence of nodes <f(n1),
f(n2), … ,f(nk)>. For example, getParents() extends the

attribute parentNode for one node to achieve that effect for
each node in a given collection.

• manipulating the NodeSequence itself: Such methods include
concatenating two sequences of nodes, sorting a sequence of
nodes, extracting a subsequence of nodes, transforming a
sequence of nodes, eliminating duplicates, and so on.

The NodeSequence interface is described more fully in Section 3.

2.2 Detailed Design Considerations
In designing extensions to a language or API, it is important to
respect its modality. For DOM, this means close coupling of an
application with document access, so that “programmers can build
documents, navigate their structure, and add, modify, or delete
elements and content” [11]. In fact, a major reason for the paucity
of operations on a NodeList is so that it can be “ live, that is,
changes to the underlying document structure are reflected in all
relevant NodeList … objects.”

It is intended that the NodeSequence interface provide
applications with more convenience at the cost of sacrificing
liveness. However we need to strike a balance between the
convenience provided to an application when operators are high
level and potentially highly optimizable (typical of XQuery, for
example) and the close integration provided by the DOM Core.

2.2.1 Include Copies or References
In the DOM Core, navigation is restricted to one node at a time. It
is left to the application to determine whether to copy this node
(e.g., via cloneNode) or to reference the original (via a reference
or pointer). In the NodeSequence interface, a collection of nodes
is returned at one time. When an operation concatenates two
NodeSequences, for example, should the new sequence contain
copies or references to the nodes in the arguments? As explained
below, it is usually preferable to return references.

• Access to context

Duplicate nodes as defined by cloneNode have no parents. Thus,
access to their ancestors or siblings is not preserved.

• Updatability

A collection of references to nodes can be used as a handle to
manipulate those nodes. For example, an application that wishes
to delete the referenced nodes from the DOM tree can remove
them directly. If, however, the application is given a sequence of
copies, it must traverse the DOM tree to locate those nodes that
have equal values to the nodes in the sequence. Even so, in the
presence of duplicate structures such an application cannot
identify which structure is intended to be deleted, even if it uses a
deep equality test.

• Storage consumption

When the node size is large, storing references rather than copies
will save significant storage.

• Speed

Creating a sequence of node references is efficient and easy to
implement. If we instead make a copy of each node, and

especially if we choose to make a deep copy, more execution time
is required.

• Well-formedness

Of course, if an application inserts a single node or a sequence of
nodes into a DOM tree, it must ensure that the nodes are not
already present elsewhere in the tree. The simplest approach is to
use a copy of these nodes so that the result is guaranteed to be a
tree.

2.2.2 Comparison Among Nodes
In the NodeSequence interface, many operations compare
collections of nodes. For text and attributes nodes, comparisons
based on values are often required by applications. For other types
of nodes, such as element nodes, applications typically require
object identity. Thus, we provide a parameter to allow
applications to choose whether comparisons are to be done by
object or by value.

2.2.3 White Space Consideration
White space is often used in well-formed and valid XML
documents to set apart markup for better readability and clarity.
Although such white space is neither data nor markup, in the
absence of validation, XML parsers must process all white space
as data. This can occasionally cause surprising results.

For example, a section of an XML document and a corresponding
NodeSequence <1,6> may be represented by a simplified DOM
tree structure as shown as Figure 2. A naïve use of the method
mapChildNodes would return a NodeSequence whose length is 8,
if it were to mimic the childNodes attribute defined for a single
node in DOM. Most users, however, would expect the result to
have 3 children only, corresponding to nodes 2, 3, and 7. The
reason for the unexpected result is that five text nodes containing
white space only are (correctly) included as children. To avoid
such surprising results and to simplify application programming
without resorting to element-at-a-time navigation, a parameter for
node type is provided in our proposed method mapChildNodes.

Thus, a call of mapChildNodes(ELEMENT_NODE) will return
only nodes of type “element” and therefore the expected result.

3. The NodeSequence Interface

3.1.1 Basic Operations
The NodeSequence interface starts with the same definition as
NodeList interface, except that the requirement for liveness is
removed. In particular, the attribute length holds the number of
nodes in a sequence, and the method item(i) returns the i th item.

3.1.2 NodeSequence constructors
Two constructors are defined: the first converts an individual
node into a NodeSequence, and the second converts a NodeList
into a NodeSequence. In particular,

NodeSequence cr eat eNodeSequence (i n unsi gned shor t
num) ;

is added to the Node interface. A NodeSequence is constructed
with num (repeated) references to the object Node.

