Combinatorial Structures
 Part 1: Block Designs
 CS 858 Notes

Douglas R. Stinson
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada

May 14, 2019

1 Balanced Incomplete Block Designs (BIBDs)

Suppose $1<k<v$ are integers and $\lambda \geq 1$ is an integer.
A (v, k, λ)-BIBD is a collection of k-subsets (called blocks) of a v-set (whose elements are called points), such that every pair of points is in exactly λ blocks.
Question: for what choices of parameters (v, k, λ) can we construct a (v, k, λ)-BIBD?
The case $k=2$ is trivial - take every pair λ times. For example, a $(3,2,1)$ BIBD has blocks $\{1,2\},\{1,3\},\{2,3\}$.
The blocks $\{1,2,3\},\{1,4,7\},\{1,5,6\},\{3,4,5\},\{2,5,7\},\{3,6,7\},\{2,4,6\}$ form a ($7,3,1$)-BIBD.
An alternative construction for a $(7,3,1)$-BIBD: The points are the elements of \mathbb{Z}_{7}. Start with the base block $\{0,1,3\}$. Then develop the base block modulo 7 , obtaining the blocks $\{0,1,3\},\{1,2,4\},\{2,3,5\},\{3,4,6\},\{4,5,0\}$, $\{5,6,1\},\{6,0,2\}$. We add $1(\bmod 7)$ to every point in a block to get the next block.
This works because the base block contains every difference modulo 7 exactly once: $0-1=6,1-0=1,0-3=4,3-0=3,1-3=5,3-1=2$.

Two other parameters in a (v, k, λ)-BIBD are r and b. Every point occurs in r blocks, where $r=\lambda(v-1) /(k-1)$. The total number of blocks is $b=v r / k$. Note that r and b must be integers.
Example: In a $(7,3,1)$-BIBD, $r=1 \times 6 / 2=3$ and $b=7 \times 3 / 3=7$.
Example: If a $(6,3,2)$-BIBD exists, then $r=2 \times 5 / 2=5$ and $b=6 \times 5 / 3=$ 10.

Sometimes we write the parameters of a BIBD as (v, b, r, k, λ).
Example: If an $(11,3,1)$-BIBD exists, then $r=5$ and $b=11 \times 5 / 3=55 / 3$. The value b is not an integer, so the BIBD does not exist.

Example: We construct a $(6,3,2)$-BIBD. Take points $\mathbb{Z}_{5} \cup 0\{\infty\}$ and develop the two base blocks $\{\infty, 0,2\}$ and $\{0,1,2\}$ modulo 5 , using the rule $\infty+i=\infty$ for all i. We obtain 10 blocks: $\{\infty, 0,2\},\{\infty, 1,3\}\{\infty, 2,4\}$, $\{\infty, 3,0\},\{\infty, 4,1\},\{0,1,2\},\{1,2,3\},\{2,3,4\},\{3,4,0\},\{4,0,1\}$. We can check that every difference occurs twice: $0-2=3,2-0=2,0-1=4$, $1-0=1,1-2=4,2-1=1,0-2=3,2-0=2$. Also, ∞ occurs with every other point twice. So we get a BIBD with $\lambda=2$.
Fisher's Inequality: If a (v, b, r, k, λ)-BIBD exists, then $b \geq v$. (Equivalently, $r \geq k$.)
Example: If a $(16,6,1)$-BIBD exists, then $r=3$ and $b=8$. Therefore, this BIBD does not exist, because Fisher's Inequality is violated.
If a (v, k, λ)-BIBD has $b=v$ (equivalently, $r=k$), then the BIBD is called a symmetric BIBD and it is denoted an SBIBD.
Theorem: Any two blocks in a (v, k, λ)-SBIBD contain exactly λ common points.
Example: A (7,3,1)-BIBD is symmetric. Therefore, any two blocks intersect in exactly one point.
Example: An (11,5,2)-BIBD is symmetric. It can be constructed by developing the base block $\{1,3,4,5,9\}$ modulo 11 . Any two blocks of this BIBD intersect in exactly two points. The base block consists of the quadratic residues (i.e., perfect squares) modulo 11: $1^{2}=1,2^{2}=4,3^{2}=9,4^{2}=5$ and $5^{2}=3$, where all arithmetic is modulo 11 .
An $\left(n^{2}+n+1, n+1,1\right)$-BIBD is called a projective plane of order n. It is a symmetric BIBD, so every pair of blocks intersect in exactly one point.
A projective plane of order n exists if n is a prime power. Therefore projective planes of orders $2,3,4,5,7,8$ and 9 all exist. There is no projective plane of order 6 or 10 .

