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1 Balanced Incomplete Block Designs (BIBDs)

Suppose 1 < k < v are integers and λ ≥ 1 is an integer.

A (v, k, λ)-BIBD is a collection of k-subsets (called blocks) of a v-set (whose
elements are called points), such that every pair of points is in exactly λ
blocks.

Question: for what choices of parameters (v, k, λ) can we construct a
(v, k, λ)-BIBD?

The case k = 2 is trivial— take every pair λ times. For example, a (3, 2, 1)-
BIBD has blocks {1, 2}, {1, 3}, {2, 3}.
The blocks {1, 2, 3}, {1, 4, 7}, {1, 5, 6}, {3, 4, 5}, {2, 5, 7}, {3, 6, 7}, {2, 4, 6} form
a (7, 3, 1)-BIBD.

An alternative construction for a (7, 3, 1)-BIBD: The points are the elements
of Z7. Start with the base block {0, 1, 3}. Then develop the base block
modulo 7, obtaining the blocks {0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0},
{5, 6, 1}, {6, 0, 2}. We add 1 (mod 7) to every point in a block to get the
next block.

This works because the base block contains every difference modulo 7 exactly
once: 0− 1 = 6, 1− 0 = 1, 0− 3 = 4, 3− 0 = 3, 1− 3 = 5, 3− 1 = 2.
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Two other parameters in a (v, k, λ)-BIBD are r and b. Every point occurs in
r blocks, where r = λ(v−1)/(k−1). The total number of blocks is b = vr/k.
Note that r and b must be integers.

Example: In a (7, 3, 1)-BIBD, r = 1× 6/2 = 3 and b = 7× 3/3 = 7.

Example: If a (6, 3, 2)-BIBD exists, then r = 2×5/2 = 5 and b = 6×5/3 =
10.

Sometimes we write the parameters of a BIBD as (v, b, r, k, λ).

Example: If an (11, 3, 1)-BIBD exists, then r = 5 and b = 11×5/3 = 55/3.
The value b is not an integer, so the BIBD does not exist.

Example: We construct a (6, 3, 2)-BIBD. Take points Z5 ∪ 0{∞} and de-
velop the two base blocks {∞, 0, 2} and {0, 1, 2} modulo 5, using the rule
∞ + i = ∞ for all i. We obtain 10 blocks: {∞, 0, 2}, {∞, 1, 3} {∞, 2, 4},
{∞, 3, 0}, {∞, 4, 1}, {0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 0}, {4, 0, 1}. We can
check that every difference occurs twice: 0 − 2 = 3, 2 − 0 = 2, 0 − 1 = 4,
1− 0 = 1, 1− 2 = 4, 2− 1 = 1, 0− 2 = 3, 2− 0 = 2. Also, ∞ occurs with
every other point twice. So we get a BIBD with λ = 2.

Fisher’s Inequality: If a (v, b, r, k, λ)-BIBD exists, then b ≥ v. (Equiva-
lently, r ≥ k.)

Example: If a (16, 6, 1)-BIBD exists, then r = 3 and b = 8. Therefore, this
BIBD does not exist, because Fisher’s Inequality is violated.

If a (v, k, λ)-BIBD has b = v (equivalently, r = k), then the BIBD is called
a symmetric BIBD and it is denoted an SBIBD.

Theorem: Any two blocks in a (v, k, λ)-SBIBD contain exactly λ common
points.

Example: A (7, 3, 1)-BIBD is symmetric. Therefore, any two blocks inter-
sect in exactly one point.

Example: An (11, 5, 2)-BIBD is symmetric. It can be constructed by devel-
oping the base block {1, 3, 4, 5, 9} modulo 11. Any two blocks of this BIBD
intersect in exactly two points. The base block consists of the quadratic
residues (i.e., perfect squares) modulo 11: 12 = 1, 22 = 4, 32 = 9, 42 = 5
and 52 = 3, where all arithmetic is modulo 11.