NodeSequence cr eat eNodeSequence() ;
is added to the NodeList interface. A NodeSequence is
constructed containing the sequence of items included in the
object NodeList.

3.1.3 Mapping Node Operations to Sequences
Table 1 summarizes operations of the NodeSequence interface
that simply extend attributes and methods of the Node interface.

For Node operations of the form fi: Node → Node (that is,
parentNode, firstChild, lastChild, previousSibling, nextSibling
and cloneNode), the corresponding newly defined operations for
sequences Fi: NodeSequence → NodeSequence will include null
in the resulting sequence wherever the object node is null or the
returned value corresponding to that object node is null. Thus, for
example, given the node sequence s = <2, null, 3, 6>
corresponding to Figure 2(b), s.mapParentNode() will return the
sequence <1, null, 1, null>. This ensures that the object and
resulting NodeSequences are aligned.

On the other hand, for operations that return either a NodeList or
NamedNodeMap (that is, childNodes and attributes) where no
alignment is possible, the corresponding resulting NodeSequence
will contain the concatenation of the underlying result collections
with no null values included. Looking again at Figure 2(b) and
assuming s contains the sequence <1, null, 3, 6, 8>,
s.mapChildNodes(ELEMENT_NODE) will return the sequence
<2, 3, 5, 7>.

For those operations that match nodes in the argument with nodes
in the object NodeSequence, namely mapAppendChild and
mapRemoveChild, if the lengths of the two lists are not equal, an
exception is thrown.

In consideration of increasing expressitivity for this type of
mapped operations, a discussion about including a generalized
map operator is included in Section 5 below.

3.1.4 Collection Operations on Sequences
Table 2 summarizes operations that manipulate NodeSequences
independently of the values of the nodes in the collection. The
first two (concatenate and reshape) build new sequences from

<name>
 <surname> Prime </surname>
 <forename>Tom </forename>
</name>
<name>
 <surname> Robus </surname>
</name>

(a) Document fragment

1

2 3

name

surname forename

name

4 5 8 “Prime” “Tom” “Robus”

6

7 surname

(b) Structure corresponding to NodeSequence <1,4>

Figure 2. Simplified DOM representation of XML

existing ones. Given the node sequence s = <2, null, 3, 6>,
s.concatenate(s) produces the sequence <2, null, 3, 6, 2, null, 3,
6> and s.reshape(6) produces the sequence <2, null, 3, 6, 2, null>.
The next five functions (subList, filterNodeType, filterTagName,
filterValue, and filterNonNull) extract subsequences based on
position, type, tag, value, and whether or not the value is null,
respectively. Sort and distinct are complementary operations
commonly provided in database languages. The final two
operations (subtract and intersect) are adapted from set operators
to work on sequences. (Note that the effect of union can be
achieved by applying concatenate followed by distinct.)

3.1.5 Example
Consider again the example given in Section 1. Obviously, much
of the code when using the DOM Core is for looping over a
collection of nodes, which is simplified with the NodeSequence
interface, as follows:

DOM_Document doc = par ser . get Document () ;
DOM_NodeLi st books = doc.
 get El ement sByTagName(" book") ;
DOM_NodeSequence names = books.
 cr eat eNodeSequence() .
 mapChi l dNodes(ELEMENT_NODE) .
 f i l t er TagName(" aut hor ") ;

Consider next the communication messages exchanged between
the client and the DOM server. Let m be the number of books and
n be the number of authors in the catalog. Using the DOM Core,
the number of method invocations, each of which might require a
message sent to the server and a reply back to the client, is
2m+n+3. Using NodeSequence, the number of messages is
always constant, 5. Therefore, the extensions also reduce the
communications overhead and response time between a client and
a DOM server.

