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1 Orthogonal Arrays

Suppose t, k, v, λ are positive integers such that t ≤ k. An orthogonal array,
denoted OAλ(t, k, v), is a λvt by k array on v symbols such that, in any t
columns, every t-tuple of symbols occurs exactly λ times. The integer t is
called the strength of the OA.

Example: We present an OA1(2, 4, 3):

0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0

A Latin square of order n is an n by n array of n symbols such that every
symbol occurs exactly once in each row and each column.
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Two Latin squares of order n are orthogonal if their superposition contains
every possible ordered pair of symbols. We will use the notation OLS(n) to
denote orthogonal Latin squares of order n.

Example: We present OLS(3) and their superposition:

0 1 2

1 2 0

2 0 1

0 1 2

2 0 1

1 2 0

0, 0 1, 1 2, 2

1, 2 2, 0 0, 1

2, 1 0, 2 1, 0

Euler asked the question “when do there exist OLS(n)?” This was answered
by Bose, Shrikhane and Parker, who proved that there exist OLS(n) if and
only if n ≥ 1, n 6= 2, 6. The “hard” cases were when n ≡ 2 (mod 4).

A set of k orthogonal Latin squares of order n are mutually orthogonal if all(
k
2

)
pairs chosen from the k squares are orthogonal. We will use the notation

k MOLS(n) to denote k mutually orthogonal Latin squares of order n.

Theorem: If n ≥ 2 and there exist k MOLS(n), then k ≤ n− 1.

Theorem: There exist n−1 MOLS(n) if and only if there exists a projective
plane of order n.

Let N(n) denote the maximum integer k such that there exist k MOLS(n).
Then N(n) = n − 1 for n = 2, 3, 4, 5, 7, 8, 9, 11. Further, N(6) = 1, 2 ≤
N(10) ≤ 8 and 5 ≤ N(12) ≤ 11.

There exist k MOLS(n) if and only if there exists an OA1(2, k + 2, n).

Example: Suppose we start with the OA1(2, 4, 3) given above. We con-
struct two Latin squares L1 and L2 as follows: for every row x1, x2, x3, x4
of the OA, define L1(x1, x2) = x3 and L2(x1, x2) = x4. Then L1 and L2 are
OLS(3). In fact, they are the OLS(3) presented in the example above.

Plackett-Burman Bound: If there exists an OAλ(2, k, v), then

λ ≥ k(v − 1) + 1

v2
.

When λ = 1, the bound becomes k ≤ v + 1.

Rao Bound: Suppose t ≥ 2 is an even integer. If there exists an OAλ(2, k, v),
then

λvt ≥ 1 +

t/2∑
i=1

(
k

i

)
(v − 1)i.

When t = 2, the Rao bound is the same as the Plackett-Burman bound.
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2 Codes

An (n,M, d)-v-code consists of a set of M n-tuples defined over a set of v
symbols, such that the hamming distance between any two of the n-tuples
is at least d. The integer n is the length of the code, M is the size of the
code, and d is the distance of the code. The n-tuples are called codewords.

A code having distance d can correct (d− 1)/2 errors.

Suppose q is a prime power. An [n,m, d]-q-linear code is an (n, qm, d)-q-
code, defined over the symbols Fq, that is an m-dimensional subspace of the
vector space (Fq)n. The integer m is the dimension of the code.

A generator matrix for an [n,m, d]-q-linear code is an m by n matrix, say
G, whose rows form a basis of the code. Thus we can obtain the entire code
by taking all possible linear combinations (over Fq) of the rows of G.

Suppose C is an [n,m, d]-q-linear code. The dual code, denoted C⊥, is the
orthogonal complement of C. This means that

C⊥ = {y ∈ (Fq)n : y · x = 0 for every x ∈ C}.

If C is an [n,m, d]-q-linear code, then C⊥ is an [n, n−m, d′]-q-linear code for
some d′.

Suppose C is an [n,m, d]-q-linear code. A parity-check matrix for C, say H,
is a generator matrix for the dual code C⊥. Thus H is an n−m by n matrix
with entries from Fq, such that GHT = 0.

G is a generator matrix for a code having distance ≥ d if and only if any
d− 1 columns of the parity check matrix are linearly independent.

Suppose ` ≥ 2 is an integer. We can construct a Hamming code as follows.
Consider the q` − 1 nonzero column `-tuples over Fq. Two such `-tuples
are said to be equivalent if they are scalar multiples of each other. It is
easy to see that there are (q` − 1)/(q − 1) equivalence classes. Take one
column from each equivalence class and construct a matrix H having the
given columns. This matrix is the parity-check matrix of the Hamming code.
Since any two columns of H are linearly independent, the Hamming code
has distance 3. Thus the Hamming code is an [n, n − `, 3]-q-linear code,
where n = (q` − 1)/(q − 1).