Here is a construction for a projective plane of order q, where q is a prime power. Let \mathbb{F}_{q} denote the finite field of order q (side comment: \mathbb{F}_{q} is the same thing as \mathbb{Z}_{q} if q is prime). The points of the design are the 1-dimensional subspaces of $\left(\mathbb{F}_{q}\right)^{3}$ and the blocks are the 2-dimensional subspaces of $\left(\mathbb{F}_{q}\right)^{3}$.
A projective plane of order q, where q is a prime power, can also be constructed from a base block in $\mathbb{Z}_{q^{2}+q+1}$.
Example: $\{7,14,3,6,12\}$ is a base block (modulo 21) for a projective plane of order 4.
Bruck-Ryser-Chowla Theorem: Suppose that a (v, k, λ)-SBIBD exists. Then (1) if v is even, then $k-\lambda$ is a perfect square, and (2) if v is odd, then the equation $x^{2}=(k-\lambda) y^{2}+(-1)^{(v-1) / 2} \lambda z^{2}$ has a nontrivial integral solution (i.e., a solution (x, y, z) where x, y and z are integers that are not all equal to 0).
Example: A (22, 7, 2)-SBIBD does not exist, because 22 is even and $7-2=$ 5 is not a perfect square.
Example: We can use the Bruck-Ryser-Chowla Theorem to show that a projective plane of order 6 does not exist. Such a BIBD would be a $(43,7,1)$-SBIBD. If it existed, then the equation $x^{2}=6 y^{2}+-z^{2}$ would have a nontrivial integral solution. It can be shown that the equation has no nontrivial integral solution, which means that the BIBD does not exist.
An $\left(n^{2}, n, 1\right)$-BIBD is called an affine plane of order n. It has $r=n+1$ and $b=n^{2}+n$.
A projective plane of order n is equivalent to an affine plane of order n.
Example: A projective plane of order 3 can be constructed by developing the base block $\{0,1,3,9\}$ modulo 13 . We obtain the following blocks:

$$
\begin{aligned}
& \{0,1,3,9\},\{1,2,4,10\},\{2,3,5,11\},\{3,4,6,12\},\{4,5,7,0\}, \\
& \{5,6,8,1\},\{6,7,9,2\},\{7,8,10,3\},\{8,9,11,4\}, \\
& \{9,10,12,5\},\{10,11,0,6\},\{11,12,1,7\},\{12,0,2,8\} .
\end{aligned}
$$

To construct an affine plane of order 3, pick a block in the projective plane, say $\{0,1,3,9\}$ and delete the points in this block from all other blocks. Since $\{0,1,3,9\}$ intersects every other block in exactly one point, we are deleting one point from every other block. We obtain the following 12 blocks:

$$
\begin{aligned}
& \{2,4,10\},\{2,5,11\},\{4,6,12\},\{4,5,7\},\{5,6,8\},\{6,7,2\}, \\
& \{7,8,10\},\{8,11,4\},\{10,12,5\},\{10,11,6\},\{11,12,7\},\{12,2,8\} .
\end{aligned}
$$

These are the blocks of an affine plane of order 3 on the nine points $2,4,5$, $6,7,8,10,11,12$. Note that this is a $(9,3,1)$-BIBD.