Table 1. Map Node operations to NodeSequence

mapPar ent Node() ≡ return a NodeSequence referencing each
node’s parent

mapFi r st Chi l d (i n unsi gned shor t t ype) ≡ return a
NodeSequence referencing each node’s first child of the
specified node type.

mapLast Chi l d (i n unsi gned shor t t ype) ≡ return a
NodeSequence referencing each node’s last child of the
specified node type.

mapPr evi ousSi bl i ng (i n unsi gned shor t t ype) ≡
return a NodeSequence referencing the closest preceding
node of the specified node type.

mapNext Si bl i ng (i n unsi gned shor t t ype) ≡ return a
NodeSequence referencing the closest following node of the
specified node type.

mapChi l dNodes (i n unsi gned shor t t ype) ≡ return all
of this NodeSequence’s children having the specified node
type.

mapAt t r i but es() ≡ return all of the attributes of a
NodeSequence (as a sequence of nodes).

mapAppendChi l d (i n NodeSequence chi l dr en) ≡
append a copy of the subtree rooted by each node of
children to the end of the list of children for the
corresponding node in the object NodeSequence.

mapRemoveChi l d (i n NodeSequence chi l dr en) ≡ for
each node of children, remove it from the children of the
corresponding node in the object NodeSequence.

appendChi l dr en(i n NodeSequence chi l dr en) ≡ append
copies of the complete NodeSequence children to the list of
children of each node in the object NodeSequence.

r emoveChi l dr en(i n NodeSequence chi l dr en) ≡ remove
all occurring nodes of children from the list of children of
each node in the object NodeSequence.

mapCl oneNode (i n bool ean deep) ≡ return a
NodeSequence in which each node is a new copy by value
of the object NodeSequence.

 Table 2. Manipulate NodeSequences

concat enat e (i n NodeSequence nodes) ≡ return the
concatenation of all members of the object NodeSequence
with all members of nodes appended.

r eshape (i n unsi gned l ong num) ≡ generate a
NodeSequence equal to the first num members of the
repeated concatenation of the object NodeSequence with
itself. Adopted from APL.

subLi st (i n unsi gned l ong st ar t i ndex, i n
unsi gned l ong l engt h) ≡ return a section of this
NodeSequence beginning at position startindex and ending
at startindex+length-1.

f i l t er NodeType (i n unsi gned shor t t ype) ≡ return
the subsequence of nodes matching type.

f i l t er TagName (i n st r i ng t ag) ≡ return the
subsequence of element nodes having tag name tag.

f i l t er Val ue (i n st r i ng val ue) ≡ return the
subsequence of text nodes matching the string value.

f i l t er NonNul l () ≡ return the subsequence of non-null
nodes.

di st i nct (i n bool ean byVal ue) ≡ return a
NodeSequence that retains the first copy of each node in the
object NodeSequence in order. If byValue is true, eliminate
duplicate text nodes by value, otherwise eliminate duplicates
based on reference (i.e., object identity).

sor t (i n bool ean or der) ≡ return the sequence of nodes
in document order if order is true or reverse document
order if false, preserving duplicates. Nodes not in the
document (for example, cloned nodes not added to the DOM
tree), are placed at the end in their original order in the
object NodeSequence.

subt r act (i n NodeSequence nodes, i n bool ean
byVal ue) ≡ return a NodeSequence containing the nodes
in the object NodeSequence, but not in the argument nodes.
If byValue is true, text nodes are compared by value.

i nt er sect (i n NodeSequence nodes, i n bool ean
byVal ue) ≡ return a NodeSequence containing the nodes
in the object NodeSequence if they also appear in nodes. If
byValue is true, text nodes are compared by value.

4. EXPERIMENTS AND ANALYSIS

4.1 Prototype System Environment
The prototype system supports a server-client architecture (Figure
3) in which the executable program comprising the extended
DOM and all XML documents are installed on a server, the
applications are executed in the client, and each time the client
calls the extended DOM interface, communication messages are
exchanged between the client and server. We have implemented
the NodeSequence interface on the server by extending the Xerces
C++ parser [1]. We expect that the performance gains we observe
will also be obtainable by similarly extending other DOM
implementations.

DOM Server

Applications

XML

Figure 3. Target architecture

4.2 XML Sample Data
With the extensive usage of XML in various application domains,
several XML benchmarks have been created to measure, evaluate
and optimize the performance of proposed approaches to deal
with XML documents. Since the broad scope of XML makes it
difficult to cover all varieties and characteristics of XML data,
each family of XML benchmarks can be used to assess specific
classes of applications.