Example: Suppose q = 2 and ` = 3. The Hamming code is a [7, 4, 3]-2-
linear code. A parity-check matrix for this code is

H =

 0 0 1 1 1 0 1
0 1 0 1 0 1 1
1 0 0 0 1 1 1

 .
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Example: Suppose q = 3 and ` = 2. The four equivalence classes of column
vectors of length 2 are

(
1
0

)
and

(
2
0

)
;
(
0
1

)
and

(
0
2

)
;
(
1
1

)
and

(
2
2

)
; and

(
1
2

)
and(

2
1

)
. Suppose we choose the first column from each equivalence class. Then

we obtain the parity-check matrix

H =

(
1 0 1 1
0 1 1 2

)
.

The resulting Hamming code is a [4, 2, 3]-3-linear code.

A generator matrix for the previous code is

G =

(
2 2 1 0
2 1 0 1

)
.

It is easy to verify that

GHT =

(
0 0
0 0

)
.

Given an [n,m, d]-q-linear code, the dual code is an orthogonal array of
strength d− 1.

Example: The subspace generated by the matrix H above is an orthogonal
array of strength t = 2. More specifically, it is an OA1(2, 4, 3).

Singleton Bound: If an (n,M, d)-v-code exists, then M ≤ vn−d+1. This
is proven as follows: Consider any n − d + 1 coordinates. If there exist
two codewords that are identical in these coordinates, then their Hamming
distance is at most d− 1, which is a contradiction. Therefore the size of the
code is at most vn−d+1.

An (n,M, d)-v-code with M = vn−d+1 is called a maximum distance sepa-
rable code (or, MDS code).

An MDS code is an orthogonal array of strength t = n− d+ 1 with λ = 1.
More specifically, an (n, vn−d+1, d)-v-code is an OA1(n− d+ 1, n, v).

Reed-Solomon codes are MDS codes. Let q be a prime power and let t ≥ 2.
For every polynomial f(x) ∈ Fq[x] having degree ≤ t − 1, evaluate f(x)
at all the elements of Fq and let the resulting q-tuple be a codeword. We
claim that this is a (q, qt, q − t + 1)-q-code. To show that the distance
d = q−t+1, consider two polynomials f(x) and g(x). The distance between
the corresponding codewords is |{x ∈ Fq : f(x) 6= g(x)}|. If this quantity
is ≤ q − t, then |{x ∈ Fq : f(x) = g(x)}| ≥ t. But then the polynomial
(f − g)(x) of degree ≤ t − 1 has at least t roots, which impossible unless
f = g. The code is an MDS code because t = q − d + 1. It is also an
OA1(t, q, q).
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Example: Suppose we take q = 3, t = 2. The associated Reed-Solomon
code is a (3, 9, 3)-3-code which is also an OA1(2, 3, 3). The nine polynomials
of degree ≤ 1 are 0, 1, 2, x, x+1, x+2, 2x, 2x+1, 2x+2. We get the following
code by evaluating these polynomials at 0, 1, 2:

f(x) x = 0 1 2

0 0 0 0
1 1 1 1
2 1 1 1
x 0 1 2

x+ 1 1 2 0
x+ 2 2 0 1

2x 0 2 1
2x+ 1 1 0 2
2x+ 2 2 1 0

Gilbert-Varshamov Bound: This is an existence result for linear codes,
as opposed to a necessary condition. It provides some numerical conditions
that ensure that a parity-check matrix can be constructed for a code with
desired distance. Recall that an ` by q matrix H of elements from Fq is the
parity-check matrix of a code with distance ≥ d if any d − 1 columns of H
are linearly independent. The idea is to construct H one column at a time,
ensuring that no column is a linear combination of d − 2 or fewer previous
columns. Let’s compute the number of “bad” choices for the last (i.e., the
nth) column. For 1 ≤ i ≤ d − 2, the number of linear combinations of
previous columns in which precisely i coefficients are nonzero is

(
n−1
i

)
(q−1)i.

The last column also cannot be the all-zero column. Since there are q`

choices for the last column, there is a “good” choice for this column if

q` > 1 +
d−2∑
i=1

(
n− 1

i

)
(q − 1)i. (1)

Now, this argument applies to the last column, but it is not hard to see that
there are fewer restrictions for choosing any of the previous columns. Thus
the inequality (1) is sufficient to establish the existence of a [n, n − `, d]-q-
linear code. Unfortunately, there is no efficient (i.e., polynomial-time) to
construct the matrix H.
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