An (n2 + n + 1, n+ 1, 1)-BIBD is called a projective plane of order n. It is
a symmetric BIBD, so every pair of blocks intersect in exactly one point.

A projective plane of order n exists if n is a prime power. Therefore pro-
jective planes of orders 2, 3, 4, 5, 7, 8 and 9 all exist. There is no projective
plane of order 6 or 10.
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Here is a construction for a projective plane of order q, where q is a prime
power. Let Fq denote the finite field of order q (side comment: Fq is the same
thing as Zq if q is prime). The points of the design are the 1-dimensional
subspaces of (Fq)

3 and the blocks are the 2-dimensional subspaces of (Fq)
3.

A projective plane of order q, where q is a prime power, can also be con-
structed from a base block in Zq2+q+1.

Example: {7, 14, 3, 6, 12} is a base block (modulo 21) for a projective plane
of order 4.

Bruck-Ryser-Chowla Theorem: Suppose that a (v, k, λ)-SBIBD exists.
Then (1) if v is even, then k − λ is a perfect square, and (2) if v is odd,
then the equation x2 = (k − λ)y2 + (−1)(v−1)/2λz2 has a nontrivial integral
solution (i.e., a solution (x, y, z) where x, y and z are integers that are not
all equal to 0).

Example: A (22, 7, 2)-SBIBD does not exist, because 22 is even and 7−2 =
5 is not a perfect square.

Example: We can use the Bruck-Ryser-Chowla Theorem to show that
a projective plane of order 6 does not exist. Such a BIBD would be a
(43, 7, 1)-SBIBD. If it existed, then the equation x2 = 6y2 +−z2 would have
a nontrivial integral solution. It can be shown that the equation has no
nontrivial integral solution, which means that the BIBD does not exist.

An (n2, n, 1)-BIBD is called an affine plane of order n. It has r = n+ 1 and
b = n2 + n.

A projective plane of order n is equivalent to an affine plane of order n.

Example: A projective plane of order 3 can be constructed by developing
the base block {0, 1, 3, 9} modulo 13. We obtain the following blocks:

{0, 1, 3, 9}, {1, 2, 4, 10}, {2, 3, 5, 11}, {3, 4, 6, 12}, {4, 5, 7, 0},
{5, 6, 8, 1}, {6, 7, 9, 2}, {7, 8, 10, 3}, {8, 9, 11, 4},
{9, 10, 12, 5}, {10, 11, 0, 6}, {11, 12, 1, 7}, {12, 0, 2, 8}.

To construct an affine plane of order 3, pick a block in the projective plane,
say {0, 1, 3, 9} and delete the points in this block from all other blocks. Since
{0, 1, 3, 9} intersects every other block in exactly one point, we are deleting
one point from every other block. We obtain the following 12 blocks:

{2, 4, 10}, {2, 5, 11}, {4, 6, 12}, {4, 5, 7}, {5, 6, 8}, {6, 7, 2},
{7, 8, 10}, {8, 11, 4}, {10, 12, 5}, {10, 11, 6}, {11, 12, 7}, {12, 2, 8}.

These are the blocks of an affine plane of order 3 on the nine points 2, 4, 5,
6, 7, 8, 10, 11, 12. Note that this is a (9, 3, 1)-BIBD.
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The above-described process can be reversed. The 12 blocks of the affine
plane can be partitioned into four parallel classes, each of which consists of
three disjoint blocks. Add a new point xi to each block in the ith parallel
class, for 1 ≤ i ≤ 4. Finally, add a new block {x1, x2, x3, x4}.
A Steiner triple system is a (v, 3, 1)-BIBD. It is also denoted as STS(v). It
has r = (v − 1)/2, so r is odd. Then b = (2r + 1)r/3, so 3|r or 3|2r + 1.
Hence, r ≡ 0, 1 (mod 3) and v ≡ 1, 3 (mod 6) is a necessary condition for
existence of an STS(v). We can also write b = v(v − 1)/6.

Example: We have already constructed STS(7) and STS(9). An STS(13)
has b = 26 blocks. It can be constructed by developing the two base blocks
{0, 1, 4} and {0, 2, 8} modulo 13.