Among the principal benchmarks, the Michigan benchmark is a
“micro” benchmark in which the data is designed to test basic
query operations [9]. Thus the structure of XML data generated is
relatively simple, and each item is only suitable for a few
operations. The data generated by XOO7 has few hierarchical
element structures [4], also making it unsuitable for testing our
extensions. The XMach-1 multi-user benchmark is based on a
web application and includes a variety of XML data forms: text
documents, schema-less data, and structured data [3]. It provides
hierarchical element structures in each kind of XML document
but has few cross-references. XBench data is categorized as data-
centric and text-centric [18], but again each kind of data has too
simple a structure to meet our needs. The XMark benchmark
represents an auction application combining text and non-text
data for items, persons, open auctions, closed auctions, categories,
bidders, sellers, and buyers [10]. The relationships between them
are expressed through cross-references.

The XMark benchmark satisfies four characteristics proposed by
Gray [7]: application benchmarks should be scalable (applicable
to different size of computer systems), portable (available to
implement on different systems), simple (credible), and relevant
(performing typical operations for the respective domain).

• It provides a unified XML document named “auction.xml”
that covers our requirements. The structure of the sub-tree
rooted at description elements is similar to that of the XML
data in XOO7, and its hierarchical structure is similar to that
of the XML data in XMach-1. Its definition in terms of one
unified document make it simple to understand, yet varied
enough to capture a wide variety of applications.

• It includes a random data generator to create a single
document with a size range from several kilobytes to 10Gb.
The XML generator for XMark considers the tree fanout,
tree depth, and the relationships among different elements
through references, which can be found at a variety of
locations throughout an XML tree. These make generated
documents rich in structure so it can test our extended
DOM’s ability to query efficiently.

4.3 Application Examples
We use some practical application examples, listed in Table 3, to
evaluate our system. For example, application Q9 needs to extract
two sublists from the “closed auctions” in order to find their
difference. The DOM solution requires either sorting or nested
loop comparisons to be coded (Figure 4a), but the application is
encoded directly using the proposed extensions (Figure 4b). Note
in particular, that the use of the subtract method eliminates both
the nested loop for comparing sellers to buyers and the nested
loop for checking for duplicate sellers.The implementations of all
11 examples using DOM with or without the NodeSequence
interface are given in detail elsewhere [6].

4.4 Experiments and Analysis
In addition to making the API simpler, storage space and running
time are important measures of performance. The NodeSequence
interface does not affect the amount of space needed for the DOM
structures themselves. However, it does affect the running time of
the entire system, including the processing time on the server and

 Table 3. Application examples

Update a collection Q1: Delete all descriptions of items
Q2: Remove open auctions whose initial

price is 0

Select a collection
based on structure

Q3: Get all intervals in all open auctions
Q4: Get names of items

Select a collection
based on value

Q5: Count the number of bidders whose
id are “person0”

Q6: List open auctions whose bidder’s id
is “person0”

Selection via a join Q7: Get bidders’ name nodes in the
private open auctions

Q8: Get the number of persons who bid
on items from Africa

Difference Q9: List all ids of persons who are sellers
and do not buy other items in closed
auctions

Sort Q10: List in document order open
auctions in which all buyers watch

Construct
collections

Q11: List the first five and last five closed
auctions in document order

client and communication overhead between client and server.

We implemented the extended DOM for a single machine
environment (Pentium IV CPU clocked at 2.4GHz with 512Mb of
main memory, a 10Gb hard disk, and running Windows2000) and
conducted experiments to test the processing time based on the
applications in Table 3. Using XMark we generated various sizes

of documents from 100Kb to 50Mb to evaluate performance (see
Table 4).

Before running the applications, a generated document is parsed
and converted to a tree structure in main memory. The time for
this preprocessing is linear in the size of the data (from 78ms for
the smallest sample to 22.2s for the largest), and it is unaffected
by the introduction of the NodeSequence interface (Figure 5).