The above-described process can be reversed. The 12 blocks of the affine plane can be partitioned into four parallel classes, each of which consists of three disjoint blocks. Add a new point x_{i} to each block in the i th parallel class, for $1 \leq i \leq 4$. Finally, add a new block $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
A Steiner triple system is a $(v, 3,1)$-BIBD. It is also denoted as $\operatorname{STS}(v)$. It has $r=(v-1) / 2$, so r is odd. Then $b=(2 r+1) r / 3$, so $3 \mid r$ or $3 \mid 2 r+1$. Hence, $r \equiv 0,1(\bmod 3)$ and $v \equiv 1,3(\bmod 6)$ is a necessary condition for existence of an $\operatorname{STS}(v)$. We can also write $b=v(v-1) / 6$.
Example: We have already constructed STS(7) and STS(9). An STS(13) has $b=26$ blocks. It can be constructed by developing the two base blocks $\{0,1,4\}$ and $\{0,2,8\}$ modulo 13 .
Theorem: An $\operatorname{STS}(v)$ exists for all $v \equiv 1,3(\bmod 6), v \geq 7$.
A Hadamard design is a $(4 n-1,2 n-1, n-1)$-BIBD. The Hadamard designs are is a symmetric BIBDs.
Example: We have already constructed a $(7,3,1)-\operatorname{BIBD}$ and a $(11,5,2)$ BIBD. These are Hadamard designs corresponding to $n=2$ and $n=3$, respectively.
Hadamard designs are known to exist for $2 \leq n \leq 166$. The smallest unknown case is a $(667,333,166)$-BIBD.
A Hadamard matrix of order $4 n$ is a $4 n$ by $4 n$ matrix H, whose entries are all ± 1, which satisfies the property $H H^{T}=4 n I_{4 n}$ (where $I_{4 n}$ is the identity matrix of order $4 n$).
A Hadamard matrix of order $4 n$ is equivalent to a ($4 n-1,2 n-1, n-1$)-BIBD (i.e., a Hadamard design).

Example: We construct a Hadamard matrix of order 8 from a (7,3,1)BIBD. Recall that the BIBD has blocks $\{0,1,3\},\{1,2,4\},\{2,3,5\},\{3,4,6\}$, $\{4,5,0\},\{5,6,1\},\{6,0,2\}$. We first construct the incidence matrix of the BIBD. The rows are indexed by the points, the columns are indexed by the blocks, and an entry is 1 if the given point is a member of the given block, and 0 , otherwise. The incidence matrix is as follows:

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Now replace all 0 's by -1 's and adjoin a row and column of 1 's:

$$
\left(\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 \\
1 & -1 & 1 & 1 & -1 & -1 & -1 & 1 \\
1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\
1 & -1 & -1 & -1 & 1 & -1 & 1 & 1
\end{array}\right) .
$$

The result is a Hadamard matrix of order 8.
It is a bit more complicated to construct a $(4 n-1,2 n-1, n-1)$-BIBD from a Hadamard matrix of order $4 n$. First, the Hadamard matrix must be modified in a suitable manner so it contains a border of 1's. Then the border can be stripped off and all -1 's are changed to 0's.

2 t-designs

A t - (v, k, λ)-design is a collection of k-subsets (called blocks) of a v-set (whose elements are called points), such that every t-subset of points is in exactly λ blocks. If $t=2$, we have a BIBD.
A Steiner quadruple system is a $3-(v, 4,1)$-design. It is also denoted as $\operatorname{SQS}(v)$. An $\operatorname{SQS}(v)$ exists if and only if $v \equiv 2,4(\bmod 6)$.
Example: We construct an $\operatorname{SQS}(8)$. We start with two blocks: $\{1,2,3,4\}$ and $\{5,6,7,8\}$. Next we divide these blocks into pairs as follows:

$\{1,2\}$	$\{1,3\}$	$\{1,4\}$
$\{3,4\}$	$\{2,4\}$	$\{2,3\}$
$\{5,6\}$	$\{5,7\}$	$\{5,8\}$
$\{7,8\}$	$\{6,8\}$	$\{6,7\}$

Now we form 12 blocks as follows:

$\{1,2,5,6\}$	$\{1,3,5,7\}$	$\{1,4,5,8\}$
$\{1,2,7,8\}$	$\{1,3,6,8\}$	$\{1,4,6,7\}$
$\{3,4,5,6\}$	$\{2,4,5,7\}$	$\{2,3,5,8\}$
$\{3,4,7,8\}$	$\{2,4,6,8\}$	$\{2,3,6,7\}$

These 12 blocks, along with the original two blocks, form the desired SQS(8).

The preceding construction can be generalized to show that an $\operatorname{SQS}(2 v)$ can be obtained from an $\operatorname{SQS}(v)$.
Another infinite class of 3 -designs are the inversive planes, which are 3$\left(n^{2}+1, n+1,1\right)$-designs. These designs are known to exist if n is a prime power.
If we fix a point x in an inversive plane, delete all blocks that do not contain x, and then delete x from all the remaining blocks, we get an affine plane.
Very few explicit examples of t-designs with $t \geq 4$ are known. However, a result of Keevash from 2014 shows that t - $(v, k, 1)$-design exist for all t, albeit with enormously large values of v.