Theorem: An STS(v) exists for all v ≡ 1, 3 (mod 6), v ≥ 7.

A Hadamard design is a (4n−1, 2n−1, n−1)-BIBD. The Hadamard designs
are is a symmetric BIBDs.

Example: We have already constructed a (7, 3, 1)-BIBD and a (11, 5, 2)-
BIBD. These are Hadamard designs corresponding to n = 2 and n = 3,
respectively.

Hadamard designs are known to exist for 2 ≤ n ≤ 166. The smallest un-
known case is a (667, 333, 166)-BIBD.

A Hadamard matrix of order 4n is a 4n by 4n matrix H, whose entries are
all ±1, which satisfies the property HHT = 4nI4n (where I4n is the identity
matrix of order 4n).

A Hadamard matrix of order 4n is equivalent to a (4n−1, 2n−1, n−1)-BIBD
(i.e., a Hadamard design).

Example: We construct a Hadamard matrix of order 8 from a (7, 3, 1)-
BIBD. Recall that the BIBD has blocks {0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6},
{4, 5, 0}, {5, 6, 1}, {6, 0, 2}. We first construct the incidence matrix of the
BIBD. The rows are indexed by the points, the columns are indexed by the
blocks, and an entry is 1 if the given point is a member of the given block,
and 0, otherwise. The incidence matrix is as follows:

1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 1
1 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1


.
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Now replace all 0’s by −1’s and adjoin a row and column of 1’s:

1 1 1 1 1 1 1 1
1 1 −1 −1 −1 1 −1 1
1 1 1 −1 −1 −1 1 −1
1 −1 1 1 −1 −1 −1 1
1 1 −1 1 1 −1 −1 1
1 1 1 −1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1
1 −1 −1 −1 1 −1 1 1


.

The result is a Hadamard matrix of order 8.

It is a bit more complicated to construct a (4n − 1, 2n − 1, n − 1)-BIBD
from a Hadamard matrix of order 4n. First, the Hadamard matrix must
be modified in a suitable manner so it contains a border of 1’s. Then the
border can be stripped off and all −1’s are changed to 0’s.

2 t-designs

A t-(v, k, λ)-design is a collection of k-subsets (called blocks) of a v-set (whose
elements are called points), such that every t-subset of points is in exactly
λ blocks. If t = 2, we have a BIBD.

A Steiner quadruple system is a 3-(v, 4, 1)-design. It is also denoted as
SQS(v). An SQS(v) exists if and only if v ≡ 2, 4 (mod 6).

Example: We construct an SQS(8). We start with two blocks: {1, 2, 3, 4}
and {5, 6, 7, 8}. Next we divide these blocks into pairs as follows:

{1, 2} {1, 3} {1, 4}
{3, 4} {2, 4} {2, 3}
{5, 6} {5, 7} {5, 8}
{7, 8} {6, 8} {6, 7}

Now we form 12 blocks as follows:

{1, 2, 5, 6} {1, 3, 5, 7} {1, 4, 5, 8}
{1, 2, 7, 8} {1, 3, 6, 8} {1, 4, 6, 7}
{3, 4, 5, 6} {2, 4, 5, 7} {2, 3, 5, 8}
{3, 4, 7, 8} {2, 4, 6, 8} {2, 3, 6, 7}

These 12 blocks, along with the original two blocks, form the desired SQS(8).
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The preceding construction can be generalized to show that an SQS(2v) can
be obtained from an SQS(v).

Another infinite class of 3-designs are the inversive planes, which are 3-
(n2 + 1, n + 1, 1)-designs. These designs are known to exist if n is a prime
power.

If we fix a point x in an inversive plane, delete all blocks that do not contain
x, and then delete x from all the remaining blocks, we get an affine plane.

Very few explicit examples of t-designs with t ≥ 4 are known. However, a
result of Keevash from 2014 shows that t-(v, k, 1)-design exist for all t, albeit
with enormously large values of v.
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