DOM_Document doc = par ser . get Document () ;
DOM_El ement si t e = doc. get Document El ement () ;
DOM_NodeLi st c l osed_auct i ons = si t e. get El ement sByTagName(" cl osed_auct i ons") . i t em(0) . get Chi l dNodes() ;
unsi gned i nt c l osedCount = cl osed_auct i ons. get Lengt h() ;
DOM_Node sel ect ed_i ds[MAXLENGTH] ;
unsi gned i nt sel ect Count =0, i , j ;
DOM_Node sel l er At t r ;
f or (i =0; i <cl osedCount ; i ++)
 { DOM_Node cl osedEl em = cl osed_auct i ons. i t em(i) ;
 i f (c l osedEl em. get NodeType() == ELEMENT_NODE) / * 1 r epr esent s * /
 { DOM_Node sel l er =((DOM_El ement &) cl osedEl em) . get El ement sByTagName(" sel l er ") . i t em(0) ;
 sel l er At t r = sel l er . get At t r i but es() . i t em(0) ;
 DOMSt r i ng sel l er _i d = sel l er At t r . get NodeVal ue() ;
 f or (j =0; j <cl osedCount ; j ++)
 { DOM_Node cl osedNode = cl osed_auct i ons. i t em(j) ;
 i f (c l osedNode. get NodeType() == ELEMENT_NODE)
 { DOM_Node buyer = ((DOM_El ement &) (cl osedNode)) . get El ement sByTagName(" buyer ") . i t em(0) ;
 DOMSt r i ng buyer _i d = buyer . get At t r i but es() . i t em(0) . get NodeVal ue() ;
 i f (sel l er _i d. equal s(buyer _i d)) br eak;
 }
 }
 i f (j == cl osedCount)
 { f or (j =0; j <sel ect Count ; j ++)
 i f (sel l er _i d. equal s(sel ect ed_i ds[j] . get NodeVal ue())) br eak;
 i f (j == sel ect Count) sel ect ed_i ds[sel ect Count ++] = sel l er At t r ;
 }
 }
 }

(a) Using DOM without the NodeSequence interface

DOM_Document doc = par ser . get Document () ;
DOM_El ement si t e = doc. get Document El ement () ;
DOM_NodeSequence cl osed_auct i on = si t e. get El ement byTagName(" cl osed_auct i ons") . cr eat eNodeSequence.
 mapChi l dNodes(ELEMENT_NODE) . mapChi l dNodes(ELEMENT_NODE) ;
DOM_NodeSequence sel l er s = cl osed_auct i on. f i l t er TagName(" sel l er ") . mapAt t r i but es() . mapChi l dNodes(0) ;
DOM_NodeSequence buyer s = cl osed_auct i on. f i l t er TagName(" buyer ") . mapAt t r i but es() . mapChi l dNodes(0) ;
DOM_NodeSequence sel ect ed_i ds = sel l er s. subt r act (buyer s, t r ue) ;

(b) Using the NodeSequence interface

Figure 4. Coded solutions for application Q9

 Table 4. Generated data sizes and numbers of nodes

Data
size

Open
auction
nodes

Closed
auction
nodes

Item
nodes

Person
nodes

Bidder
nodes

116 Kb 12 10 22 25 60

211 Kb 24 19 43 51 81

460 Kb 48 38 86 102 196

906 Kb 96 77 173 204 439

2.45 Mb 240 195 435 510 1140

5.7 Mb 600 489 1087 1275 2989

11.6 Mb 1200 975 2175 2550 6182

23.5 Mb 2400 1950 4350 5100 12097

46.5 Mb 4800 3900 8700 10200 23521

0

5

10

15

20

25

0 10 20 30 40 50

size (MB)

p
ar

si
n

g
 t

im
e

(s
)

Figure 5. Parsing times

When the size of data is less than 900Kb, the processing time for
each example application is less than 1ms whether the
implementation is based on the Core or on NodeSequences. Table
5 shows the processing times with the remainder of the data sizes,
and, as an example, the times for the 11.6 Mb document are
graphed in Figure 6. (For Q10, we do not give the processing time
for the Core implementation when the size of data is larger than
2.45Mb because it is unacceptably large as a result of
implementation by nested loop joins.) All times include the
processing in the server and in the client as well as procedure calls
between them, but not any communication delays.

As DOM features main-memory processing and both the server
and client are on the same processor, the operations are quite fast
when the size of data is under 1Mb. For data sizes over 1Mb, the
processing times of the two systems for the first four examples are
comparable, with the NodeSequence extension outperforming the
Core for Q1 and Q3 for the largest data size only. However, the
processing times for the last seven examples are improved with
the NodeSequence interface, and the differences increase with the
size of XML data and complexity of query. This reflects the
earlier observation that implementations based on the Core take
time processing the nested loop structures.

In a distributed environment, communication overhead impacts
the application performance because of latency inherent in the
network bandwidth. Fewer message exchanges between client and
server reduce total remote access delays and thus improve system

throughput. We compare the number of message pairs required by
an application of the DOM to the number required for our
extension, assuming that each method call requires a message to
be sent and returned.

When using DOM, the communication messages between client
and server typically vary with the amount of XML data and the
complexity of queries. However, since our extension provides
operations on node sequences, applications can manipulate
collections of nodes in one operation directly. Thus,
communication messages will be reduced sharply. Interestingly,
for all of our sample queries, the number of communication
messages is independent of the document size.

Table 6 lists a comparative analysis, where let n1 is the number of
items, n2 is the number of open_auctions, n3 is the number of
persons, n4 is the number of closed auctions, n5 is the number of
bidders, and the notation a ··· b denotes lower and upper bounds
on the number of messages (depending on the outcomes of
various conditional expressions).

Consider the communication messages based on the DOM Core.
Since the original DOM provides operations based on one node,
when applications need to get node sets with repeated features,

Table 5. Processing times with various sizes of data

(times in ms except where explicitly marked as seconds)

Size (Mb) 0.9 2.3 5.7 11.6 23.5 46.7

Core 0 31 62 125 282 735

Q
1

Seq. 0 31 76 149 309 657

Core 0 15 31 62 141 297

Q
2

Seq. 0 24 57 109 225 469

Core 0 16 31 94 171 375

Q
3

Seq. 0 16 39 83 167 330

Core 0 8 15 32 78 203

Q
4

Seq. 0 16 57 109 219 469

Core 16 31 71 172 375 1000

Q
5

Seq. 0 28 68 141 281 578

Core 15 16 63 172 375 968

Q
6

Seq. 0 24 73 141 281 580

Core 32 266 2672 10.8s 39.6s 164s

Q
7

Seq. 0 31 203 1s 6.1s 28.3s

Core 16 47 203 657 2735 10.4s

Q
8

Seq. 0 63 157 367 930 2.8s

Core 32 250 1672 7984 38.7s 225s

Q
9

Seq. 0 31 78 281 1.4s 6.2s

Core 2440 150s — — — —

Q
10

Seq. 31 0.1s 0.5s 1.8s 8.3s 39.7s

Core 31 250 1750 7875 38.5s 205s

Q
11

Seq. 16 46 218 781 3.3s 14s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Time
(ms)

DOM Core NodeSequence

Figure 6. Comparative times for 11.6 Mb document

 Table 6. Message pairs between client and server

 DOM Core NodeSequence
Q1 7n1+80 9
Q2 13n2+8 ··· 14n2+8 11
Q3 6n2+8 5
Q4 6n1+80 7
Q5 7n5 +6n2+8 11
Q6 10+6n2 ··· 7n5 +3n2+6 13
Q7 12+6n2 ··· 14n5n3+22n2+14n5+12 28
Q8 O(n2 n1 n3) 34
Q9 17 n4+8 ··· 10n4

2+9 n4+8 12
Q10 O(n2 n4 n3) 28
Q11 17n4+8 ··· 10n4

2+12n4+8 25 ··· 28

they have to use loops to process each of these nodes. The first
four examples are relatively simple to analyze. Examples Q1 and
Q4 contain nested loops, where the outer loop iterates on six
regions, but seven extra iterations are also needed to process
white space. They also scan each item node in the inner for loop.
Therefore, the number of communication messages is directly
proportional to the number of items. For Q1, for example, when
updating a 11.4Mb document having 2175 items, 15,305
communication messages are required (Figure 7). Similarly, in Q2
and Q3, the number of communication messages is directly
proportional to the number of open auctions.

For examples Q5 and Q6 the number of messages varies with the
size of open_auction and item. For example, for a 460Kb
document, 1668 communication messages are required for Q5,
which is greater than what is needed for any of the first four
examples for a document twice as large. The last five examples
require merges or joins on various sub-trees, and thus these
applications need to use more loops and handle more nodes.
Consequently, many messages have to be conveyed back and forth
between the client and the server processes.

Thus we conclude that when the amount of XML data is large, the
running time of most applications using the NodeSequence
interface will be reduced greatly if any DOM implementation is
extended with our proposed operators. This benefit is obtained at
the same time that our extended DOM greatly simplifies coding
and thus is more convenient and less error-prone for application
programmers.

5. CONCLUSIONS AND FUTURE WORK
DOM models an XML document as a virtual tree structure.
Applications access and update the content and structure of
documents dynamically through this platform-neutral and
language-neutral interface. Such applications visit objects of the
trees through the Node interface and use loops to visit all children
of a node. In this paper, we propose the NodeSequence interface
to manipulate collections of nodes without requiring node-at-a-
time navigation.

The extended DOM provides significant benefits to applications.
Application code can be simplified greatly, processing time is
reduced, and communication messages between client and server
are significantly decreased. Through an implementation and

experimentation, we have validated our ideas and demonstrated
the resulting gains for a variety of simple applications.

Since our extension only adds a new interface, it does not change
any properties of the DOM Core, and thus all of the methods in
the original DOM interfaces can still be used. In addition, the
extensions fit the same navigational philosophy of DOM, thus
making it natural to use them with DOM. This is in marked
difference to abandoning DOM in favour of a high-level database
language or implementing high-level query facilities on top of
(but independently) of DOM [2].

We expect our research work to continue along these lines. In the
short term, we wish to define additional functions for the
NodeSequence interface to provide more capabilities, as follows.

• Originally, we intended to adopt the mapcar operator from
LISP and other functional programming languages, where
mapcar(f,v1,...,vn) returns the list obtained by applying the n-
ary function f to successive elements taken from vectors v1
through vn. In order to avoid requiring explicit support for
second-order functions, however, we anticipated passing the
name of the function as a string. Thus, for example, using the
definition

appl y (i n st r i ng f unct i onName)
if NodeSequence s = <n1,...,nk>, then s.apply(“getParent”)
returns the sequence <getParent(n1),...,getParent(nk)>. With
such a method, not only would applications be able to map
any user-defined functions available for nodes, but the
specification of NodeSequence could be simplified by
eliminating individual definitions for each built-in function
as in Table 1.

We considered several potential design solutions. Initially,
we expected a C++ mapping such as:

NodeSequence appl y (char * f uncname, …) ;

having a variable argument list as the second parameter.
However, such a variable list is not a fundamental parameter
type in IDL [8], the specification language for DOM.

An alternative is to define the IDL interface to include:

appl y (i n st r i ng * f uncname, i n st r i ng * par a)

which requires an application to marshal the variable number
of arguments into a string before calling apply and the server
to recover the arguments in their original form. Obviously,
this solution incurs some inconvenience and processing cost.

Another alternative is to define a family of functions
differing from each other by the number and types of
arguments. Three such apply functions appear as follows:

appl y(i n st r i ng f name)
appl y(i n st r i ng f name, i n unsi gned shor t t ype)
appl y(i n st r i ng f name, i n NodeLi st nodes)

where the second form would pass the second parameter with
each function call and the third form could be defined either
to pass the whole NodeList as a parameter to each
application of the function or, alternatively like mapcar, to
pass only the i th node from the NodeList to the corresponding
application of the function. This solution is cumbersome to
define and will limit the flexibility and scalability of the
apply function.

0

20000

40000

60000

80000

0 2000 4000 6000 8000 10000
items

m

es
sa

g
es

Figure 7. DOM communications messages for Example 1

Consequently, although the apply function could well be
useful for the extended DOM interface, more design work is
required first.

• Three methods are defined with the capability to compare
text nodes based on value. These should be extended to
provide value-based comparisons for other types of nodes as
well.

di st i nct (bool byVal ue, unsi gned shor t
nodet ype)

subt r act (NodeSequence l i st , bool byVal ue,
unsi gned shor t nodet ype) ;

i nt er sect (NodeSequence l i st , bool byVal ue,
unsi gned shor t nodet ype) ;

 In all three cases, the subsequence of nodes of the given type
is first selected, and then the operation is applied using
equality (perhaps as defined for XQuery) for comparing
nodes if byValue is true, and object identity otherwise.

• The sort function allows applications to reorder node sets by

document order only. Many applications may need to order
elements by value, especially when text nodes in a node set
contain numeric or date values. In addition, an application
may again want to operate a specific type of nodes other than
text. Consequently, we should modify the method sort (bool
order) to give more functionality:

sor t (bool or der , unsi gned shor t nodet ype,
bool byVal ue)

This operation will select the subsequence of nodes having
type nodetype, and sort them into increasing or decreasing
order, according to order. If the nodetype is “ text node” (or
some other type with comparators defined) and byValue is
true, then the nodes are ordered by node value rather than by
position.

More importantly, however, communication and processing costs
based on a practical system in a distributed environment remains
to be tested, and a quantitative analysis of the relationship
between communication messages and throughput needs to be
evaluated. It is hoped that the resulting system will find
applications in areas that require high performance processing of
XML documents.

Finally, a change proposal should be submitted to W3C’s DOM
Working Group to incorporate these extensions into a future level
of DOM.

6. ACKNOWLEDGMENTS
Financial support from the Natural Sciences and Engineering
Research Council of Canada and the University of Waterloo is
gratefully acknowledged.

7. REFERENCES
[1] Apache XML Project. Xerces C++ Parser.

http://xml.apache.org/xerces-c/.

[2] Böhm, K. On extending the XML engine with query-
processing capabilities. in Proceedings of ADL 2000
(Washington DC, May 2000), IEEE, 127-140.

[3] Böhme, T. and Rahm, E. Multi-user evaluation of XML data
management systems with XMach-1. in Proceedings of
EEXTT and DIWeb 2002 (Hong Kong, Aug. 2002), LNCS
2590, Springer, 2003, 148-159. http://dbs.uni-
leipzig.de/en/projekte/XML/XmlBenchmarking.html

[4] Bressan, S., Lee, M.L., Li, Y.G., Lacroix, Z., and Nambiar,
U. The XOO7 Benchmark. in Proceedings of EEXTT and
DIWeb 2002 (Hong Kong, Aug. 2002), LNCS 2590,
Springer, 2003, 146-147.
http://www.comp.nus.edu.sg/~ebh/XOO7.html.

[5] Brownell, D. (ed.). SAX. http://www.saxproject.org/.

[6] Chen, H. Supporting Set-at-a-time extensions for XML
through DOM, Technical Report CS-2003-27, School of
Computer Science, University of Waterloo, 2003, 152 pp.
http://www.cs.uwaterloo.ca/cs-archive/CS-2003/CS-
2003.shtml

[7] Gray, J. The Benchmark Handbook for Database and
Transaction Systems (2nd Edition). Morgan Kaufmann,
1993. http://www.benchmarkresources.com/handbook/.

[8] Object Management Group. Common Object Request Broker
Architecture:Core Specification. Version 3.0. Chapter 3:
IDL Syntax and Semantics. December 2002.
http://www.omg.org/cgi-bin/apps/doc?formal/02-06-
39.pdf.

[9] Runapongsa, K., Patel, J.M., Jagadish, H.V., Chen, Y., and
Al-Khalifa, S. The Michigan Benchmark: towards XML
query performance diagnostics. in Procedings of EEXTT
and DIWeb 2002 (Hong Kong, Aug. 2002), LNCS 2590,
Springer, 2003, 160-161.
http://www.eecs.umich.edu/db/mbench/.

[10] Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J.,
Manolescu, I., and Busse, R. Assessing XML data
management with XMark. in Procedings of EEXTT and
DIWeb 2002 (Hong Kong, Aug. 2002), LNCS 2590,
Springer, 2003, 144-145. http://monetdb.cwi.nl/xml/.

[11] World Wide Web Consortium. Document Object Model
(DOM), Level 2 Core Specification. W3C Recommendation.
http://www.w3.org/TR/DOM-Level-2-Core/, 2000.

[12] World Wide Web Consortium. Document Object Model
(DOM), Level 3 Core Specification. W3C Working Draft.
http://www.w3.org/TR/DOM-Level-3-Core/, 2003.

[13] World Wide Web Consortium. Document Object Model
(DOM) Level 3 XPath Specification. W3C Candidate
Recommendation. http://www.w3.org/TR/DOM-Level-3-
XPath , 2003.

[14] World Wide Web Consortium. Extensible Markup Language
(XML) 1.0 (Second Edition). W3C Recommendation.
http://www.w3.org/TR/REC-xml, 2000.

[15] World Wide Web Consortium. XML Path Language (XPath)
2.0.W3C Working Draft. http://www.w3.org/TR/xpath20/,
2002.

[16] World Wide Web Consortium, XQuery 1.0: An XML Query
Language. W3C Working Draft.
http://www.w3.org/TR/xquery, 2003.

[17] World Wide Web Consortium, XQuery 1.0 and XPath 2.0
Functions and Operators. W3C Working Draft.
http://www.w3.org/TR/xquery-operators, 2003.

[18] Yao, B.B., Özsu, M.T., and Keenleyside, J. XBench - A
Family of Benchmarks for XML DBMSs. in Proceedings of

EEXTT and DIWeb 2002 (Hong Kong, Aug. 2002), LNCS
2590, Springer, 2003, 162-164.
http://db.uwaterloo.ca/~ddbms/projects/xbench/.

